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Abstract: A substantial body of empirical evidence shows that individuals overweight extreme events 
and act in conflict with the expected utility theory. These findings were the primary motivation behind 
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1. Introduction 
The arithmetic mean was for a long period considered as a good rule of thumb for choice under 

uncertainty. However, as illustrated by the famous St. Petersburg paradox no one would pay any very 

large fee for a lottery that offers a prize of 2n-1 with a probability of 2-n, even though its expected 

payoff in money terms is infinite. Daniel Bernoulli (1738) responded to the challenge from this 

paradox by introducing expected utility, instead of the arithmetic mean, as the proper criterion for 

choice under uncertainty. In particular, he suggested to employ the geometric mean as the certainty 

equivalent, that is, the amount of money which, when received with certainty, is considered equally 

attractive as the given lottery. 

 In order to develop a theoretical foundation for expected utility as a criterion for choice under 

uncertainty, it appears convenient to introduce probability distributions as a formalization of 

uncertainty. Then the individual's decision problem is to choose between distribution functions. 

Consequently, a preference relation defined on the family of distribution functions may represent an 

individual’s choice over uncertain prospects. An individual who adopts expected utility has to support 

certain behavioral axioms that imply a strict structure on the preference relation. In general, there are 

two approaches for a preference relation to have an expected utility representation, depending on 

whether one treats the distribution function as objective or subjective. Von Neumann and Morgenstern 

(1944) introduced the former approach by assuming that the agents know the distribution functions. 

An alternative approach proposed by Ramsey (1926) and Savage (1954) considers the distribution 

function as unknown and subjective to the economic agents. 

 Even though the expected utility representation has been credited for its normative appeal and 

convenient mathematical form, there is fairly strong empirical evidence in disfavor of this theory, 

whether it is considered objective or subjective. The criticism against the expected utility theory 

originates from the famous Allais (1953) paradox. Similar experiments have been constructed by 

MacCrimmon (1968), Kahneman and Tversky (1979), and others, and they all found results 

inconsistent with the expected utility hypothesis. As a result, numerous alternative theories to expected 

utility have been proposed; see e.g. Karni and Schmeidler (1991) for a survey of alternative theories 

for choice under uncertainty. 

 Since economic agents solely in exceptional cases are faced with known distribution functions 

their decisions have to rely on less informative data. At most, observations, which may be considered 

as independent draws from distribution functions, will be available. In that case the agent may start out 

with the objective approach and adopt a decision criterion together with conventional statistical 

inference theory to arrive at a decision. Alternatively, the agent may view the statistical decision 

problem as an integral part of his preferences. In that case the agent's beliefs over probability 

distributions form the basis for the choice behavior. However, it can be argued that the complexity of 

these rules will make it difficult for individuals to follow them, especially when complex 
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computations are involved. It appears more likely that individuals in many situations base their 

decisions under uncertainty on simple criterions like maximin and maximax. For example, when 

individuals choose between lotteries, the lottery that offers the highest possible prize appears to be 

particular attractive, even though this lottery offers very few medium-size prizes. This is in line with a 

maximax-type of behavior. By contrast, there is extensive empirical evidence concerning the 

willingness to purchase insurance, which suggests a maximin-type of behavior. On the other hand, the 

widely observed coincidence between insurance and gambling discussed by Friedman and Savage 

(1948) may be due to a mixture of maximin- and maximax-type of behavior. Moreover, experimental 

evidence shows that individuals overweight extreme events. These findings were the primary 

motivation behind the development of the rank-dependent (anticipated) utility theory proposed by 

Quiggin (1982). This theory, which has been given a convincing intuitive justification by Diecidue and 

Wakker (2001), proves to be appropriate for explaining the purchase of insurance side by side with 

engaging in gambling. Moreover, several papers have shown the descriptive superiority of rank-

dependent utility theory over expected utility (see e.g. Quiggin, 1981, 1982). 

The purpose of this paper is to show that, in addition to being descriptively realistic, the rank 

dependent model follows naturally from some simple and arguably plausible decision heuristics. We 

assume that economic agents base their decisions on data which can be considered as independent 

outcomes from unknown distribution functions. Moreover, we assume that the agents utilize the 

available information in a way that corresponds to dividing the total sample of observations into an 

appropriate set of subsamples. For example, this might be the case when agents choose to invest in 

listed shares and have observed annual dividends from a selected group of shares over a period which 

covers both a recession and a recovery. Provided that the agents are primarily concerned with the 

smallest and/or the largest dividend during the recession and the recovery three simple decision rules 

emerge. These are the averages of the smallest, the largest and the sum of the smallest and largest 

annual dividends of each subsample defined by the recession and the recovery. The next two sections 

show that these simple rules of thumb correspond to rank dependent decision criteria. 

  

2. Maximin- and maximax-type of behavior 
Standard decision-criteria, like expected and rank-dependent utility, can be employed in situations 

where probabilities, either objective or subjective, can be assigned to the different states/outcomes. 

However, when the feasible information is insufficient for estimating the probability distributions 

economic agents have to rely on alternative criteria to expected and rank-dependent utility. Starting 

out from complete and partial uncertainty, Kelsey (1993) and Barrett and Pattanaik (1994) 

demonstrate the plausibility of maximin- and maximax-types of decision criteria in these cases. By 

contrast, this section show that decision criteria based on extreme values, when samples of 
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independent observations from unknown distribution functions are feasible, are consistent with the 

rank-dependent theory proposed by Quiggin (1982, 1987) and Yaari (1987). 

 Without loss of generality we restrict the decision problem to the choice between two 

distribution functions F1 and F2. Assume that N independent outcomes have been generated from each 

of the distributions. Consider an agent that is primarily concerned with escaping losses or small 

outcomes. This agent may find it plausible to choose the distribution/prospect, which in the long run 

appears to offer the highest minimum value. 

 Assume that the agent divides each of the two data sets into r random sub-samples, each 

consisting of n observations. Thus, . Let  be r random sub-samples 

of independent observations from . As suggested above the individual prefers F1 for F2 if 

N nr=
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k k k
i1 i2 inX ,X ,...,X , i 1,2,..., r=

2

 
r r

1 2
ij ij

j n j n
i 1 i 1

1 1
min X min X .

r r≤ ≤
= =

≥   
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Accordingly, the rule of thumb (1) for large r is consistent with Segal’s (1987b) proposal of concave 

weighting-functions, and moreover can be described by Yaari's theory for choice under uncertainty. 

Note that the number of observations (n) in each sub-sample determines the degree of risk aversion. 

Thus, the degree of risk aversion increases with increasing n, which means that the highest degree of 

risk aversion is exhibited when the minimum of the overall sample is used as decision rule. Note that 
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the number of sub-samples depends on the overall sample size (N) and the individual's degree of risk 

aversion. 

 By contrast, consider an individual who is primarily concerned with the highest payoffs from a 

set of feasible distributions. Based on N observations from each of the distributions the decision rule 

may then be given by 

 
r
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which for large r approaches 
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where 

  (7) n
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Thus, for large r the rule of thumb (5) proves to have a theoretical basis of the type discussed by Yaari 

(1987). The convexity of P2,n shows that individuals who adopt (5) as basis for making decisions under 

uncertainty are risk lovers. 

3. Decision-making based on the mid-range 
Experimental evidence as well as observed behavior suggests that people who in many cases are risk 

averse appear to be willing to purchase lottery tickets as well. Allais (1953) and Edwards (1955, 1962) 

suggest that the explanation of this behavior may be due to a substitution of decision weights for 

probabilities. Moreover, Allais (1953) demonstrated that decision-making based on a weighted sum of 

utilities was consistent with experimental evidence. Later Quiggin (1982), Yaari (1987), Segal (1987a) 

and Quiggin and Wakker (1994) developed an axiomatic basis for various non-expected utility criteria. 

Quiggin (1981, 1982) refers to experimental evidence, which suggests that economic agents are solely 

local risk averse and overweighs extreme events. Based on a survey of risk attitudes amongst 

Australian farmers Quiggin (1981) found indication of overweighing extreme outcomes with low 

probabilities. Although inconsistent with global risk-aversion, overweighing extreme events with low 

probabilities appear to be quite widespread, as illustrated by the widely observed simultaneous 

purchase of insurance and lottery tickets. In order to describe this type of behavior Quiggin (1982) 

introduced decision weights in a theory of choice under uncertainty. To deal with the propensity to 

overweighing extreme events a symmetric concave-convex weighting-function was incorporated into 

the criterion for choice under uncertainty. As will be demonstrated below adopting a particular version 

of this criterion turns out to be consistent with applying a rule of thumb based on the mid-range, i.e. 
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the average of the lowest and largest values of sub-samples of a sample of observations. The average 

mid-range is defined by 
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Note that P3,n assigns value 1/2 to probability 1/2, is symmetric about 1/2 and has a concave-convex 

functional form. Thus, the weighting function P3,n corresponds to the weighting functions that Quiggin 

(1982) introduced in order to deal with overweighing of extreme events. Note that the overweighing of 

extreme events increases when n increases and is maximal when n=N; i.e. when the agent uses the 

average of the lowest and the largest observations of the overall sample as decision rule. However, for 

large n the derivative  is in any case near 0 over most of its range, which means that the 

smallest and largest outcome will receive very high weights.  

3,nP (t)′

 Although Segal (1987b) has provided some plausible arguments against the condition 
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, Quiggin and Wakker (1994) show that this condition is favorable in many respects. 

However, as suggested by Quiggin (1987) less restrictive concave-convex specifications of P can be 

obtained by assuming that P is concave on [ ]0,a  and convex on [ ]a,1  where a 0,1∈ . Empirical rules 

of thumb that are consistent with this type of weighting functions are obtained by dividing the set of 

outcomes into two different sets of random sub-samples. As above we firstly divide the overall sample 

into r random sub-samples. Next, we divide the overall sample into s random sub-samples, each 

consisting of m outcomes. Let  be  outcomes from F. Thus, we 

may introduce the following alternative rule of thumb to the average mid-range 
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For large r and s this statistic approaches 
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When , the concave curvature in the lower part of P is stricter than the convex curvature in the 

upper part of P. Thus, in this case the agent will give larger weight to the worst outcomes than to the 

best outcomes. 

n m>

 Note that the decision criteria defined by (9) and (12) may be considered as special cases of 

Quiggin's rank-dependent utility model since utility is linear. However, by introducing a concave 

utility function U followed by replacing each outcome Xij in (8) and (11) by  and ( ijU X ) ijX
~

 in (11) 

by )X
~

(U ij , the more general rank-dependent utility form emerges in (9) and (12). Even though this 

model proves to possess several attractive properties, see Chew et al. (1987) and Quiggin (1992), the 

simplicity exhibited by the rule of thumb defined by (8) and (11) is partly lost.  

3. Conclusion 
Since economic agents solely in exceptional cases are faced with known distribution functions their 

decisions have to rely on less informative data. At most, observations, which may be considered as 

independent draws from distribution functions, will be available. In that case the agent may adopt a 

decision criterion together with conventional statistical inference theory to arrive at a decision. 

However, It can be questioned, however, whether the complexity of these rules will make it feasible 

for most individuals to follow them, especially when complex computations are involved. It appears 

more likely that individuals normally base their decisions under uncertainty on simple criteria like 

maximin and maximax although the validity of this assertion has to be subject to empirical testing.  

This paper has shown that simple rules of thumb that exclusively preserve the knowledge of 

the lowest and the largest value of subsamples of an available data set are consistent with rank-

dependent theories proposed by Quiggin (1981, 1982, 1987) and Yaari (1987).  To this end, it is 

assumed that economic agents utilize the available information in a way that corresponds to dividing 

the total sample of observations into an appropriate set of subsamples and moreover that the agents are 

primarily concerned with the smallest and/or the largest observations in each subsample. Then three 

simple decision rules emerge. These are the averages of the smallest, the largest and the sum of the 

smallest and largest observations of each subsample, which due to their simplicity and transparency 

might increase the intuitive interpretation of rank-dependent criteria for choice under uncertainty.  
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Whether decisions based on sub samples are consistent with the behaviour of economic agents, 

however, depends on the circumstances under which the data are generated. The general evidence in 

favour of rank dependent utility does not refute this assertion, although more direct empirical testing is 

needed to establish what heuristic individuals use. What this paper has shown is that rank dependent 

utility does not necessarily follow from a very complex decision heuristic, but can be generated by 

behaviourally plausible and simple decision rules under uncertainty. 
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