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SIMULTANEOUS ESTIMATION
UNDER NESTED ERROR REGRESSION MODEL

L1-Chun Zhangl

ABSTRACT

Zhang (2003) proposed a frequentist method of simultaneous small area
estimation under hierarchical models. This can be useful when various
ensemble characteristics of the small area parameters are of interest in addition
to area-specific prediction. In this paper we extend the approach under the
nested error regression model (Battese, Harter and Fuller, 1988), which allows
for use of auxiliary information at the unit level. Simulations based on monthly
wage data suggest that the simultaneous estimator has much better ensemble
properties than the empirical best linear unbiased predictor, without losing
much of the precision of the latter in area-specific prediction.
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1. Introduction

In small area estimation problems, the ensemble characteristics of the small
area estimators (Judkins and Liu, 2000), 1.e. when these are viewed as a
collection of statistics, 1s often of as much interest as each area-specific
estimator. Such ensemble characteristics include the variance, the rank ordering,
the mmi- and maximum, the range, the percentiles, etc. of the small area
parameters. Estimators that are optimal for prediction of each specific area may
have unsatisfactory ensemble properties. For instance, the between-area variation
of the estimates can be much smaller than the true variation in the population,
which 1s known as over-shrinkage. Various constrained Bayes approaches have
been developed (Louis, 1984; Spyetvoll and Thomsen, 1987; Lahiri, 1990;
Ghosh, 1992). For a two-stage hierarchical model without auxiliary covariates,
Shen and Louis (1998) proposed "triple-goal" estimators that produce good ranks,
a good distribution and good area-specific estimators. The authors also noted that
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the approach can be generalized under models with a regression intercept and
slope.

Zhang (2003) proposed a frequentist method of simultaneous estimation
under basically the same two-stage hierarchical model. Suppose we are interested
in, say, the mean of a variable from a large number of small areas, denoted by §;,

for i=1,..m. At the lower level of the model, we assume a parametric
distribution of 8, ; at the upper level, we assume a conditional distribution of the
data given 6,. The simultaneous estimates are derived in two steps. Firstly, since

the number of small areas is finite, one of them must have the smallest value
among all the 8,'s, another must have the second smallest value, and so on. Let

6, be the ith order statistic of {6}, ie. the set of all the &;'s, where

B4y <64y <+ <0, . Denote the expectation of 6, by
n = E[H(i);f]

where & is the parameter of the distribution of 8; . It follows that 7, is the best
predictor for 6;,, and 7, is the best predictor for ,), and so on, and {7,} is the

best ensemble predictor of {6,} . Let f be an estimator of £ and 77 = E[H(i);f] ,

then {7,} is the estimated best ensemble predictor.

Secondly, we match {n,} with the small areas. Let é,- be the estimated best
area-specific predictor, for i =1,...,m. Instead of using é,- directly, we obtain the
rank of é, among all the é,. 's, denoted by r; = rank(é,). These are now used to
match the estimated best ensemble predictors, and the simultaneous estimator of
area i is given by

6, =1, -

In this way, the simultaneous estimates have the same rank ordering as the
area-specific estimates. In the special case of ties among the é, 's, we assign the
corresponding 7;'s randomly.

The simultaneous estimator is not optimal for area-specific prediction.
However, they have better ensemble properties due to the use of the best
ensemble estimators 7;'s. Empirical results (Zhang, 2003), validated by the true

population values, suggest that the simultaneous estimator performs similarly as
the Bayesian alternatives, i.e. producing estimates with good ensemble as well as
area-specific properties. Exactly how big is the trade-off between the gain in
ensemble statistics and the loss in area-specific precision, however, depends on
the particular situation and must be evaluated on a case-to-case basis.
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In this paper, we extend the approach of Zhang (2003) to regression models.
In our derivation we concentrate on the one-fold nested error regression model
(Battese, Harter and Fuller, 1988), which allows us to incorporate auxiliary
information at the individual level. We also allow for nonparametric specification
of the distribution of the random errors, which is another difference from the case
of two-stage hierarchical model above. In Section 2, we show that the best linear
unbiased predictor (BLUP) entails loss of between-area variation under the
nested error regression model. In Section 3 we present the simultaneous
estimator. Section 4 contains a simulation study based on the monthly wage data,
where the simultaneous estimator is compared to the empirical best linear
unbiased predictor (EBLUP) and the direct estimator, both in situations with and
without auxiliary covariates. A short summary is given in Section 5.

2. Between-area variation under nested error regression model

The nested error regression model to be considered is given as

T
y,.j=x,.j,5'+u,j and u; =v;, +e; 2.1

where j is the subscript for unit j within area i, y; is the variable of interest and

Xij

coefficients. The random error u;; is the sum of an area-level effect v; and a unit-

is the vector of unit-level covariates, and £ contains the regression

level effect e; . The random errors v;'s and e; 's are assumed to be independent,

with zero mean and variance &} and o, respectively. Apart form the first two

moments, we do not require full specification of the distribution of the random
errors in general.

Suppose we are to estimate the small area means of y;, denoted by
—_ _ N’_ . . . o —_
Y, =N, IZHJ’"J , where N, is the size of area i. Let 8, = X f +v,, where X,

is the mean of x, within area i, which is the expected area mean conditional on

v;. The difference between &, and Y, is the within-area population average of

!

the unit-level random effects. Given the covariates of the population, we have

1 n — . ,
”1_12(0"_9)_|X1""’Xm]=A+o-; (22)
i=1

£
where @ is the average of all the 8,'s, and X is the average of all the X's, and

1 ., - = = — .
=—— B X -, -X) .
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From (2.2), it is seen that the variation in 6, decomposes into two parts,

where the first part is what can be accounted for by the covariates through the
regression model, and the second part is what needs to be attributed to random

effects. By comparing A with o, we may get an idea of how good the
covariates of the model are in a particular situation.

Let y, =n,™" Z:—l y; be the sample mean of y; within area i, where n; is

the within-area sample size, which is an unbiased direct estimator of 6,
conditional on v;. The BLUP of 6, is given by

éi =X/ B+y(5-% B =X]B+y,(v, +¢)
where y, =} /(o] +a}/n;) when B, o} and o are all known. In the special

case of m, =---=n,,, let = /n, be a constant for all the areas. We have

ﬁZ(éi -0) 1 X,,.., X, 1=A+y*(cl+p)=A+ycl <A+cl.

1

]

In other words, the BLUPs are under-dispersed compared to the &, 's. Notice

that, in the absence of auxiliary variables, i.e. A =0, the result reduces to that in
Zhang (2003).

3. Simultaneous estimator

The empirical best linear unbiased predictor (EBLUP) é, can be written as
é/ = )?:‘TﬂA +V, where v, =7,(¥, _Eilﬁ) .

Loss of between-area variation is essentially due to over-shrinkage in
estimation of v;. This amounts to using too small shrinkage-factor 7,. We now
consider two adjustments, depending on whether the distribution of v, is fully
specified or not.

In the first place, we might assume a fully parametric distribution of v,,

denoted by G(v;&) with parameters & . Let {v,} be the order statistics of {v,},
for i=1,...,m. Let

n; = E[v;;6]
be the expectation of v, . It follows that {r,} is the best ensemble predictor of

{v;}. Let ég be an estimator of ¢ and 7 = E[v(,);(f], then {7} is the estimated

best ensemble predictor. Instead of using v, directly, we obtain the rank v, of
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among all the v,'s, denoted by 7, = rank(v;). The simultaneous estimator of the
random effect of area i is then given by

‘.;i = ﬁri
and the simultaneous estimator of &; is
0, =X B+v,.

In the case when all the parameters are known, we have, as
m-—» o,

1 Y N2V v 2 _ 1 N2 Y v
E[-n:—I,Z(e,-e) | X,,.... X, ] > A+0] _E[m—_—IZ(ai—e) | X,,.... X, ]

1
m-1

1
m-—1

provided Z()?, -X)" pn, =0, because > (-1 >0} as

m—> 0.

In many situations, however, it may be too difficult or restrictive to fully
specify the distribution of v;. Let 7} =(m—l)'12(\3i -v)? be the empirical

variance of the EBLUP v,'s. We observe over-shrinkage of the EBLUPs if
2 <Gl
A simple nonparametric simultaneous estimator can be given as
v, =+ (%, -V)S,/1; and 6, =X B+v,. (3.1)
Notice that, in this way, the empirical variance of the éi 's always equals to &2.

To evaluate the MSE (or variance) of 6,, we use a bootstrap procedure.

Firstly, we fix the parameters of the model at the estimated values. Secondly, we
generate a bootstrap sample in area i :

) let 6 =X/ ,5’ +v, , where v, is drawn randomly and with replacement
from {v;};

*
ijo

2) let y; = x,.JT. B+v, +e;, where e; is drawn randomly and with

replacement from {¢;}, and é; =¢,6,/7;,and ¢; = y; —x,Jr.,B —v,,and

72

; is the empirical variance of the ¢;'s.
Finally, based on a bootstrap sample { y,;.} , we re-estimate the model (2.1)

and derive the simultaneous estimates in the same way as based on the original
sample, denoted by 6. A bootstrap replicate of the error in the original
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simultaneous estimator is given by 6, -, . Independent bootstrap replicates can

then be used to produce Monte Carlo approximation to the bootstrap MSE (or
variance).

4. Simulations

4.1. Data

The Norwegian Wage Survey (NWS) is based on a yearly sample of clusters
of wage earners. The clusters correspond to establishments enlisted in the
Establishment Register, stratified according to the size of the establishment. The
NWS includes all the employees from each selected establishment. The primary
variable of interest is the monthly wage, classified by sex, age, education, type of
position, and so on. For our simulations, we use the sample from industry group
52 (retailing) and occupation group 5 (sales, service) in 2000, 2001 and 2002. We
use the municipalities as small areas, and estimate the average monthly wage in
each municipality.

4.2. Case without auxiliary information

In this case model (2.1) contains only an intercept, denoted by . We fit the

model separately for men and women in all the 3 years. Estimates of the model
parameters are given in Table 1. As expected, the estimated overall average
monthly wage, i.e. /i, increases from 2000 to 2002, and is higher for men than

for women. The estimated variance components vary from one year to another,
with & having the largest variation. The estimated residuals are far from

normal. Student-t distribution, on the other hand, appears to fit the estimated
residuals quite well, albeit after deletion of a few largest and/or smallest values.
In the simulations below, we shall consider only the nonparametric version of the
simultaneous estimates. _
We now set up the model parameters for simulation based on the sample in
2001. We use the mean and variance of the observed area sample means as the

true u# and o). Whereas we use the variance of the observed within-area
deviations, i.e. e; =y, —,, calculated across all the areas as the true o}. We
draw a simulated sample in two steps:
a) draw 6, randomly and with replacement from all the observed area
sample means;
b) draw e; randomly and with replacement from {e;} and set
", for all @i, J).

* *
Yy =6 +e;,



STATISTICS IN TRANSITION, April 2004

661

Table 1. Estimated model parameters in 2000, 2001 and 2002. (Data: NWS)

Men
Year Sample size m i g, g,
2002 6062 316 20954 573.4 4601.5
2001 6353 305 19768 780.1 4589.3
2000 5444 303 19318 623.9 3916.6
Women
Year Sample size m o} G, G,
2002 10424 365 19318 359.6 3494.1
2001 10659 269 18475 1025.0 4556.9
2000 9025 366 17552 503.9 2949.2

The within-area sample sizes are the same as the observed ones in 2001.
Given each simulated sample, we estimate the model parameters, and derive the

direct estimate, the EBLUP, and the simultaneous estimate of all the 0; 's. The
results for the parameter estimators based on 1000 simulated samples are given in

2
Table 2.1. Both the estimator for H and P¢ seem to be unbiased. Whereas the

2
estimator of Zv ("fitting-of-constants" method, Rao, 2003) appears to be slightly

downward biased. In addition, ©* has large (just below 30%) relative standard
error. The estimation of the between-area variation is more demanding than the
estimation of the within-area variation.

Table 2.1. Simulation results for parameter estimators, 1000 simulations.

Men Women
Parameter " = = ~ ~ P
# O-e O.V /I Ge O-V
True value 19852 4500 2679 18287 4493 1515
Expectation 19856 4475 2592 18285 4474 1425
Relative standard error (%) 1.0 2.6 27.1 0.7 8.2 28.4

The three small area estimators are compared to each other with respect to
(i) the average, and maximum, absolute relative error (ARE) given, respectively,

m™! Zm 16; /6] -1

by

i=1

and

max |6, /6, —1];

i=l,....m

(ii) the average absolute relative distributional error (ARDE) given by

-1 m A% *
m Zi:]l 49(,.) /(9(,) -1
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where 0(',.) is the ith order statistic of {6, }, and é('i) is the ith order statistic of
{63(',.)} ; and (iii) the relative error (RE) of the range estimator given by

(max é,-' —min é,' )/(max8, —miné; ) ~1.

Table 2.2. Simulation results for small area estimators, 1000 simulations

Men ; : Women
Estimator Direct | EBLUP | Simultaneous| . Direct EBLUP. | Simultaneous
Average ARE 8.6 5.7 6.4 6.8 3.9 4.4
Maximum ARE 89.7 42.0 46.5 116.4 39.2 45.8
Average ARDE 4.5 2.1 2.0 4.1 2.0 1.2
RE in range 479 -17.1 6.3 121.7 -27.6 6.2

Based on the results given in Table 2.2, we observe that, (I) on average, the
model-based estimators improve the area-specific estimation compared to the
direct estimator. They are also more robust since the maximum AREs are much
smaller than that of the direct estimator. The simultaneous estimator is slightly
worse than the EBLUP, without losing the essential gains of the modeling
approach. (1I) The model-based estimators are also much better than the direct
estimator for estimation of the distribution of the small area means, both with
respect to the average ARDE and the range. (III) Not unexpectedly, the
simultaneous estimators have better ensemble properties than the EBLUPs. In the
present simulation, the gains are substantial with respect to the range (and
variance) of the small area means.

4.3. Case with auxiliary information

To create the case with auxiliary information, we take the joint sample of
2001 and 2002, which contains 8459 persons of both sex. We now treat the

monthly wage in NWS 2001 as the known covariates, denoted by x;, and the

monthly wage in NWS 2002 as the variable of interest. The parameters of the
model (2.1) are fixed as follows. Firstly, we obtain the sample means x; and y,.

The ordinary least square fit of regressing y; on x; (including an intercept term)
yields the regression coefficients for the simulations below, denoted by f.
Whereas the residuals will be used as the area-level random effects, denoted by
v, =y, —x . Finally, we obtain the within-area deviations as &, =x; —X; and

e; =y, — ¥, For the particular data we used, we find

ANA+c?)=0.430,
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such that the covariate accounts for about half of the variation in the variable of
interest.
For each simulation, we generate the population and the sample as follows:

1) draw X, randomly and with replacement from %, , and draw v,

randomly and with replacement from {v,}, and set 9,.‘ = )?,‘Tﬂ +v

2) draw 5,; randomly and with replacement from {¢;}, and set
x,j =X, +¢;;

3) draw e; randomly and with replacement from {e; }, and set

« * *
Vi =%, B+v; +ey.

The within-area sample sizes are the same as in the observed panel. Based
on each simulated sample, we derive the parameter estimates, the direct
estimates, the EBLUP and the simultaneous estimates of all the 8, 's. The results
based on 1000 simulations are given in Table 3.1 and 3.2.

The parameter estimators perform similarly as in the case without auxiliary
information. The estimators of £ and &, are apparently unbiased. Whereas &,

appears to be slightly downward biased, and is associated with the largest
uncertainty.

Table 3.1. Simulation results for parameter estimators with auxiliary information,
1000 simulations.

N 2

True value (8613.9, 0.603) 37139 1195.2
Expectation (8623.4, 0.602) 3705.0 1157.6
Relative standard error (%) (2.6, 1.8) 2.1 29.5

Table 3.2. Simulation results for small area estimators with auxiliary
information, 1000 simulations.

Estimator Direct EBLUP Simultaneous
Average ARE 7.2 3.1 3.6
Maximum ARE 73.7 62.8 55.8
Average ARDE 43 1.1 0.9
RE in range 53.0 -23.6 -8.8

Next, we compare the three estimators with respect to the average and
maximum ARE, the average ARDE and the RE in range (Table 3.2). The
conclusions are similar to those in the case without auxiliary information: (i) the
model-based estimators improve the direct estimator both in terms of area-
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specific and ensemble properties, and (ii) the simultaneous estimator improves
the ensemble properties of the EBLUP, without losing much of the precision of
the EBLUP in area-specific prediction. Notice that the nonparametric
simultaneous estimator can be expected to give good estimation of the variance of
the small area means, since it is based on an adjustment of the empirical variance
of the EBLUPs. The simulation results above suggest that this typically also lead:
to better estimation of the other ensemble statistics such as the range.

S. Summary

We considered a nested error regression model, which is a very basic mode
for small area estimation. We showed, in theory as well as by empirical example
that the (empirical) best linear unbiased prediction entails loss of the between
area variation of the small area means. In general, estimators that are optimal fo
area-specific prediction may have unsatisfactory ensemble properties. We exten
the simultaneous estimation approach of Zhang (2003) for the nested erro
regression model. This allows us to make use of auxiliary information at the unit
level when it is available. Simulations suggest that the simultaneous estimato
may substantially improve the estimation of the ensemble characteristics of th
small area parameters, without losing much of the precision in area-specifi
prediction. Our approach provides a frequentist alternative to the existin
Bayesian methods.
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