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Decomposition of rank-dependent measures
of inequality by subgroups

Summary - The purpose of additive subgroup decomposition is to study the rela-
tionship between overall inequality and inequality within and between population
subgroups defined by variables like gender, age, education and region of residence.
As opposed to the inequality measures that are additively decomposable, the so-called
generalized entropy family of inequality measures, the Gini coefficient does not admit
decomposition into within- and between-group components but does also require an
interaction (overlapping) term. The purpose of this paper is to introduce an alter-
native decomposition method that can be considered to be a parallel to Lerman and
Yitzhaki’s (1985) elasticity approach for decomposing the Gini coefficient by income
sources, which means that the elasticity of the Gini coefficient with respect to various
income components is treated as the basic quantities of the decomposition method.
Thus, rather than decomposing the Gini coefficient or any other inequality measure
into a within-inequality term, a between-inequality term and eventually an interaction
term, the basic quantities of the introduced method are the effects of marginal changes
in variables that are used to specify the population subgroups.

Key Words - The Gini coefficient; The Bonferroni coefficient; Rank-dependent mea-
sures of inequality; Decomposition by subgroups.

1. Introduction

The most widely used measure of income inequality is the Gini coeffi-
cient, which is defined equal to twice the area between the Lorenz curve and
its equality reference(1). The simple and direct relationship between the Gini
coefficient and the Lorenz curve appears to be the major reason for its popu-
larity in applied work. However, since empirical analyses of income inequality
normally deals with issues that require use of decomposition methods numer-
ous proposals on how to decompose the Gini coefficient by income sources as

(1) See Giorgi (1990) for a bibliographical portrait of the Gini coefficient.
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well as by subgroups has occurred in the literature(2). The purpose of sub-
group decomposition is to study the relationship between overall inequality and
inequality within and between population subgroups defined by variables like
gender, age, education and region of residence(3). As opposed to the inequality
measures that are additively decomposable, the so-called generalized entropy
family of inequality measures, the Gini coefficient does not admit decomposi-
tion into within- and between-group components. However, by adding an extra
term that captures the overlap between the marginal income distributions of sub-
groups it can be demonstrated that the Gini coefficient can be decomposed into
three terms, the within-group term, the between-group term and an interaction
term(4). Note that the interaction term vanishes when there is no overlapping
of income ranks between income units belonging to different subgroups; i.e.
when the income distributions of subgroups do not overlap. However, a num-
ber of alternative approaches for decomposing the Gini coefficient and other
measures of inequality by subgroups could be defined, see Shorrocks (1984).

The purpose of this paper is to introduce a new method that can be con-
sidered to be a parallel to Lerman and Yitzhaki’s (1985) elasticity approach
for decomposing the Gini coefficient by income sources, which means that the
elasticity of the Gini coefficient with respect to various income components is
treated as the basic quantities of the decomposition method. Thus, we turn the
focus from decomposing the Gini coefficient or any other inequality measure
into a within-inequality term, a between-inequality term and eventually an in-
teraction (overlapping) term to the effects of marginal changes in the variables
that are used to specify the population subgroups.

2. Decomposition of Lorenz curves and rank-dependent measures of in-
equality

Let Y be a positive, continuous random variable representing wage or
income, X a random covariate vector. Leaving out the influence of X, the
overall Lorenz curve is

L(u) = 1

µ

∫ 1

0
I [t ≤ u]F−1(t)dt = 1

µ

∫ ∞

0
I [y ≤ F−1(u)]yd F(y)

where µ = ∫ ∞
0 yd F(y) is the mean of Y , F−1 denotes the left inverse of the

distribution function F of Y , and I is the indicator function. L(u) gives the

(2) See e.g. Rao (1969), Kakwani (1977, 1980), Lerman and Yitzhaki (1985), Chakravarty (1990)
and Silber (1993) for useful discussions on decomposing the Gini coefficient by income sources.
(3) See e.g. Shorrocks (1984).
(4) More on the derivation and interpretation of the subgroup decomposition of the Gini coefficient,
see Bhatacharya and Mahalanonis (1967), Piesch (1975), Silber (1989), Yitzhaki (1994), Yitzhaki
and Lerman (1991), Lambert and Aronson (1993) and Dagum (1997).
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proportion of the total amount of income that is owned by the 100u poorest
percent of the population. We extend this definition to include the influence of
covariates by considering the proportion of the total amount of income that is
owned by the subpopulation with covariate values x and with income below the
u-th quantile in the entire population. To this end we define the pseudo-Lorenz
regression curve as

�(u|x)= 1

µ
E
{

Y I [Y ≤ F−1(u)]|X=x
}= 1

µ

∫ ∞

0
y I [y ≤ F−1(u)]d F(y|x)

=
∫

y
{

I [y ≤ F−1(u)]
/∫ 1

0
F−1(u)du

}
d F(y|x), 0 ≤ u ≤ 1 .

(2.1)

where F(y|x) denotes the distribution function of Y given X = x. Although
this curve differs from the standard Lorenz curve it has the nice property that
it is a decomposition of the Lorenz curve in the sense that its expected value
equals the Lorenz curve for the total population, i.e. by using the iterated
expectation theorem, see Bickel and Doksum (2001), we find

E
[
�(u|X)

] = L(u) . (2.2)

As (2.1) shows, this definition of Lorenz regression aggregates incomes from the
subgroup with covariate vector x, but uses F−1(u) as a common reference when
computing proportions(5). This reference quantile F−1(u) is the u-th quantile of
the overall income distribution F(y) which is obtained by averaging out x, that
is, F(y) = E[F(y|X)]. If X is used to partition the sample space into distinct
categories C1, . . . , Cs with probabilities P(Cj ) = P(X ∈ Cj ), j = 1, . . . , s,
then (2.2) becomes

L(u) =
s∑

j=1

P(Cj )�(u|Cj )

where

�(u|Cj ) = 1

µ
E
{

Y I [Y ≤ F−1(u)]|X ∈ Cj
} = µ(Cj )

µ
L(Fj (F−1(u))|Cj ), (2.3)

and Fj , µ(Cj ) and L(·|Cj ) are the distribution function of Y , the mean of Y ,
and the Lorenz curve for sub-population Cj .

Note that
∑

P(Cj )�(1|Cj ) = 1, but �(1|Cj ) = µ(Cj )

µ
�= 1 except when

µ(Cj ) = µ.

(5) See Aaberge, Bjerve and Doksum (2005) who have used conditional Lorenz curves for deriving
a regression framework for the Lorenz curve and the Gini coefficient.
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The above decomposition of the Lorenz curve gives a method for iden-
tifying the contribution to overall inequality from each subgroup, where the
subgroup contributions can be expressed as the product of three components;
the proportion of the population that belongs to the subgroup, the ratio between
the subgroup mean income, and the overall mean income and an interaction
component that depends on income inequality within the subgroup as well as
the relative location of the subgroup distribution.

Similar to (2.3) for the discrete case we get the following expression for
the continuous case,

�(u|x) = µ(x)

µ
L(g(u)|x) (2.4)

where g(u) = F(F−1(u)|x) and L(·|x) is the (conditional) Lorenz curve for
F(y|x).

To summarize the information provided by the pseudo Lorenz curve �(u|x)

we may use the pseudo-Gini coefficient(6) defined by

�(x) = 2
∫ 1

0
[u − �(u|x)]du = 1

µ
E{Y [2F(Y ) − 1]|x}, (2.5)

or alternatively any member of the following family of pseudo inequality mea-
sures

�P(x) = 1 +
∫ 1

0
P ′′(u)�(u|x)du = E{Y [1 − P ′(F(Y ))]|x}, (2.6)

where the weight-function P ′ is the derivative of a concave function P defined
on the unit interval that satisfies the conditions P(0) = 0, P(1) = 1 and
P ′(1) = 0. Note that the unconditional counterpart of (2.6) is the family of
rank-dependent measures of inequality introduced by Mehran (1976)(7). By
inserting for P(u) = 2u − u2 in (2.5) we find that �P(x) = �(x). As for the
pseudo-Lorenz curve we find the following convenient aggregation property for
the pseudo inequality measures

JP = E[�P(X)] = EY [1 − P ′(F(Y ))] = 1 −
∫ 1

0
P ′(u)d L(u)

= 1 − 1

µ

∫ 1

0
P ′(u)F−1(u)du.

(2.7)

(6) Kakwani (1980) introduced a similar definition in cases where x is a vector of discrete variable.
See also Mahalanobis (1960).
(7) Mehran (1976) introduced the JP -family by relying on descriptive arguments, whereas alternative
normative motivations of the JP -family and various subfamilies of the JP -family have been provided
by Donaldson and Weymark (1980, 1983), Weymark (1981), Yaari (1987,1988), Ben Porath and
Gilboa (1994) and Aaberge (2001).
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As demonstrated by Aaberge (2000) the Gini coefficient attaches an equal
weight to a given transfer of income irrespective of where it takes place in the
income distribution, as long as the income transfer occurs between individuals
with the same difference in ranks. Thus, in general the Gini coefficient favors
neither the lower nor the upper part of the Lorenz curve. To supplement the
information provided by the Gini coefficient it might be relevant to use the
Bonferroni coefficient(8) defined by

B =
∫ 1

0
[1 − u−1L(u)]du = 1 + 1

µ
E[Y log F(y)] (2.8)

and the pseudo-Bonforroni coefficient defined by

B(x) =
∫ 1

0
[1 − u−1�(u|x)]du = 1 + 1

µ
E{[Y log F(Y )]|x}. (2.9)

Note that B and B(x) corresponds to JP and �P for P(u) = u(1 − log u). As
demonstrated by Aaberge (2000) the Bonferroni coefficient B satisfies Mehran’s
principle of positional transfer sensitivity(9) for any distribution function F and
Kolm’s principle of diminishing transfers for all F for which log F(x) is strictly
concave. Thus, B is particular sensitive to transfers that occur in the lower
part of the income distribution for logconcave distribution functions.

As suggested in Section 1 the main purpose of this paper is not to focus
attention on the various components defined by the covariable vector x in cases
where x is a vector of discrete variables, but to treat x as a vector of continuous
variables and develop a framework that can be considered to provide similar
information as the decomposition method in a situation with discrete variables.
To this end we introduce the regression coefficients of the regression functions
(2.1), (2.5) and (2.6) as quantities that provide information on the influence of
covariates on overall inequality.

3. Measuring the effect of covariates on rank-dependent measures of
inequality

By exploiting the parallel with the quantile regression approach, Aaberge,
Bjerve and Doksum (2005) developed a regression framework for the conditional
Lorenz curve, the conditional Gini coefficient and conditional rank-dependent
measures of inequality, which can be used to examine the influence of covariates

(8) For a discussion of the Bonferroni coefficient see D’Addario (1936), Nygård and Sandström
(1981), Aaberge (1982, 2000) and Giorgi (1998). A poverty measure derived from the Bonferroni
coefficient has been introduced by Giorgi (2001).
(9) See also Nygård and Sandstrøm (1981) and Giorgi (1998).
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x on income inequality in the conditional distribution (F(y|x)) of Y given given
X = x. However, sine the overall Lorenz curve and the overall Gini coefficient
will not be attained by averaging out the covariates in the conditional Lorenz
curve and the conditional Gini coefficient, the effects of covariates on the
conditional Lorenz curve and the conditional Gini coefficient do not immediately
carry over to the overall Lorenz curve and the overall Gini coefficient. Thus,
the (conditional) Lorenz and Gini regression coefficients are not the appropriate
quantities when focus is turned to the effects of covariates on overall inequality.
To this end it appears more relevant to consider the regression coefficients of
the pseudo-Lorenz curve and the pseudo-Gini coefficient introduced in Section
2. The pseudo-Lorenz regression coefficient curves are defined by

λj (u; x) = ∂�(u|x)

∂xj
, 0 ≤ u ≤ 1 , j = 1, 2, . . . , s , (3.1)

and can be considered as measures of the relative importance of the covariate
xj on income inequality(10). They show how much a small perturbation of xj

for j = 1, 2, . . . , s changes the pseudo-Lorenz curves and allows the effects
of the covariates to depend on whether the response is located in the lower,
the central or the upper segment of the income distribution. Similarly as for
the quantile regression coefficients curves it may be useful to summarize the
pseudo-Lorenz regression coefficient curves across the covariates by

λj (u) = Eλj (u; X) , 0 ≤ u ≤ 1 , j = 1, 2, . . . , s . (3.2)

Note that λj (u) gives the average change of the pseudo-Lorenz curves due to
small change in the j-th covariate when the remaining covariates are first kept
fixed, then averaged out. We call λj (·) the j-th marginal pseudo-Lorenz curve.

To complete the summarization of the pseudo-Lorenz regression coefficients
provided by λj (u) a summary measure that captures the variation across quan-
tiles will be introduced. To this end we may use the pseudo-Gini coefficient
as a summary measure of the information content of the pseudo-Lorenz curve.
The pseudo-Gini regression coefficients that correspond to (3.1) are defined by

γj (x) = ∂�(x)

∂xj
= −2

∫ 1

0
λj (u, x)du , j = 1, 2, . . . , s . (3.3)

Moreover, by summarizing over x we get

γj = Eγj (X) = −2
∫ 1

0
λj (u)du , j = 1, 2, . . . , s . (3.4)

(10) A similar approach for quantile regression was introduced by Chaudhury et al. (1997).
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The corresponding pseudo-Bonferroni summary measures are given by

bj (x) = ∂ B(x)

∂xj
, bj = Ebj (X) . (3.5)

Since alternative methods for summarizing the pseudo-Lorenz regression
coefficients may be called for, we introduce the �P -regression coefficients
derived from the pseudo-inequality measures defined by (2.5),

ξj P(x) = ∂�P(x)

∂xj
=

∫ 1

0
P ′′(u)λj (u, x)du , j = 1, 2, . . . , s , (3.6)

where P ′′ is the second derivative of the weight-function P . By summarizing
over x we get

ξj P = Eξi P(X) =
∫ 1

0
P ′′(u)λj (u)du , j = 1, 2, . . . , s . (3.7)

Note that P(u) = 2u − u2 is the P-function that corresponds to the Gini
coefficient, whilst P(u) = u(1−log u) corresponds to the Bonferroni coefficient
(P ′′(u) = −1/u).

4. Estimation

We have considered a variety of maps m : Rs → R that measure inequality
in income Y as a function of covariates x ∈ Rs . These surfaces m(·), which
are referred to as “curves” in the literature and this paper, can not be displayed
effectively, nor estimated efficiently unless the sample sizes are enormous. For
this reason we turn to summary measures: The average derivative nonparametric
parameter is the expected value of the gradient vector

∇m(x) =
([

∂

∂xj
m(x)

]
, j = 1, . . . , s

)T

. (4.1)

In the case of single index models, ∇m(x) is proportional to the single index
parameter vector.

Average Derivative Estimates (ADE’s) have been proposed and analysed
by Stoker (1986), Härdle and Stoker (1989), Härdle et al. (1993), Chaudhury
et al. (1997), and Hristache et al. (2001), among others. Related work on
projection pursuit regression appears in Friedman and Stuetzle (1981) and Hall
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(1989). One basic idea is to estimate the gradient locally near a sample point
xi by using locally weighted least squares. That is, use ∇̂m, where(
m̂(Xi)

∇̂m(Xi)

)
= arg

a∈R
min
β∈Rs

n∑
j=1

{
Vj − [a + βT (Xj − Xi)]

}2 K
( |Xj − Xi |

h2

)

=


n∑
j=1

(
1

Xi j

)(
1

Xi j

)T

K

(
|Xi j |2

h2

)
−1

n∑
j=1

Vj

(
1

Xi j

)
K

(
|Xi j |2

h2

)
.

(4.2)

Here h is a tuning parameter selected using the data, Xi j = Xj − Xi , | · | is
Euclidean distance, and the basic data {(X1, V1), . . . , (Xn, Vn)} is assumed to
be i.i.d. The proceeding references give various modifications of this basic
formula in order to deal with regions with sparse data.

To use these methods we need further specification. We have considered
the following three m’s:

m1(u; x) = �(u|x) = µ−1 E
[
Y I [F(Y ) ≤ u]|x] ,

m2(x) = �(x) = 1 − 2µ−1[E(Y |x) − E(Y F(Y )|x)
]
,

m3(x) = B(x) = 1 + µ−1 E
[
Y log F(Y )|x] .

(4.3)

Thus, we need ADE’s for the four cases where V = Y I [F(Y ) ≤ u], V = Y ,
V = Y F(Y ) and V = Y log F(Y ).

Because F is unknown, we need to replace F(Yi) by its empirical version
F̂(Yi) = i/n, where the incomes {Yi } have been arranged in increasing order
and Xi now denotes the covariate vector that belongs with the i-th ordered Y .
For ease of interpretation and display the ADE algorithms require that each
Xi j in the sample have the sample mean X j subtracted and be divided by the
sample standard deviation sj , j = 1, . . . , s. Our curves require an estimate of
µ = E(Y ), which we take as µ̂ = Y .

We label the outputs from the ADE algorithms as ∇̂mkj (Xi), k = 1, 2, 3,
j = 1, . . . , s, i = 1, . . . , n. Then our estimates are

λ̂j (u) = n−1
n∑

i=1

∇̂m1 j (u; Xi) (Lorenz curve in direction X j )

γ̂j = n−1
n∑

i=1

∇̂m2 j (Xi) (Gini coefficient in direction X j ) (4.4)

b̂j = n−1
n∑

i=1

∇̂m3 j (Xi) (Bonferroni coefficient in direction X j )
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When there is only one covariate X , estimation is more straightforward. In
the case of �(u|x) we can apply any nonparametric regression estimator to the
data (X1, V1(u), . . . , Xn, Vn(u)) where

Vi(u) = I (i ≤ [un])Yi (4.5)

and [·] is the greatest integer function. One simple such estimator would be

�̂(u|x) =
n∑

i=1
Vi(u)Kh(Xi − x)

Y
n∑

i=1
Kh(Xi − x)

(4.6)

where Kh(u) = h−1 K (u/h), K (u) is a kernel on R with
∫

K (u)du = 1 and
h > 0 is a tuning parameter.

The Gini regression index can be estimated as

�̂(x) = 1 − 2(Y )−1µ̂G(x) (4.7)

where

µ̂G(x) =
n∑

i=1

(
1 − i

n+1

)
Yi Kh(Xi − x)

n∑
i=1

Kh(Xi − x)

(4.8)

Here the {Yi } are in increasing order and Xi is the covariate value for the case
with ordered response Yi . Similarly, the Bonferroni regression index can be
estimated as

B̂(x) = 1 + (Y )−1µ̂B(x) (4.9)

where

µ̂B(x) =
∑

log
(

i
n+1

)
Yi KL(Xi − x)∑

KL(Xi − x)
(4.10)
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