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Abstract 

The paper proposes a particular approach to model the utility of income. We develop a theoretical 

framework that restricts the class of admissible functional forms and distributions of the random 

components of the model. The theoretical approach is based on theories of probabilistic choice and 

ideas that are used in modern psychophysical research. From our theoretical framework, we obtain the 

empirical model and the corresponding likelihood function. The empirical analysis is based on a 

“Stated Preference” survey. The model fits the data quite well. Finally, we discuss the concept of 

cardinality and the implications for consumer demand relations.   
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1. Introduction 
Utility of income, marginal utility of income and the elasticity of the marginal utility of income are 

widely used concepts in economics. For example, in analysis of welfare, game theory, choice under 

uncertainty and dynamic choice, models are formulated in terms of (time independent) utility of 

income. The utility of income is of course also basic within the theory of consumer behavior since it is 

equivalent to the indirect utility⎯as a function of income (when prices are kept fixed). Despite the 

central role utility of income plays in economics, “direct” empirical studies of how utility varies with 

income are rare.  

 In this paper we develop a stochastic model for the utility of income. By this we understand 

that the utility function depends on random error terms. The motivation for introducing random error 

components is that, (i) these terms represent unobservables as viewed by the researcher, (ii) the errors 

may be random even to the decision-maker himself in the sense that he may make different choices in 

replications of identical choice settings, cf. Quandt (1956) and Thurstone (1927). This notion of 

individual randomness is consistent with psychological experiments and the explanation is that the 

agent may find it difficult to assess a fixed utility level once and for all to the respective alternatives. 

The agent's assessments will typically vary according to his moods and whims. Another reason for 

non-anticipating fluctuations in the agent's tastes may be due to uncertainty: As new information 

appears, the agent will update his tastes accordingly.  

 A common problem with most quantitative economic models is the lack of theoretical 

justification for the choice of functional form and the distribution of unobservables. The tradition in 

economics has been to employ ad hoc assumptions with regards to functional form and the distribution 

of unobservables; alternatively to rely on non-parametric approaches1. In this paper we propose an 

alternative strategy, namely an axiomatic approach to justify the choice of functional form of the 

utility function and the distribution of unobservables. In this approach, we have adopted and modified 

ideas and principles from the literature of psychophysical measurement. Within psychophysical 

measurement there is a tradition that addresses the problem of scale representations of the relation 

between physical stimuli and sensory response. A central part of this literature is concerned with the 

interpretation and implications of specifications and laws that are invariant under admissible 

transformations of the input variables. Typically, these transformations are scale- or affine 

transformations. In fact we demonstrate how the application of invariance principles similarly to the 

ones employed in psychophysics, combined with a version of the “Independence from Irrelevant 

Alternatives” axiom, lead to explicit characterizations of functional form and the distribution of the 

                                                      
1 Simon (1986):"Contemporary neoclassical economics provides no theoretical basis for specifying the shape and content of 

the utility function, and this gap is very inadequately filled by empirical research using econometric techniques. The gap is 
important because many conclusions that have been drawn in the literature about the way in which the economy operates 
depend on assumptions about consumers' utility function." 
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random terms of the utility function. We consider these invariance principles to be intuitive and 

plausible as a theoretical rationale for restricting the class of admissible specifications, as we shall 

discuss below. 

 Our empirical analysis is based on interview data from a “Stated Preference" (SP) survey. We 

consider this type of survey data to be a promising avenue to advance beyond conventional 

econometric analysis based on market data. Recall that market data yield only one observation for 

each individual at each point in time. In contrast, SP data are generated through experiments in which 

the participants are exposed to several trials. Thus, with the SP approach the researcher can acquire 

several observations for each individual. In some cases this has enabled the researcher to formulate 

behavioral models that are estimated separately for each individual. The empirical model we specify 

and estimate is based on the corresponding theoretical model we have developed in this paper. A 

particular goodness of fit measure shows that the model fits the data rather well. 

 The paper is organized as follows. Section 2 contains a discussion of the literature and the 

relationship between psychophysics and the measurement of utility. In section 3, we present the 

theoretical model and in section 4 we extend the model to allow for heterogeneity in preferences. 

Section 5 discusses the expenditure function that corresponds to the utility model and its distributional 

properties are examined. Section 7 and 8 present the empirical specification, estimation results and a 

specification test. Section 9 discusses the concept of cardinal utility and in section 10 we derive some 

implications for the structure of demand relations. 

2. The measurement of utility and the link to psychophysics: a 
review 
Here we shall briefly discuss some selected works that analyze theoretical and empirical issues related 

to the measurement of sensation in general and the measurement of utility in particular. We refer to 

Ellingsen (1994) for an excellent survey of the attempts to measure utility and its variation with 

income.  

 One of the first to specify a statistical method for measuring utility was Fisher (1892, 1918, 

1927). However, to the best of our knowledge, the first one to estimate the marginal utility of money 

was Frisch (1926, 1932). Frisch (1926) introduced certain behavioral or choice axioms. The choice 

axioms Frisch referred to are of two types. The "Axioms of the first kind", also called "Axioms related 

to a given position", are preference ordering axioms concerning completeness, transitivity and 

regularity and imply an ordinal utility representation. The "Axioms of the second kind", also called 

"Axioms related to different positions", give restrictions on the ordering of changes from one position 

in the commodity space to another and imply a cardinal utility representation, which means that 

individuals are able to compare and rank changes in the commodity space, given the reference points. 

Later, in his lectures in the 1940s, Frisch called the axioms of the second kind "Inter-local Choice 
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axioms". On several occasions Frisch expressed the view that inter-local choice axioms are highly 

plausible because most of the individuals' daily actions imply that they are in fact able to make inter-

local comparisons. Despite this strong belief in the existence of a cardinal utility function, derived 

from the axioms mentioned above, Frisch never carried out surveys where the respondents were asked 

to rank utility differences. Instead he assumed an additively separable utility function and used the 

cardinal property (cross-derivatives of the utility function are identically zero) of the utility function to 

estimate cardinal utility concepts like the marginal utility of income and the elasticity of marginal 

utility of income with respect to income, cf. Frisch (1926, 1959), and Johansen (1960). In his earliest 

work referred to above, he assumed that there exists at least one good with the property that its 

marginal utility of consumption is independent of the consumption of other goods. The additive 

assumption was never tested against market or survey data. 

 In an attempt to revitalize the cardinal utility concept and to employ utility functions to 

describe consumer behavior van Praag and numerous co-authors (hereafter called the Leyden school) 

carried out large scale surveys, see for instance van Praag (1968, 1971, 1991,1994), van Herwaarden, 

Kapteyn and van Praag (1977), van Herwaarden and Kapteyn (1981), Kapteyn and Wansbeck (1985). 

A discussion and critique of their approach is given in Seidl (1994) to which van Praag and Kapteyn 

responded in van Praag and Kapteyn (1994). The data they have used are typically collected through 

Income Evaluation Questions (IEQ). This means that each respondent was asked to indicate (under his 

current conditions), what income level y6 or above, of net household income per year would he 

consider to be excellent, what income interval (y5, y6) would he consider to be good, what income 

interval (y4, y5) is more than sufficient, what income interval (y3, y4) would he consider to be sufficient, 

what income interval (y2, y3) would he consider to be insufficient, what income interval (y1, y2) would 

he considered to be bad and what income level y1 or below would he consider to be very bad2. The 

{yj} represent the respective income boundaries reported by the respondents. It is assumed that the 

respondents evaluate income on the basis of the utility that they derive from income. Thus, the 

answers may be used to recover an underlying utility function. It is not implied in the IEQ scheme that 

the respondents rank utility differences and therefore additional assumptions have to be introduced in 

order to interpret the answers as yielding information about a cardinal utility function. In the Leyden 

school approach it is assumed that the so called Equal Quantile Assumption (EQA) holds. The EQA 

states that the respondents maximize informational content by letting the perceived difference in utility 

between two adjacent labels be equal. In a study by Buyze (1982), it was concluded that EQA 

provides a reasonable approximation to reality. To proceed with numerical estimates of the parameters 

of the utility function one has to specify the functional form of the utility function. In the Leyden 

school approach the utility function is assumed to have the same functional form as a log-normal 

                                                      
2 Although most questionnaires of the Leyden School used a six-level question, some studies used eight or nine levels.  
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distribution function, see van Praag (1968, 1971) and Seidl (1994) for more details. Van Herwaarden 

and Kapteyn (1981) reported the outcome of tests on 13 different functional form specifications, 

which implied that a logarithmic utility function gave a better fit than a log-normal utility function. 

However, the authors still preferred the log-normal form. The Leyden School approach has been 

criticized by Seidl (1994) who argues that key features of the employed model, such as the log-normal 

functional form of the utility function, are based on ad hoc assumptions rather than on principles 

derived from convincing axioms. Seidl (1994) concludes that instead one should apply Weber-

Fechnerian laws or Stevens’ power law in the measurement of the utility income, cf. Stevens (1975) 

and Gescheider (1997). 

  With the exception of Fisher (1892), Frisch (1929, 1932) and the Leyden School and their 

followers, economists traditionally express considerable uneasiness when confronted with the issue of 

how to measure utility. In contrast, psychologists have for a long time been concerned with both 

theoretical and empirical aspects of measuring sensory response as a function of physical stimuli such 

as intensity of sound, light, and money amounts. Within psychophysics the study of mathematical laws 

for the relation between physical stimuli (money) and sensory response (utility) seem to have started 

with Fechner (1860/1966), Thurstone (1927) and Stevens (1946, 1951). After Fechner introduced his 

psychophysical methodology in 1860 a vivid debate took place. For a summary of this debate, see 

Heidelberger (2004), ch. 6.4. According to Heidelberger, the debate centred initially on three issues; 

(i) whether Fechner’s measurement method and mathematical law for the link between stimuli and 

response are correct, (ii) whether Fechner’s law is a relation between the external stimulus and inner 

psychophysical excitation, or between sensitivity and awareness of sensation, or (as Fechner thought) 

a relation between the sensation and psychophysical activity (i.e., neural excitation), and (iii) if it is at 

all meaningful to deal with the measurement of sensations and psychological magnitudes in general. 

Mach (1886/1996) contributed to clarifying some fundamental issues. His notion of measurement is, 

in short, as follows: 

"I measure a phenomenon that I experience, meaning that I have a sensation of it as one of its features, by 

numerically representing the behavior of an external observational element serving the purpose of being a feature of 

my sensation, and this happens in such a way that the order inherent in the external feature correlates isotonically 

with the order within the sensation: If the sensation becomes stronger, the external feature also increase."  

From a passage in Fechner (1882/1965), where he replies to one of his critics, it seems clear that 

Mach’s point of views are completely consistent with Fechner’s interpretation, see Heidelberger 

(2004), p. 240. Our essential point here is that the Fechnerian school does not claim that the 

measurement of sensation leads to more precise knowledge of the “true” or “real essence” of sensation 

or to have identified objectivity in subjectivity. It is only claimed that in one particular aspect one has 

found a way to understand the relation between sensation and the exterior world.  
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 The arguments of Fechner and Mach are also valid for the measurement of utility. Certainly, 

our utility concept is not meant to represent some sort of psychological happiness or states of 

fulfilment in a deep existential sense, or notions along such lines. Similarly to Fechner’s and Stevens’ 

psychophysical law, utility is only meant to represent peoples judgments about ordering sensations of 

stimuli on an ordinal scale (quantities of goods), or similarly, representing sensations of changes in 

stimuli on a ratio or interval scale (changes of quantities of goods).  

 In contrast to Fechner's logarithmic law, Stevens (1957, 1975) proposed the “power law”, 

which is claimed to represent the link between stimulus and sensation. To substantiate this claim 

Stevens has presented both theoretical arguments as well as an impressive amount of empirical results 

from laboratory type experiments. See also Gescheider and Bolanowski (1991a,b).  

 There are several different types of survey questionnaires applied by Stevens and his followers 

to obtain SP data, cf. Falmagne (1985) and Gescheider (1997). One frequently applied method is 

called Magnitude estimation. In a typical magnitude estimation experiment, questions such as the 

following are asked: “Suppose you are given 1000 US dollars. How much more money will you need 

to increase your utility by 20 per cent?” The initial stimulus 1000 $ is called the standard modulus, or 

simply a standard. In another version of the method no standard is provided. The subject is simply 

asked to assign to any stimulus presented any number that seem suitable as an estimate of the 

sensation magnitude. Yet another method is labeled Production and matching. Here the subject is 

requested to react to stimuli (money) by “producing” a value of a sensory variable, for example, by 

turning a dial. There are several versions of this method. In a version called Magnitude production the 

procedure used in magnitude estimation is reversed. Thus, the subject is given a number and asked to 

produce a matching intensity of the stimulus. In a second version called Ratio production the subject is 

instructed to adjust the intensity of the stimulus in such a manner that it appears to be a particular 

multiple or fraction of a standard. For example, the subject may be asked to produce a tone intensity 

appearing one third as loud as the standard tone of the same frequency. A third version is called Cross-

modality matching. In this method two experiments based on magnitude estimation are conducted 

first. For example, the two sensory continua may be loudness and brightness. Second, the subject is 

requested to directly match the values from one sensory continuum to the other.  

 At first glance such methods may seem strange and ill suited to obtain sensible results in 

economics. The reason why is the convention, established purely by habit, that agents are only able to 

make ordinal rank orderings and that only observations of actual choices, that is, market data can be 

trusted. Many economists typically believe that agents reveal their “true preferences” only under 

market like conditions; i.e., when financial incentives matter3. A good illustration of the skepticism 

                                                      
3 Smith (1990): "Although replication using cash payoffs (where this has not been done) is certainly needed, I think it is 

mistake to assume that the economist's paradigm will somehow be rescued in the context of these experimental designs, if 
experimenters would just pay money." 
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among economists as regards laboratory type SP- experiments based on questionnaires is reported in 

Sen (1982, p. 9): 

"One reason for the tendency in economics to concentrate only on “revealed preference” relations is a 

methodological suspicion regarding introspective concepts. Choice is seen as information, whereas introspection is 

not open to observation. ... Even as behaviorism this is particular limited since verbal behavior (or writing behavior, 

including response to questionnaires) should not lie outside the scope of the behaviorist approach." 

 In a large number of experiments Stevens and his followers have demonstrated that their data, 

which are consistent with the power law and different experimental methods, such as the ones 

described above, yield consistent results. Perhaps the most startling result is that in the cross-modality 

matching method subjects are not only capable of performing the task requested in such experiments 

without much difficulty, but they also produce reasonably regular data. It seems however, to have been 

overlooked by Stevens and his followers that results obtained by methods that depend on a standard, 

such as Magnitude estimation, not necessarily will be independent of the chosen standard. Morover, 

one cannot be sure that the data obtained are independent of the order in which stimuli are presented 

(commutativity property). These problems were pointed out by Narens (1996), and tests were carried 

out by Ellermeier and Faulhammer (2000) who found that the commutativity property seems to hold 

but that results do indeed depend on the standard. 

 Clearly, the IEQ approach of the Leyden School is a version of Magnitude production, where 

instead of numbers, the subject is given questions that are supposed to represent utility levels. Hence, 

in this case no standard is used, and consequently Narens' critique should not be relevant for analyses 

based on questionaires such as the one we use in this study. However, results may depend indirectly on 

a "reference standard", namely current income and possibly other conditions of the household. This is 

indeed confirmed by the Leyden School and it is also found in the empirical analysis of this paper. 

 With Stevens’ results as a point of departure, Luce (1959b) took an important step towards 

formulating a suitable formal theory from which laws such as the power function can be shown to 

follow. In the last four decades several authors have been following up this line of research and there 

exists now a considerable body of literature where explicit functional form characterization- and 

restrictions are obtained from surprisingly general invariance principles, such as for example the 

requirement of scale invariance as argued by Stevens, see Stevens (1946,1951,1957,1975). A good 

reference source to this kind of theories is the book by Falmagne (1985).  

 In the context of random utility models, an early contribution within the tradition of 

Fechnerian psychophysics is Thurstone (1927). Thurstone conducted choice- and psychophysical 

experiments among students and often found that some students would make different choices when 

choice experiments where replicated. To account for the variability of responses in choice 

experiments, Thurstone proposed a model based on the idea that a stimulus induces a “psychological 

state”, which is a realization of a random variable. From this idea he was led to formulate a random 
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utility model, that is, to represent preferences over alternatives by random variables (random utilities), 

in which the individual decision-maker would choose the alternative with the highest value of the 

random variable. He assumed that these random utilities were normally distributed. In the binary 

choice setting this setup yields the so-called Probit choice model.  

 Further important contributions to the theory of stochastic choice models were made in the 

1950s and subsequent decades. Luce (1959a) introduced his famous choice axiom, “Independence 

from Irrelevant Alternatives” (IIA), and demonstrated that this axiom is equivalent to a model that 

determines choice probabilities in a multinomial setting as a simple function of the choice set (set of 

feasible alternatives) and of alternative-specific response strengths (representative utilities); the so-

called Luce model. Later Holman and Marley (see Luce and Suppes, 1965) demonstrated that the Luce 

model is indeed consistent with an additive random utility model in which the representative utilities 

in the Luce model can be interpreted as the respective deterministic parts of the corresponding random 

utilities and where the (additive) error terms are i.i. extreme value distributed.  

 Among economists, an early contribution in the tradition of Fechnerian psychophysics is due 

to Debreu (1958). Without relying on a random utility formulation he considered a stochastic choice 

setting with binary choice probabilities that were assumed to satisfy certain conditions. Given these 

conditions he and other researchers (cf. Falmagne, 1985, and Suppes et al., 1989) demonstrated that 

they imply a (deterministic) cardinal utility representation of the choice probabilities in the sense that 

the binary choice probabilities can be expressed as a monotone function (cumulative distribution 

function) of the utility difference. This cumulative distribution function is unique apart from a scale 

transformation of the argument4. McFadden (1973), Yellott (1977) and Strauss (1979) provided 

important characterizations of random utility models satisfying IIA. In particular, they showed that 

under different regularity conditions, the additive random utility model with independent random 

terms is consistent with IIA only when the error terms are extreme value distributed. McFadden (1978, 

1981) extended the Luce model by introducing the Generalized Extreme Value model (GEV), which 

contains the nested logit models as a special case. The motivation for this extension is that IIA may 

not hold when the same latent aspects characterize several alternatives. The GEV model is derived 

from an additive random utility model where the joint distribution of the error terms is a multivariate 

extreme value distribution. Dagsvik (1994,1995) has demonstrated that any random utility model can 

be approximated arbitrarily closely by GEV models. Thus the general GEV allows a very rich pattern 

of correlation between the error terms. Consequently, the GEV framework can be applied in choice 

setting where the IIA property is questionable. Similarly, the Probit model of Thurstone has been 

extended to the multinomial choice setting in which the utilities have multinormally distributed error 

                                                      
4 Debreu (1958) only proved the existence of the cardinal utility function and did not discuss the c.d.f. linking the utility 

function to the binary choice probabilities. The relationship between the cardinal utility function and the binary choice 
probabilities was established by Falmagne (1985). 
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terms. Through the development of appropriate econometric theory tailor-made for this type of models 

and through a large number of applications (cf. McFadden, 2001), McFadden and others have 

demonstrated that the random utility framework is very useful for econometric analysis. We refer to 

Anderson et al. (1992) and Fishburn (1998) for more detailed reviews of stochastic choice models. 

3. The model  Equation Chapter (Next) Section 1 
We consider a general choice setting in which the consumer makes choices of quantities of 

consumption bundles as well as discrete choices among variants of differentiated products and other 

qualitative alternatives (such as type of work, schooling and transportation modes). The discrete 

alternatives are indexed by (j, r), where , and {,jr C j∈ ∈Ω }jC  are disjoint sets. Thus, the sets 

{ } represent a partition of the universal set of discrete alternatives. The sets {,jC j ∈Ω jC } and Ω  a

possibly infinite. A good example of this structure of the set of alternatives is the case of diffe

products. In this example the index set Ω  represents a  enumeration of products while the subset

re 

re ed 

n

ntiat

jC  

is the set of variants of product j. We assume that the degree of similarity between product varian

different products is independent of which products are compared. However, we make no assumption

about the degree of similarity between alternatives within each set 

ts of 

s 

jC . Let y denote the agent’s 

income, and let ( ),U j y  denote the nal indirect utility given that the discrete alternative 

belongs to ,jC j ∈Ω . Thus, U e utility most preferred consumption bundle

product variant, given product type j and given income y and prices. For notational simplicity we h

suppressed the price vector in the notation of ( ),U j y . We shall assume that ity function is 

random and y

 co

s e  and

e 

 the util

n

 

ditio

th  of th( ),j y i  

av

γ≥ , where γ is interpreted as a subsistence level that may be specific to the agent. Let 

B be the family of all finite subsets of Ω. 

3.1. The individual utility function as a stochastic process 

In this section we shall introduce behavioral assumptions that will enable us to characterize the 

stochastic properties of the utility function. To this end we shall distinguish between "Conditions" and 

"Axioms". By an axiom we understand assumptions that can be supported by a clear behavioral 

intuition, in contrast to regularity conditions that do not necessarily have a behavioral interpretation.  

 

 Axiom 1 

 The conditional indirect utility processes ( ){ }, , ,U j y y jγ≥ ∈ Ω , are independent max-stable 

processes (with y as parameter) with standard Fréchet marginals. 
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 Recall that a max-stable process has finite dimensional distributions which are multivariate 

extreme value distributions. The Fréchet distributions (also known as the type I extreme value 

distributions), defined on R+, have one-dimensional marginal distributions equal to  for 

 and a > 0 and b>0. When a =b= 1 we call it the standard Fréchet distribution. 

( )exp abx−−

0x >

 The reason why we call the assumption above an axiom is because it is motivated by the 

"Independence from Irrelevant Alternatives" assumption (IIA). Specifically, McFadden (1973) and 

Yellott (1977)  showed that IIA is equivalent to a choice model that can be represented by additive 

independent random utilities with type III extreme value distributed random terms5. Recall also that 

Dagsvik (1995) has demonstrated that in the absence of state dependence effects and transaction costs 

there is no loss of generality in restricting the utility processes to max-stable processes. This is so 

because the “multiperiod” random utility model (with income y as parameter) can be approximated 

arbitrarily closely by random utility models generated from max-stable processes. It is therefore the 

requirement of independence in Axiom 1 that yields the essential restriction. For a summary of the 

properties of multivariate extreme value distribution functions, we refer to Resnick (1987). 

 Axiom 1 implies that one can, for each given y, write 

               (1) ( , ) ( , ) ( , )U j y v j y j yε= 

for , where  is a positive deterministic mapping from Ω × [γ, ∞) to R+ and  is a 

random variable that is standard Fréchet distributed. 

j ∈Ω ( )v ⋅ ( , )j yε

 For a given income y and a given choice set { }1,2,...,B m= ∈B , let ( )BJ y denote the index of 

the preferred attribute in B, i.e., 

 ( ) ( )( ) , max , .B
r B

J y j U j y U r y
∈

= ⇔ =   

 Axiom 2 (DIM) 

 For  B∈B

 ( ) ( )( ) ( )( ), , ,B
r B r B

P maxU r y u J x x y P maxU r y u
∈ ∈

≤ ≤ =  .≤  

  

 Axiom 2 states that the conditional distribution of the indirect utility at income y, given the 

index of the preferred alternative at any income x, x y≤ , equals the unconditional distribution of the 

indirect utility. 

                                                      
5 Note that a multiplicative random utility model with Fréchet distributed error terms is equivalent to a corresponding 

additive random utility model with type III extreme value distributed error terms. 
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 For x y= , Axiom 2 is a version of the DIM property (Distribution is Invariant of which 

variable attains the Maximum), proposed by Strauss (1979). He did, however, not produce any 

behavioral motivation to support it. Note that it is understood here that preferences are exogenous, as 

conventionally assumed in economics. This means that utilities are not affected by previous choice 

experience. For the case x y= , our motivation for DIM is as follows: The values of the alternatives 

are fully captured by the corresponding utilities and the indirect utility is the utility of the chosen 

alternative. Once the highest utility has been attained the information about which alternative that 

yields maximum utility does not represent additional information that is relevant for the value of the 

indirect utility. Moreover, Axiom 2 states that preferred alternatives under income less than y should 

be irrelevant for the evaluation of the highest utility at income y. This is so because the alternatives 

available at income x also are available at income y when .x y≤  Consequently, the "information" 

about the preferences over consumption possibilities that are restricted by income y includes the 

corresponding information when income is less than y.  

 DIM represents of course an idealization that cannot be expected to hold exactly in many real 

life situations. For example, it is clear that in many real life choice settings preferences may indeed be 

influenced by choice experience. Note moreover, that, a priori, it is not evident that there exist 

stochastic utility processes which satisfy DIM. However, if we can find utility processes that satisfy 

DIM, then this will be useful for obtaining a representation of preferences in idealized choice settings 

(under DIM).  

 Axiom 3 

 The conditional indirect utility processes ( ){ }, ,U j y y γ≥ , j∈Ω, are non-decreasing in y                                     

with probability one. The probability that the utility process is constant in any given income interval is 

positive. 

  

 Axiom 3 means that there is a positive probability (possibly rather small) that the agent's 

utility of alternative j will remain constant even if income increases. Thus, if we consider two incomes 

y2 and y1, where , there is a positive probability that . This property is 

consistent with the famous notion in psychophysics called “just noticeable differences”. Within 

economics an early discussion on this is found in Quandt (1956):  

2y y> 1 )1,( ) (2,U j y U j y=

       "…that the consumer is often ignorant of the exact state of his preferences and he is frequently insensitive to small 

changes or differences in stimuli. As a result, a small movement in any direction from any initial position may 

leave the consumer as well off as before. It might be suggested that we deal with this problem by considering an 

indifference map consisting not of indifference curves but of indifference bands…" 

The intuition for the property is that, in an observationally homogenous population, an increase of 

income from  to  (say) may not make everybody better off. This is because this income increase 1y 2y
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may, for some consumers, not be sufficient for them to switch to a new commodity group, or be able 

to buy another indivisible consumer good that makes them better off. (See Patel and Subrahmanyam, 

1978, for a similar argument). It is important to realize that the notion of randomness and indifferences 

with respect to small changes in income is meant to represent a consumer's typical behavior in choice 

situations. For example, when asked if one dollar more a day is better than status quo in a SP 

questionnaire, most persons will probably answer yes. However, a question like that will be 

misleading because it is not put in the appropriate context, namely in typical daily life choice settings. 

Quandt's point is that in daily life behavior, few persons may care about having a few dollars more or 

less. Note that our stochastic framework also allows for the following interpretation, on the individual 

level: an individual that participates in a replication of a choice experiment may in some cases be 

indifferent between y1 and y2, and in other cases strictly prefer y2 over y1.  

 The next condition is a mathematical regularity condition. 

 Condition 1 

 The conditional indirect utility processes{ }( , ), ,U j y y jγ Ω≥ ∈ , are separable and 

continuous in probability.  

 The separability requirement is very weak and does not represent any essential restriction. We 

refer to textbooks in probability theory for a definition of this concept. The continuity requirement 

means that the probability that  

 1 2( , ) ( , )U j y U j y η− >  ,  

where 0η >  is an arbitrarily given number, decreases toward zero when  tends to zero. This 

means that when  is close to , there are "very few" sample paths where  is 

"large".  

2y y−

( ,U j

1

1y 2y 1 2) ( , )y U j y− 

 

 Theorem 1 

 If condition 1 and Axioms 1 to 3 hold, then ( ){ }, ,U j y y γ≥  is an extremal process, that is, it 

can be represented as 

          (2) ( ) ( ) (( )2 1, max , , ,jU j y U j y V y y=  )1 2

0with , where ( ),U j γ = ( ){ }1 2 1 2, ,jV y y y y≤

( )2′

 are random variables such that  is 

independent of V y  if 

( )1 2,jV y y

1, y′j [ ] [ ]1 2 1 2,y y y y′ ′∩ =, ∅ ( )1 1,jV y y =,  and 0
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 ( )( ) ( ) ( )( )2 1
1 2

, ,
, expj

v j y v j y
P V y y u

u

 −
≤ = −

 

 



        (3) 

for  and . 0u > 2 1y y≥

 

 The proof of Theorem 1 is given in the Appendix. Note that if  for ( , ) 0v j y = y γ< , then also 

. ( , ) 0U j y =

 The class of extremal processes is well known in the statistical literature and has been studied 

extensively by many authors, see for example Resnick (1987). At first glance, the result of Theorem 1 

may seem strange. However, as demonstrated in the example below, the class of extremal utility 

processes can be given an intuitive behavioral interpretation.  

 Example: 

 In this example, we discuss a direct utility representation that is consistent with the result of 

Theorem 1. To this end let x denote a vector of quantities of a consumption bundle and let  

denote the corresponding direct utility of (x,j) where j represents the set Cj, as discussed before. In 

modern markets and stores consumption bundles are usually made available as combinations of 

“packages” with given quantities. Thus, in this case the set of available quantities is countable. Let 

 be an arbitrary enumeration of the consumption bundles, and suppose that 

( )* ,U x j

, 1,2,...,rx r =

  ( ) ( ) (* , ( ) ,r rU x j m x b j r jε= )

where m(⋅) and b(⋅) are positive deterministic functions and ( ){ },r jε  are i.i.d. random error terms 

with standard Fréchet cumulative distribution function (c.d.f.). The budget constraint is given by 

 r jpx q y+ ≤  

where p is a vector of goods prices and qj is the cost of alternative j. As a result, the conditional 

indirect utility  can be written as ( ,U j y )

).

),r

( ) ( ) ( ) ( ), max * , ( ) max ( ,
r j r j

r r r r
px y q px y q

U j y U x j b j m x r jε
≤ − ≤ −

= =         (4) 

Define 

( ) (
1 2

1 2, max *
r j

j r
y px c y

V y y U x j
< + ≤

= .           (5) 

It follows immediately from (4) and (5) that 
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( ) ( ) ( )( )2 1, max , , ,jU j y U j y V y y= 
1 2

2 )

) )

        (6) 

for . Furthermore, our distributional assumptions imply that  is independent of 

 and that  has Fréchet c.d.f. Thus, we have shown that extremal utility processes 

have an intuitive interpretation.  

1y y≤

( 1 2,V y y

( 1,U j y

j ( 1 2,jV y y

 As above, let B be the agent’s choice set which we assume belongs to , and let B

( )
,

( ) max , .
≤ ∈

= 
jc y j B

U y U j y  

The process { }( ),U y y γ≥  is the utility-of-income (indirect utility) process. Although U(y) depends 

on B, we drop B in the notation for simplicity. 

 The next result is immediate. 

 Corollary 1 

 The utility of income is an extremal process that can be expressed as 

( ) ( ) ( )( )2 1 1max , ,U y U y V y y= 2

2

)

)

                  (7) 

for , where 1y y≤

( ) (
1 2

1 2 1 2
,

, max ,
j

j
y c y j B

V y y V y y
≤ ≤ ∈

= . 

The c.d.f. of  is given by ( 1 2,V y y

( )( ) ( ) ( )( )2 1
1 2, exp

v y v y
P V y y u

u

 −
 ≤ = −
 
 

 

for , where 0u >

( ) ( )
,

,
jc y j B

v y v j y
< ∈

=   . 

 

 Since ( ) 0v γ = , it follows from (2) and (3) that 

 ( ) ( )
( ) exp

v y
P U y u

u
 ≤ = − 
 

 

for , which means that we can write 0u >
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  ( ) ( ) ( )U y v y yε=

where ε(y) is standard Fréchet distributed. 

3.2. Functional form of the deterministic part of the utility function 

In this section we postulate an axiom that enables us to derive important restrictions on the functional 

form of the deterministic part of the utility of income. 

 

 Axiom 4 

 Suppose that  are equal to or greater than γ  and such that * *
1 2 1 2y , y , y , y

( ) ( )( ) ( ) ( )( )* *
2 1 2 1P U y >U y < P U y >U y . 

Then for all  0λ >

( )( ) ( )( )( ) ( )( ) ( )( )( )* *
2 1 2 1P U y >U y < P U y >U yλ .γ γ λ γ γ λ γ γ λ γ γ− + − + − + − +  

 

 The interpretation of Axiom 4 is that if the fraction of consumers that strictly prefers  to  

is less than the fraction of consumers that strictly prefers  to , then this inequality does not 

change when all incomes beyond the subsistence level are multiplied by an arbitrary positive constant 

λ. The intuition is as follows: associate the different income levels  with consumption 

profiles 1, 2, 1*, 2* (when prices are given) and suppose the fraction of individuals that prefer 

consumption profile 2 over 1 is less than the fraction of individual that prefer 2* over 1*. To the 

consumers income beyond subsistence matters to some extent in the sense that a scale transformation 

of the respective incomes beyond subsistence will affect utility levels, but not in such a way that the 

fraction of consumers that prefer consumption profile 2 over profile 1 will be greater than the fraction 

of consumers that prefer consumption profile 2* over profile 1*. Recall that in our setup the probability 

that , for , is not equal to one because there is a positive probability that 

. We realize that if satiation can happen then evidently Axiom 4 may not hold. 

Dagsvik and Røine (2005) have carried out tests of Axioms 3 and 4 based on SP data and found that 

these axioms are supported by the data. 

2y 1y

*
2y *

1y

* *
1 2 1 2, , ,y y y y

( ) ( )2 1U y U y>

( ) ( )2 1U y U y=

2y y> 1

 

 

 

 15



 Theorem 2 

 Assume that Condition 1 and Axioms 1 to 4 hold and that v(⋅) defined in Corollary 1 is 

continuous and strictly increasing in y, y γ≥ . Then v(y) has the structure 

 
( )

v
y - - 1

(y)= exp
τγ

κ δ
τ

  
 

    

         (8) 

for y γ≥ , where τ and  are constants.  00, δ κ> >>

  

 The proof of Theorem 2 is given in the Appendix. Note that the parameter  is allowed to be 

negative. 

τ

 Axiom 5 

 For any , and  2y y> 1 0λ >

 ( ) ( )( ) ( )( ) ( )( )( ).2 1 2P U y U y P U y U y1λ γ γ λ γ γ> = − + > − +  

 Axiom 5 is stronger than Axiom 4, and it means that income beyond subsistence level is 

perceived in a strict relative sense, that is, the fraction of consumers that are better off when incomes 

beyond subsistence is increased from 1y γ−  to ( )1yλ γ−  and 2y γ−  to ( 2yλ )γ−  is independent of 

λ. Note that this property is not implied by Axiom 4. 

 Theorem 3 

 Assume that Condition 1 and Axioms 1 to 3 and 5 hold and that v(⋅) is continuous and strictly 

increasing in y, y γ≥ . Then v(y) has the structure 

( )( )v y y
δκ γ= −       (9) 

for y γ≥ , and  00, δ κ> >

 

 A proof of Theorem 3 is given in the Appendix. 

 We note that (9) is obtained as a special case of (8) when . 0τ →

4. Heterogeneity in preferences 
In the empirical specification to be described in Section 6 below, we shall introduce observed 

covariates that may affect the individual’s evaluation of income. These observed covariates may 

capture some of the heterogeneity in the population, but obviously not all. To account for the 

remaining unobserved heterogeneity, we will introduce an individual specific effect, known to the 
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agent but not to the analyst. Specifically, we shall assume that the systematic part of the utility 

function contains a positive multiplicative component that is a constant for each individual agent but 

varies across the population according to some probability distribution (random effect). Thus, the 

utility function, modified to include this random effect becomes 

( ) ( ) ( )U y Wv y yε= ,                                                                     (10) 

where W is the random effect. Note that the way we include W is analogous to allowing for an additive 

constant term in an additive separable utility representation (which is seen by taking logarithm in  

(10)). This multiplicative random effect is motivated by the functional form given in (8), with 

containing a multiplicative random effect. Recall that W is irrelevant for individual choice behavior 

since it cancels out in utility comparisons. However, it matters in our context in which data are 

generated by the Leyden School type of SP data that yield information about utility evaluations across 

individuals.  

κ

 In this section, we shall propose a theoretical justification for the distribution of W. For the 

sake of notational precision in the following Axiom, let us introduce individual specific notation, i.e,. 

let , be the utility of agent i. ( ) ( ) ( )i i i i i iU y W v y yε=

 Axiom 6 

 Let the incomes of every individual in the population S be given. Then 

 ( ) ( ) ( ) ( )( ) ( ) ( )( )max max max maxi i r r r r r r i i r r
r S r A r S r A

P U y U y U y U y P U y U y
∈ ∈ ∈ ∈

= = = =  

for A S⊂ . 

 The statement in Axiom 6 says that the probability that individual i has the highest utility in S, 

given that this individual belongs to a subset A that contains the individual with the highest utility, is 

equal to the probability that i has the highest utility within A. In other words, given that the highest 

ranked individual belongs to A, information about the ranking of the individuals within S\A is 

irrelevant for assessing who is the highest ranked individual in A. We recognize Axiom 6 as a 

particular version of IIA. We note that Axiom 6 requires that individual utilities can be compared and 

ranked.  

  

 Theorem 4 

 Assume that Condition 1 and Axioms 1 to 4 and 6 hold, and that Wi and  are 

independent, i . Then the distribution of Wi is strictly α-stable and totally skew to the right with 

. 

( )i iyε

S∈

1α <

 The proof of Theorem 4 is given in Appendix. 
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 Recall that the family of α-stable distributions, often denoted by {Sα(c, β, μ)}, is characterized 

by four parameters, namely ( , , , )cα β μ , where  represents the tail thickness and is called the 

characteristic exponent, c , is a scale parameter, 

0 2α< ≤

0> [ ]1,1β ∈ −  is a skewness parameter and μ is a 

location parameter. When , one obtains as a special case the normal distribution. It is strictly α-

stable when 

2α =

0μ =  and totally skew to the right when 1β =

0

. When , neither the variance nor the 

mean of the stable random variable exist. When 

1α ≤

μ = α, and 1< 1β =  the probability that the stable 

random variable attains non-positive values is zero. (See Samorodnitsky and Taqqu, 1994). 

 As mentioned in Section 3, the choice among characteristics will, under Axiom 1, satisfy IIA. 

This is still true if (10) holds because the random effect W vanishes in utility comparisons. In our 

context, IIA does not seem overly restrictive since the characteristics have not been given an explicit 

empirical content. It is however possible to motivate more general representations of unobserved 

heterogeneity. This extension consists in assuming that the utility representation has the form  

( ) ( ) (, ( ) , ,U j y W j v j y j yε=   ) ,   (11) 

where { }( ),W j j ∈Ω are strictly stable processes that are totally skew to the right with . It can be 

demonstrated that 

1α <

(11) implies that the choice of characteristics model will have a Generalized 

Extreme Value (GEV) structure. According to Dagsvik (1994, 1995) the GEV model represents in 

practice no restriction on the general random utility model. Our conjecture is that Axiom 6 implies that 

{ }( )W j , j ∈Ω  is a stable process. However, we have so far only been able to prove that the one-

dimensional marginal distributions of this process are stable. For simplicity, in this paper we have 

chosen to base our empirical model on the special case (10) rather than on (11).  

5. The random Expenditure Function 
Let the random expenditure functions { }( ), 0Y u u > be defined by 

    . ( ) min{ : ( )Y u y U y u= ≥ }

m

Due to the fact that the indirect utility function U(y) is a stochastic process with parameter y defined in 

Theorem 1, we have the following results. 

 

 Theorem 5 

 Assume that (2) and (3) hold. For  and ... ,1 2 m0 < u u u≤ ≤ ≤ ...1 2y y yγ ≤ ≤ ≤ ≤ , we have 

     ( ) ( ) ( ) ( )( ) ( )( ), ,..., , ,..., , ,...,m 1 2 m 1 1 2 2 m m 1 2 mG y y y P Y u y Y u y Y u y = E exp WH y y y≡ > > > −

where 
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  ( ) ( ) ( )( ), ,..., .
m 1

1 1
1 2 m m m j j j 1

j 1

H y y y v y u v y u u
−

− −
+

=

= + − 1−

m

) )

For  and , the corresponding joint density of 

 exists and is equal to 

...1 2y y y< < <

( ) ( ) (, ,...,1 2u Y u Y u

1 2 mu u u≤ ≤ ≤

)( )mY

  ( ) ( ) ( ) ( ) ( )( )( ), ,..., , ,..., .
m 1

-1 1 1 m
m 1 2 m m m j j 1 j 1 2 m

j 1

g y y y v y u u u v y E W exp WH y y y
−

− −
+

=

′ ′= − −∏

 A proof of Theorem 5 is given in Appendix. 

 It turns out to be convenient to normalize the scale parameter c in the stable distribution of the 

random effect W such that  

( )1/ cos / 2 .cα απ=      (12) 

This is purely a matter of convenience and represents no loss of generality since the scale parameter in 

the distribution of W cannot be identified. 

 The next lemma is essential for calculating when m=6. 1 2( exp( ( , , , )))m
mE W WH y y y− 

 Lemma 1 

 Let W be α-stable,  with  and c given in ( , ,S c 1α 0 1α < (12). Let ( ;ψ λ α  be defined as 

 ( ) ( )( ); 6E W exp Wψ λ α λ≡ −  

for . Then for  0λ ≥ 0,λ >

     (13) 

( ) ( )( ) ( ) ( )

( )

( )

6

2 6 3 2

4 3 2 6

5 5 5 5 5 6

5 13 10 17 15( 6 25 36 15)

(31 225 595 675 274)

( 15 85 225 274 120) .

66 1

3

2 2

; = E W exp W 15 1-

exp

α 5 5α

4 4α 3α

α

α α

ψ λ α λ αλ α α λ

α α α λ α α α α λ

α α α α α λ

α α α α α αλ λ

− −

− −

−

−

− = +

+ − + + − + − +

+ − + − +

+ − + − + − + −

6

)λ

 

 Proof: 

 From the properties of α-stable distributions it follows that 

 .       (14) ( ) (exp expE W αλ− = −

By differentiating (14) six times with respect to λ we get (13). 

 Q.E.D. 
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 Corollary 2 

 The structure of  implies that we can write (2 1 2G y , y )

 ( ) ( ) ( )1 2 1 21
1 2

2 1

,
min ,v

( - )

u u u u
Y u Y u

u u W

η−  
=     



1 )

      (15) 

for , where  is a random variable, which is exponentially distributed with parameter 

equal to one, and is independent of W and . 

2u u> ( ,1 2u uη

( )2Y u

 The proof of Corollary 2 follows readily since any finite dimensional marginal distribution 

functions of the process { }( ), 0Y u u > , given by (15), are the same as the ones given by Theorem 5. 

 

 Corollary 3 

 The structure of G1(y) implies that we can write 

1/( ( )) ( )v Y u u u αη=  

for , where 0u > ( )uη  is a random variable that is exponentially distributed with parameter equal to 

one. 

 The proof of Corollary 3 is given in the Appendix. 

6. Empirical specification 
Consistent with the result of Theorem 5, let , where c is given in (12). In the following 

it will be convenient to reparametrize the model by introducing 

( ,1,0W S cα )

{ }ja  defined by  

 
1

1 1
logj

j j

a
u u +

 
= − −

 


6u

 (16) 

for  and , where 5j ≤ 6 loga = { }ju  are unknown utility threshold levels associated with the ordered 

structure of the income questionnaire we are using. We suspect that households may have different 

threshold levels. We allowed initially ja

)I

to depend on selected household specific characteristics such 

as income, debt and family size, etc. However, the estimation results indicated that only income 

seemed to have a significant effect on these threshold levels. Motivated by these preliminary results, 

we assume that , where I denotes the current household income level. From Theorem 

5, (8) (with δ = 1/σ) and Lemma 1 we get that 

log(tj ja d= +
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{ }( ) ( ) ( ) ( )( )

( )

6 1 2 6 1 1 2 2 6 6

6

1

, ,..., | , ,...,

1
,exp exp

j

j

j
j

aG y y y P Y u y Y u y Y u y

y
a

ατγ
τσ=

≡ ≥ ≥ ≥

   − −    = − −        


          (17) 

and 

{ }( )
( ) ( ) ( )

6 1 2 6

1
6 6

11

, ,..., |

1 1
exp exp ; ,

j

j j j
j j

jj

ag y y y

y y y
a a

τ τ τγ γ γ
ψ α

τσ σ τσ

−

==

    − − − − −     = − ⋅            
∏


−

6y

               (18) 

where 1 ...yγ < < < . Unfortunately, the functional form of the density function in (18) implies that 

standard conditions for maximum likelihood estimation are not fulfilled. The difficulty here is that the 

support of the density in (18) depends on parameters of the specification of the subsistence level γ . In 

the simple case where subsistence level is a constant, the global maximum of the likelihood function is 

achieved at 1( ))Y umin(ˆ iγ = and . However, there may be an additional local maximum. Barnard 

(1965) has given reasons for ignoring the singular solution and settle for the local one (if it exists). In 

the statistical literature the estimation of densities like 

0τ =

(18) when γ  is unknown does not seem to have 

been analyzed. Zanakis and Kyparisis (1986), and Smith (1994) only discuss special cases of (18). In 

the estimation procedure below we have therefore chosen to specify the subsistence level a priori. In 

particular, we assume that the subsistence level γ for the household is defined as 30000Nγ = ⋅ , 

where N  is the household size. Here, 30000 NOK (as of 1995, one USD is approximately equal to 

7.20 Norwegian Kroner) is assumed to be the subsistence level for a single individual, and N  is 

used as the household equivalent scale. This type of household equivalence scale is used in many 

countries. 

7. Data and parameter estimates 
In September 1995 a questionnaire was distributed to 569 employees at Statistics Norway and the staff 

at the Department of Economics, University of Oslo. It contained questions concerning the social 

background of the respondent, including income and wealth, and the income evaluation question 

similarly to the ones of the Leyden school quoted in Section 2. Let {yj} denote the individual's answers 

of the questionnaire, that is (y1, y2), (y2, y3), …, (y5, y6) are the income intervals that correspond to the 

IEQ questionnaire discussed in section 26. Consistent to the theoretical setup above, we assume that 

the observed income levels are related to the utility levels through the expenditure function as 
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( )j jy Y u=  where ju  is the underlying utility level that corresponds to income yj . That is, yj is the 

lowest disposable income needed to achieve utility level ju . The response rate was slightly above 50 

per cent. 250 of those who responded were able to fill in answers on all the income intervals in the 

income evaluation questionnaire, with 1j jy + > y

Y(u )

 for all j and positive reported household income. 

 Table 1 around here. 

 Obviously, this sample is not representative for the Norwegian population. The majority of the 

respondents are individuals with high education. In addition they work in similar public institutions 

and therefore have similar incomes. Table 2 gives a summary picture of some basic characteristics of 

the sample. The loglikelihood function is obtained from (18) by inserting the respective observed 

individual levels , j= 1, 2,…,6, for each individual in the sample. The estimation results are 

reported in Table 3. We observe that the parameters are sharply determined. Although the Box-Cox 

exponent τ is significantly different from zero, the estimate of the exponent is only slightly above zero. 

Thus, the deterministic part of the utility function is found to be approximately a power function, 

given the family of functions specified in 

j

(8). Our results thus are consistent with the assumption of 

Theorem 3.  The characteristic exponent α is significantly below 1 as expected and thus neither the 

mean nor the variance exists in the distribution of W. As to be expected the constants {dj} are 

increasing with utility levels. The coefficient t is estimated to be positive and significantly different 

from zero, which means that the threshold levels are increasing with the actual income of the 

household.   

 Table 2 around here. 

 As mentioned in Section 2, the Leyden School approach is based on the assumption that 

individuals partition the income range according to equal quantiles of the utility function, referred to 

as EQA. Buyze (1982) tested this assumption empirically and concluded that the assumption holds 

approximately. Within our framework it is also possible to test EQA. Specifically, we have used the 

likelihood ratio test to test whether or not EQA is rejected for our dataset. Note that in our setting, our 

utility is measured in ratio scale so the equal quantile assumption implies: 

1 1 2 2

1 1

( ) ( )
, for j 1, ,4

( ) ( )
j j j j

j j j j

U y u U y u

U y u U y u
ρ+ + + +

+ +

= = = = =   

 From Table 3 we see that twice the difference between the a priori loglikelihood function and 

the loglikelihood function under EQA equals 3.4. The corresponding critical value of the Chi-square 

                                                                                                                                                                      
6 We have dropped the indexation for the individuals for notation simplicity. 
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distribution with four degrees of freedom equals 9.5. Thus we cannot reject EQA. We observe that the 

estimates of the key parameters { }, ,τ σ α are the same in the two models, the general model and the 

model under EQA.  

 

 Table 3 around here. 

 

 It is interesting to compare our results with the evidence from the Leyden School. To this end, 

it is useful to use the result of Corollary 3. Given that , Corollary 3 implies that  0τ →

 log( ( ) ) log logj j j jY u u s t I
σ

j

σγ σ θ σ σ
α α

− = − = + − θ , (19) 

 where log ( )j juθ η=  and 

6

log( exp( )).j k
k j

s d
=

= − −  

Moreover, Corollary 3 implies that  

( ) exp( exp( ))jP x xθ ≤ = − −  

for x R∈ . It is well known that in this case,  (Euler's constant) and . The 

relation 

0.5772ijEθ = 2var / 6ijθ π=

(19) is similar to the corresponding empirical relation in the Leyden School approach apart 

from the subsistence level γ  and the distributional properties of the error term. Our distributional 

assumptions also constrain the expenditure function{ }( )Y u to be nondecreasing with probability one. 

Moreover, the random effect W (cf. Corollary 2) implies that the respective increments in 

expenditures, for a given individual become correlated. From the estimates in Table 3, we find that the 

coefficient , associated with logI is estimated to be 0.252 with standard error approximately 

equal to 0.03. In the Leyden School approach estimates of this coefficient range from 0.53 to 0.68; see 

van Hervaarden and Kapteyn (1977), Table 4. Thus, our estimate of the preference drift parameter is 

significantly lower than the ones obtained by the Leyden School.  

/tσ α

8. Testable properties of the model 
Let  

{ }1 2 6 6 1 2 6( , , , ) log (( ),( ), ,( ) | )t t t
jF y y y G y I y I y I aσ σ σγ γ γ= − ⋅ + ⋅ + ⋅ +  , 

where G6 is given in (17) with . It follows that  0τ =
6

1/
1 2 6

1

( , , , ) ( exp( ))j
j

F y y y y dσ

=

= − j
α .                                             (20) 
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We note that F is independent of I and { }ja , and hence becomes equal for all households. 

Furthermore, define 

 component
( ) (0, ,0, , , , )

th

j
j

F y F y y y=   , 

for 1 . The function 6j≤ ≤ ( )jF y  has the interpretation  

( )
( ) log ( )j

j t

Y u
F y P

I σ γ= − − > y . 

It follows from (20) that  

 
1 16

1 2 6
1

( , , ) j j
j

F y y y A yα σ

=

= ,  (21) 

and  

1 1

( )j k
k j

F y y Aα σ

≥

=  ,                                                           (22) 

where exp( ).j jA = −d  From (22) we get that  

 
1 1 1 16 6 6 6

1 1
1 1 2 1

( ( ) ( ) ) ( ) ( )j j j j j j j j
j j j j

A y F y F y F y F yσ α α α
+ −

= = = =

= − = −   
1

,j
α   

which combined with (21) yields 

 
1 16 6

1 2 6 1
2 1

( , , ) ( ) ( )j j j j
j j

F y y y F y F yα α
−

= =

= − 
1

α . (23) 

Recall that when s is known then 1 2 6( , , )F y y y  and ( )jF y are observable. In this case, (23)implies a 

testable property, namely that (23) must hold for some positive constant 1. When α ≤ { }ja , and  

have been estimated one can also use 

σ α

(21) to test the model. Analogous to (23), (21) implies that 

is linear and additive separable in 1/
1 2 6( , , )F y y y α

1

j jA y σ , j=1,2,…,6.  Furthermore we get from (22) 

 
6

log( ( )) log( ) log( ).j k
k j

F y y a
α
σ =

= + A  (24) 

 

It also follows that  

 
6

1

log( ( )) log( ) ,j
j

F y y
α
σ=

= + Q  (25) 

where  
6 6

1

log( ( ) ).k
j k j

Q A α

= =

=  

 24



 Figure 1 around here. 

Motivated by (25), a check of the model fit can be obtained by plotting 

wn 

 tests based on (21) and (23).  

e 

changes 

y should be represented as utility differences rather than utility ratios. Now consider the setting 

multiplicatively separable random utility representations 

, that yield 

e sam ab ties. Then it follows from Y

 (26) 

 

h  

utility of income {U(y)} is also represented as a random log interval scale. This also implies that the 

 a log

                                                     

    ( ))j rK F y  

against log( )ry , for suitable ry , r=1,2, M.  We have plotted ( )K y  against log(y), which is sho

in Figure 1 can see, the plot does not deviate much from a linear relationship between 

6

1

( ) log(r
j

y
=

≡



. As we 

g( )y , which 

( )K y  

and l means that our model fits the data quite well. o

 Since this sample is rather small, we have not tried to construct

9. Measuring the utility of changes in income 
As mentioned in the introduction and discussed at length in Ellingsen (1994), several authors hav

discussed the concept of marginal utility of income. This concept is intrinsically linked to the concept 

of cardinal utility. What seems to have been overlooked in the literature is that economists have 

implicitly assumed utility to be additive when they discuss cardinal utility. For example, when Frisch 

postulated his interlocal choice axioms (Frisch, 1926), he assumed implicitly that changes in utility 

were represented as utility differences. However, there are no a priori theoretical reasons why 

in utilit

of this paper. Suppose there are two 

{ ( , )U j y } and { *( , )U j y } where ( , ) ( , ) ( , )U j y v j y j yε=  and * * *( , ) ( , ) ( ,  )U j y v j y j yε=

th e choice prob ili ellott (1977), Theorem 3, that 

                    *( , ) ( , )bU j y aU j y=         

where 
d
=  means equality in distribution and a and b are arbitrary positive constants

d

7.  Thus we 

conclude from (26) that our family of utility functions is represented on a so-called log interval scale, 

see Falmagne (1985) for a definition of different scale types. It is a random scale due to the stochastic

error term. From (26) it follows moreover that when aggregating over the discrete goods, t e random

average scale v(y) is also represented as  interval scale. Now define **( ) log ( )U y U y= . As 

mentioned above, the utility function **( )U y  is completely equivalent to U(y

also be used as a scale that measures changes. The only difference is that **( )U y  yields an interval 

 

) in the sense that it can 

 
7 The only difference between Yellott's formulation and ours is that he assumes an additive utility representation while we 

use a multiplicative one. These two representations are of course completely equivalent since the additive representation is 
obtained from the multiplicative one by taking logarithm of the multiplicative utility representation 
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s presentation instead of a log interval scale one. Similarly, the representative scale v(y) is 

transformed to an interval scale logv(

cale re

y).  

 scale representation of changes in incomes. The following result is useful in the 

 Corollary 4 

 Assume that the assumptions of Theorem 2 hold. Then for 

 Consider next

context of interpreting utility ratios. 

2y 1y> , 

( ) ( )
( ) ( )

2 2max 1

b
U y v y   = −     1 2

1 1

( , ) ,1

b

bZ y y
U y v y




      
,                                              (27) 

ositive random variable with c.d.f.  

 

for z>0, Moreover, 

where Z(y1,y2) is a p

1 2( ( , ) ) /(1 )P Z y y z z z≤ = +   

( )
( )

( )
( )

2
2

1
1

E v y
U y

=      

if  1 

if 1 

b v y
M bU y

b

  
  <   


∞ ≥

,                                (28) 

here M tly increasing. 

 Coro

 Supp

w (x) is a positive function that is stric

  

 Also, we have the following result,  

llary 5 

ose jy γ> , j=1,2,3,4, are incomes that satisfy . Then 

is stochastically dominated by

2 1( ) / ( )v y v y <

) , i.e., for

4 3( ) / ( )v y v y

, 2 1( ) / ( )U y U y  4 3( ) / (U y U y  q > 1

42

31 ( )( )
qqP P

U yU y
≤≤ >   

   
. 

( )( ) U yU y   

 in the Appe ix. 

3  a p f 

consumers w s of 

results that are completely analogous to the results of Corollaries 4 and 5, where the relevant c.d.f. in 

le

 The proofs of Corollaries 4 and 5 are given nd

 

 The result of Corollary 5 shows that when 2 1( ) / ( )v y v y < 4( ) / (v y v y opulation o

ill, on average, assign higher value to 4 3( ) / ( )U y U y  than to 2 1( ) / ( )U y U y . The result

Corollary 4 and 5 demonstrate that the c.d.f. of the utility ratio depends on 1 2( , )y y  through 

2 1( ) / ( )v y v y . If we take the logarithm transformation of the corresponding utility ratios we obtain 

) ,

this case depends on the logarithm of the ratios of the representative utilities. Thus, on the individual 

vel, the utility ratios can be transformed to perfectly equivalent utility differences. Similarly, on the 
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aggregate level the ratios of the representative utilities transforms to corresponding representative 

utility differences. Thus, we have demonstrated that Theorem 1 yields either an interval scale utility

representation or an equivalent log interval scale representation. Torgerson (1961, pp.202-203) and 

Narens (1996, pp. 117-118) have reached a similar conclusion. In fact Narens (1996) provides a 

theoretical basis for the empirical findings of Torgerson (1961). When utility is represented eithe

log interval scale or on an interval scale we shall say that we have a weak cardinal representation. 

When utility is solely represented on an interval scale we shall say that we have a strong (interval 

scale) cardinal representation. When utility is solely represented on a ratio scale we shall say that w

have a strong (ratio scale) representation. In the present context, weak cardinality is actually all we 

need because it enables us to rank both levels and differences, in contrast to an ordinal scale. Howeve

in the context of choice under uncertainty and expected utility theory we need strong (interval scale) 

cardinality. 

 As d

 

r on a 

e 

r, 

emonstrated above, our weak cardinal scale allows both an individual random scale as 

 

or 

xampl  

ude 

 

ly the conventional definition to the 

ndom  

 

well as a deterministic average scale representation that both are weakly cardinal. Hence, this setting

allows us to rank levels and differences both on the individual as well as on the aggregate level. 

 In psychophysics, as in economics, the concept of cardinality seems to be controversial. F

e e, the school of Stevens claims that the power function representation is the appropriate strong

(ratio scale) cardinal psychophysical law, of which utility of income is a special case. In the literature, 

several researchers have disagreed with Stevens on this matter; see for example Shepard (1981). 

Recall that in the typical experimental settings described in section 2, such as for example Magnit

estimation, the subjects have proven to be able to "produce" numbers on a ratio scale that matches 

changes in intensities of stimuli. To us it therefore seems plausible that Fechner's logarithm law and

Steven's power law can at least allow the interpretation of scales that can measure utility of changes. 

This is possible if we interpret these laws as weakly cardinal.  

 As regards to a marginal utility concept one cannot app

ra  utility function of income simply because U(y) is not differentiable with respect to y. This is

seen immediately from (7). One can, however, define the corresponding aggregate marginal utility. 

From (28) and (A.56) in the Appendix, if follows that  

( ) ( )
( ) ( )

( )
( )

( )
( )2 1

2 1 1 1

1
2 1 1 1 1

lim lim '( )
1

b b

by y x

U y U y bv y v yE M x
by y U y v y v y→ →

 − ′ ′  = ⋅= ⋅  −− 
 .     (29) 

Alternatively, we can choose to use the equivalent interval scale representation in which case one get:  

 
( ) ( )
( )

( ) ( )
( )2 1 2 1

2 1 2 1

2 1 2 1 1

log log log log ( )
lim lim

y y y y

bE U y bE U y b v y b v y v y
b

y y y y v y→ →

′− −
= =

− −
1 .    (30) 
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From (29) and (30) we see that whether we use the log interval or the interval scale representation the 

aggregate marginal utility concept introduced above is only determined up to a multiplicative constant 

(b/(1-b) or b). Moreover, we notice that (29) and (30) are equivalent (equal apart from a multiplicative 

constant). Let (y) denote the elasticity of the marginal utility of income with respect to income, 

which Frisch (1959) called the money flexibility. An immediate consequence of 

ω

(29) and (30) is that 

the elasticities of the two versions of the aggregate marginal utility of income are equal.  

 Corollary 6 

 Assume a weakly cardinal representation, i.e., a log interval or an interval random scale 

representation consistent with Theorem 1. Then the aggregate marginal utility function is uniquely 

defined by 

              
log ( '( ) / ( ))

( )
log

d v y v y
y

d y
ω =(

                                                      (31) 

for y γ> .  

 

 From (31) and (8), we obtain that 

 
1

1
( )

1
y

y

τω
γ −
−= −

−


        (32) 

for y γ> . Because τ≤1 and γ≤y, the money flexibility is negative, it approaches -∞ when y→γ and  

(τ-1) when y→∞. Recall that our estimation results suggest that  is close to zero. τ

 From (32) we observe that ω  declines with income, as Frisch (1959) suggested. Hence ω  

becomes infinitely large when y approaches γ (the subsistence level) and it approaches 1 (τ=0) when y 

increases toward large values. 

 In his well known article on consumer demand Frisch (1959) presented a complete scheme for 

computing all direct and cross demand elasticities. He employed a deterministic additive separable 

utility function, where each element gave the utility of a good. Based on this separability assumption, 

(by Frisch called want-independence), he demonstrated that all elasticities with respect to price could 

be deduced from the knowledge of budget proportions and Engel (income) elasticities. The money 

flexibility, , had an essential role in the formulas for these elasticities. ω

 Johansen (1960) provides the first example of a computable general equilibrium model (CGE) 

in economics. It was estimated and calibrated on Norwegian data. Based on demand data for different 

goods he used the approach of Frisch (1959) and obtained very similar results for the different goods8. 

                                                      
 ( )E 1 E e Er r r rr r r/( )ω = − α + α8 The formula for ω used in Frisch (1959) was where Er, αr and err are the income 

elasticity, budget share and direct price elasticity for commodity r, respectively. 
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The estimates of  varied from –1.85 to –2.13 and Johansen concluded that the compromise value 

should be –1.89, which he then also used in his CGE-model.   

ω

 Frisch concluded that was equal to –2 for the median part of the population (the middle 

class), in absolute values much higher for the poor and very small for the rich.  

ω

 Table 4 around here 

 We have simulated the distribution of ω (y) based on a large population that is representative 

for the population of Norway. The summary statistics of the population used is given in Table 4. We 

find the mean of is equal to -1.7, which is quite close to the number suggested by Frisch and 

Johansen. The distribution of the predicted 

ω

ω  (with γ=30000 N ) is shown in Figure 2. 

 Figure 2 around here. 

  

10. Relations to Demand Theory  

We shall now discuss briefly some implications from the above analysis for consumer demand 

systems. Recall that since our theory implies a stochastic utility function the corresponding demand 

system will be stochastic. Conventional methods based on duality theory (Roy’s identity) will not 

work here because the random error term in the utility function depends on income and prices. A more 

general and rigorous treatment can be made by applying the approach of Dagsvik (1994). This would, 

however, be beyond the scope of the present paper. Here we shall therefore ignore the random term in 

the utility function. Provided , the corresponding “representative” utility is, apart from a power 

transformation, equal to the utility function 

0τ →

( ,U y p)  given by 

 ( ) 1/ ( ), ( ( )) ( ) t pU y p y p p Iσγ κ= − >     (33) 

where p denotes a vector of prices, y denotes income and I will be interpreted as the real income 

lagged one year. As discussed above the variable I implies a "drift" in the utility function. Note that 

the parameter ( )pκ κ=>  that appears in (8) and may depend on prices, is absorbed into the constants aj 

in the likelihood function. In principal, the parameter may also depend on prices. Below we only 

consider the case with constant . Note that 

σ

σ ( )pκ and must be homogenous of degree in 

prices. Given that  is a constant, we observe from 

( )t pI σ−

σ (33) that our indirect utility function belongs to 

the class of functional forms called "Gorman-Polar" form (Gorman (1953)). Applying Roy's 

identity ( , )pU y  we get the following demand system 

( )
log ( )( ) ( ( )) ; 1, ,

( )
k

kk k

p
I t px p y p k

p

κ
γ σ γ

κ
 + ⋅= − − = 
 

K y for γ>  
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where kx  is the consumption of good k, , and 1,k = K ( )k pκ  and ( )k pγ  are the derivative of ( )pκ  

and ( )pγ  with respect to the price of good k. It is beyond the scope of the present article to discuss 

how ( )pκ  and ( )pγ  vary with prices. We notice that the Engel equations implied by (33) are linear in 

income y. However, due to the effect of preference drift, represented by the logarithm of income 

lagged one year, one may falsely interpret empirical evidence from panel data as an indication of 

nonlinear Engel functions because lagged income typically is highly correlated with current income. 

The derivation of the demand relations in the more general case when depends on prices is similar. 

In particular, when 

σ

( )k pγ =0 and have suitable functional forms we obtain the AIDS model. ,σ κ

11. Conclusion 
Utility theory represents a fundamental part of microeconomic theory. Yet, few researchers address 

the issue of establishing a theoretical framework for characterizing and measuring utility as a 

stochastic process in income. 

 In this paper we have proposed a set of behavioral axioms from which we derived a 

characterization of the utility of income, viewed as a stochastic process in income. Specifically, it 

turns out that the implied utility function is an extremal process. 

 Subsequently, we have specified an empirical model for the distribution of the utility of 

income process based on the theoretical characterization, and we have applied SP data to estimate the 

unknown parameters of the model. We demonstrate that the estimated model fits the data rather well. 

Within the framework developed in this paper the empirical results show that the utility function is 

consistent with the power law established by Stevens (1975). We discussed the concept of cardinality 

and marginal utility of income in our setting. We also demonstrated how our utility of income model 

can be employed to yield a consumer demand system. 
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Appendix  
Equation Chapter  1 Section 1 

 To prove Theorem 1, it will be convenient to prove the following Lemma first. 

 

 Lemma 2 

 Let ( 1 2,j )F u u  be the joint c.d.f. of  for income level , if Condition 

1and Axioms 1 to 3 hold, then  

( ) ( )( )1, , ,U j y U j y 
2 2

≤

1y y<

  ( )
( ) ( ) ( )( )( )
( )( )

1 1
1 1 2 1 2 1 2

1 2 1
2 2 1 2

exp , , ,
,

exp , .
j

v j y u v j y v j y u for u u
F u u

v j y u for u u

− −

−

 − − −= 
− >

 

 Proof of Lemma 2:  

 By Axiom 1, Fj is a bivariate extreme value (Fréchet) c.d.f. (See Resnick for a description of 

multivariate extreme value c.d.f.). Recall that in this case Fj has the property 

 ( ) 1 2
1 2

1
log , log ,j j

u u
F u u F

z z
 =  
 z

) )

)

)

                  (A.1) 

for any . The marginal c.d.f. of and are equal to 1 20, 0, 0z u u> > > ( 1,U j y ( 2,U j y

 ,                            (A.2) ( )( ) ( ) ( )( 1
2 2 2 2 2, , exp ,jP U j y u F u v j y u−≤ = ∞ = −

and  

 .    (A.3) ( )( ) ( ) ( )( 1
1 1 1 1 1, , exp ,jP U j y u F u v j y u−≤ = ∞ = −

By Lemma 1, p. 827, in Dagsvik (2002) the left and right derivatives ( )1 2, ,j kF u u u+∂ ∂  

, ( )1 2, ,j kF u u u k−∂ ∂ 1,2=  exist and are non-decreasing. From now on the notion “derivative” will 

mean the (first order) right derivative. 

 Define 

 
1

( ) log ,1j ju F
u

ϕ = − 
 


       (A.4) 

for . By 0u ≥ (A.1) we have, with ,  2z u=
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 ( ) 1 2
1 2 2

1

log ,j

u
F u u u

u
ϕ−  

= −  
 

j .     (A.5) 

Let  denote the partial derivative with respect to component r, . We get from r∂ 1,2r = (A.5) that 

 ( ) 2 2
1 1 2 1

1

log ,j

u
F u u u

u
ϕ−  ′∂ =  

 
j      (A.6) 

and  

 ( ) 2 1 12
2 1 2 2 1 2

1 1

log ,j j

u
F u u u u u

u
ϕ ϕ− − −   ′∂ = −   

   
2

j

u

u

<

.    (A.7) 

Let J(y) denote the choice, given income y. We have that 

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1 2 2

1 1 2 2

1 1 2 2

2, 1, max , ,

(1, ) (2, ), 2, 1, ,

(1, ) , (2, ) , , 2, 1, ,

k

x

P J y J y U k y u u u

P U y U y U y U y u u u

P U y x U y x x dx U y U y u u u dx

= = ∈ + Δ

= < < ∈ + Δ

= < ∈ + < ∈ + Δ



   

   

        (A.8) 

Due to the assumption of independent utilities across alternatives the above integral reduces to 

( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( )

1 2 1 2

2 1 1 2

0

1, , 1, , 2, , , 2,

, , ( ).

x

P U y x U y u u u P U y x x dx U y u

u F x u F x u dx o u
∞

< ∈ + Δ ∈ +

= Δ ∂ ∂ + Δ





   

          (A.9) 

From (A.5), (A.6) and (A.7) it follows that 

( ) ( ) ( ) ( ) ( ) ( )2 1 1 2 1 2 2 1 1 2

0 0

1 2 1 1 2
1 2 1 1 2

0

, , , , log , log ,

exp .

F x u F x u dx F x u F x u F x u F x u dx

u u u u u
u u x u x

x x x x x
ϕ ϕ ϕ ϕ ϕ

∞ ∞

∞
− − − − −

∂ ∂ = ⋅ ∂ ∂

             ′ ′= − + −             
             

 

 dx

z

    (A.10) 

Let 

1 2( ) ( ) ( )z zϕ ϕ ϕ= + .                                                          (A.11) 

When we combine (A.9), (A.10) and make the change of variable 1x uw−= , in the last integral we 

obstain  
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                                                      (A.12) 

( ) ( ) ( ) ( )( )

( ) ( )

1 2 2

3 1
2 1 1

0

2, 1,max , ,

exp ( ) ( ) ( ) ( ) ( ).

kP J y J y U k y u u u

u u u w w w w w dw o uϕ ϕ ϕ ϕ
∞

− −

= = ∈ + Δ

′ ′= Δ − − + Δ



Let { }max : '( ) 0b w wϕ= = , that is, b is the largest w for which ( ) 0wϕ′ = . If there is no such w 

satisfying the condition '(w) 0ϕ = , then Since 0.b = ( )j wϕ′  is non-decreasing, it must be true that 

( ) 0wjϕ′ = w b≤ for . Hence, (0 ) 0j ( )j bϕ ϕ′ + = =′  so that (0) ( )j j bϕ ϕ= . Thus (A.12) can be rewritten 

as  

( ) ( ) ( ) ( )( )
( ) ( )

1 2 2

3 1
2 1 1

2, 1,max , ,

exp ( ) ( ) ( ) ( ) ( ).

k

b

P J y J y U k y u u u

u u u w w w w w dw o uϕ ϕ ϕ ϕ
∞

− −

= = ∈ + Δ

′ ′= Δ − − + Δ



                      (A.13) 

On the other hand, from Axiom 2 it follows that 

( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) (( )
1 2 2

1 2 2

2, 1,max , ,

2, 1 max , ,

k

k

P J y J y U k y u u u

P J y J y P U k y u u u

= = ∈ + Δ

= = = ∈ + Δ



 )

) ( )

2u u o u−

)−

w dw

                   (A.14) 

In the following, it turns out to be convenient to define  

( ) ( )( 1 2, /ijC P J y i J y j bϕ= = = .                                                    (A.15) 

Note furthermore that 

( ) ( )( )
( )( )( )

( )

2

1
1 2 1 2

1 2

max , ,

exp (0) (0) (0) (0) ( )

exp ( ) ( ) ( ).
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u

u b b u u o u

ϕ ϕ ϕ ϕ

ϕ ϕ

−

− −

∈ + Δ

= − + + Δ + Δ

= − Δ + Δ



                         (A.16) 

From (A.13), (A.14) and (A.16), when  goes to zero, we obtain that,  uΔ

( ) ( ) (2 1 1 21exp ( ) ( ) ( ) ( ) exp ( )
b

w w w w w dw C bλ λϕ ϕ ϕ ϕ λϕ
∞

′ ′− − =                (A.17) 

where . Note also that 1uλ −=

( ) ( )exp ( ) exp ( ) ( )
b

b wλϕ λ λϕ ϕ
∞

′− = − .                                         (A.18) 

Consequently, (A.17) is equivalent to 
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( ) ( ) ( )2 1 1 21exp ( ) ( ) ( ) ( ) exp ( ) ( )
b b

w w w w w dw C w w dλϕ ϕ ϕ ϕ λϕ ϕ
∞ ∞

′ ′− − = −  w′  (A.19) 

for . 0λ ≥

 Recall furthermore that ( )wϕ  is strictly increasing and differentiable for . The 

uniqueness property of the Laplace transform therefore implies that the integrands in both sides of 

w b>

(A.19) must be equal, i.e., 

( )2 1 1( ) ( ) ( ) ( )w w w w w Cϕ ϕ ϕ ϕ′ ′− = 21′

12′

.                                          (A.20) 

Similarly, it follows by symmetry that  

( )1 2 2( ) ( ) ( ) ( )w w w w w Cϕ ϕ ϕ ϕ′ ′− = .                                           (A.21) 

By subtracting (A.20) from (A.21) we get 

( )
2 1 1 2 1 2 1 2

2 1 2 1 1 1 21 12

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

′ ′ ′ ′ ′ ′− − +

′ ′ ′ ′ ′= − = − = −
 

which, when dividing by  becomes 2( )wϕ

( )12 211 1
2

( )( ) ( ) ( ) ( )

( ) ( )

w C Cw w w w

w w

ϕϕ ϕ ϕ ϕ
ϕ ϕ

′ −′ ′− =
2

.                                    (A.22) 

When we integrate both sides of (A.22) we get 

1 21 12
1

( )

( ) ( )

w C C
d

w w

ϕ
ϕ ϕ

−= +  

for , where d1 is a constant. Hence w b>

1 12 21 1( ) ( )w C C d wϕ ϕ= − + .                                                  (A.23) 

Similarly, it follows that 

2 21 12 2( ) ( )w C C d wϕ ϕ= − + .                                                 (A.24) 

By inserting (A.23) into (A.21) we get 

( )2 2 1( ) ( ) ( ) ( )w w w w d w Cϕ ϕ ϕ ϕ′ ′− = 12′                                         (A.25) 

for . Since w b> ( ) 0wϕ′ >  for , w b> (A.25) implies that 
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12
2 2

1

( ) ( )
C

w w w
d

ϕ ϕ′− = .                                                    (A.26) 

Similarly, we get that 

21
1 1

2

( ) ( )
C

w w w
d

ϕ ϕ′− = .                                                    (A.27) 

Equations (A.26) and (A.27) are first order differential equations that have solutions of the form 

( )j j jw wϕ α β= +                                                         (A.28) 

for  where αj and βj are suitable constants. Since , 1,2,w b j> = ( ) 0j wϕ′ =  for and w b≤ ( )j wϕ′  is 

continuous it follows from (A.28) that 

( )j j jw bϕ α β= +                                                          (A.29) 

for . As a consequence w b≤ (A.5)and (A.29) yields 

( ) ( )
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1 2 1
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log ,
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j j

u u for bu u
F u u

b u for bu u

β α

β α

− −
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2
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                                (A.30) 

We realize that (A.30) implies that 

( ) ( )( ) ( )1
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2 2 1 1

2 1

exp ,
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ju u bu
P U j y u U j y u

u bu

α − − ≥≤ = = 
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)1,

                       (A.31) 

This means that  with probability one. So for ( ) (2,U j y bU j y≥  { }( , ),U j y y γ≥

1( , )j y

 to be 

nondecreasing one must have that . If  then U j  with probability one and 

then Axiom 3 cannot hold. We therefore conclude that . 

1b ≥ 1b > 2( , )y U>

1b =

 With 1b = , we have  

( )( ) ( ) ( )( )1 1
2 2 2 2 2 2, , exp( ( ) ) exp ,j j jP U j y u F u u v j y uβ α − −≤ = ∞ = − + = − , 

and  

( )( ) ( ) ( )( )1 1
1 1 1 1 1 1, , exp( ) exp ,j jP U j y u F u u v j y uβ − −≤ = ∞ = − = − . 

This shows that , and . So the joint distribution can be written as 

follows: 

( ) (2 1, ,j v j y v j yα = − ) )( 1,j v j yβ =
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1 1 2 1 2 1 2

1 2 1
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,

exp , .
j

v j y u v j y v j y u for u u
F u u

v j y u for u u

− −
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 − − −= 
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Q.E.D. 

 Proof of Theorem 1: 

 Assume that there are only 2 alternatives . The arguments in the general case with 

more than 2 alternatives will be similar.  

1,2j =

 Let ({ }1 2,jV y y  be random variables with c.d.f. 

( ) ( )( )2 1, ,
exp

v j y v j y

u

 −
 −
 
 

 

for , and with the property that  is independent of  for  

provided 

0u > ( 1 2,jV y y ) 2( )1 2,jV y y′ ′ 1 2 1,y y y y′ ′< <

[ ] [ ]1 2 1 2, ,y y y y′ ′∩ = ∅

1 2

)2 2

. Define 

( ) ( ) ( )( )* *
2 1, max , , ,jU j y U j y V y y= . 

Then it follows that  has joint c.d.f. as in Lemma 1 for all ( ) ( )( * *
1, , ,U j y U j y 1y yγ ≤ < . By 

Kolmogorov’s existence theorem there exists two random variables with c.d.f. as in Lemma 1 and they 

are unique with probability one. A similar result holds for more than 2 random variables indexed by 

1 2y y .dyγ ≤ < < <

( )

 With the equivalence of finite dimensional distributions, the processes 

{ }, ,U j y y γ≥  and ( ){ }* , ,U j y y γ≥  are equivalent. 

 Q.E.D. 

 

 Proof of Theorem 2: 

 From Theorem 1 it follows for 2 1y y γ> > , that 

( ) ( )( ) ( ) ( )(2 1 1 2 1,P U y U y P V y y U y> = > ).

)

                                 (A.32) 

Since  and  are independent and Fréchet distributed, we get from standard results in 

discrete choice theory that 

( 1 2,V y y ( )1U y
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2 1 1 2 1
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( ( ) ( )) 1 ,
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v y v y
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1
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                            (A.33) 
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2 1y y γ≥ ≥for . When we combine (A.32) and (A.33) we realize that Axiom 4 implies that whenever 

( )
( )

( )
( )

*
11

*
2 2

v yv y

v y v y
>  

then 

( )( )
(( ) )

( )( )
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λ γ γ
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2 2
v v y

λ γ γ
λ γ γ λ γ γ

− +− +
>  

for 

− + − +

2 1y y γ≥ ≥ , * *
2 1y y γ≥ ≥  and . Now we can apply Theorem 14.19 in Falmagne (1985), p. 

338, which yields9 

0λ >
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2 1 1 2 1v y 



for 2 1y y γ≥ ≥

mapping. Evid

, where 0τ δ δ> > ntinuous and 1 2, 0,

⋅) is defined on (
 are constants and F(⋅) is a co strictly increasing 

ently, F( . When  we obtain that ],0−∞ 2 1y y=

( ) ( )( ) ( )1 2 1yδ δ− −

( )
1

1
1 (0)

v y
F F

τγ −  = = =  

must hold, for all 

1v yτ 
 
 

1y γ≥ . This implies that  (say). 

 Let 

1 2δ δ δ= =

( )( ) ( )( ) ( )( ) ( )( )1 2 11 1 1
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x z

τ τ τδ γ δ γ δ γ δ γ

τ τ
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where  is fixed. From (A.34) we get ( )1,a yγ∈

( ) ( )
2

( )v a
F x z

v y
= +                                                         (A.35) 

                                                      

( ) ( ) ( )
9 Note that Theorem 14.19, p.338, in Falmagne (1985) can be expressed more compactly as 

  
1 2

a 1 b 1
M a, b F

θ θδ − + δ −
=

θ

 
 
 

0 1) / 0− ( )

 

0

lim x 1 log xθ

θ→
− θ = . where (x  is defined as 
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and 

( ) ( )
1

.
( )v a

F z
v y

=                                                            (A.36) 

When (A.35) and (A.36) are combined with (A.34) we get 

( ) ( ) ( )F x z F x F z+ = .                                                    (A.37) 

Eq. (A.37) is a Cauchy functional equation which only continuous solution is the exponential function. 

Consequently, for y γ≥ , 

( )( )1
log ( ) .

y
v y

τβ γ

τ

− −
=                                              

Q.E.D. 

 Proof of Theorem 3: 

 From (A.32) and (A.33) we get that for y2 >y1>γ 

    (A.38)
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Hence, Axiom 5 implies that 
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for all . For simplicity, let 0λ >

 ( )
( )

( )
1

g x
v

v x γ
γ

+
=

+
 

for 1x ≥ . With 1 21,y y xγ γ= + = + , we get from (A.40) tha

1) 

Eq. (A.41) is a functional equation of the Cauchy type which only continuous solution is the power 

function 

t 

( ) ( ) ( ) 1.g x g x g xλ λ= ≥                                                         (A.4

( )g x xδ=                                                                 (A.42) 
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for some constant δ. Since 

)( ) (( ) 1v y g y vγ γ= − +  

the result of Theorem 3 follows. 

Q.E.D. 

 Proof of Theorem 4: 

 Let . Then we can write 

 

 

( )i i iW yξ ε=
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W v y
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Since the error terms 

 
  = =  .                               (A.43) 

{ }iξ  are independent, w  Yellott (1977) that Axiom 6 (IIA) can only 

be satisfied if the errors 

e know from

{ }iξ  are Fréchet distributed, i.e., 

                                                 (A.44) 

, where a is a positive constant. But (A.44) implies that 

( ) ( )exp a
iP x xξ −≤ = −       

for 0x >

( ) ( )( ) ( ) exp i
i i i i i iP x P W y x E P yξ ε ε

 
≤ = ≤ = ≤ .                   

( )

i
i

Wx
W E

W x
 = −  
  

(A.45) 

The last equality in (A.45) follows because by assumption ( )( ) exp 1P y x xε ≤ = −

rmalization in (12)for any 

. When we 

combine (A.44) and (A.45) we obtain that under the no

 

e dis bution of Wi. From Samorodnitsky 

and Taqqu (199

ndom variable that is totally skew to the right and with  

        Q.E.D. 

Proof of Theorem 5: 

 For the sake of simplicity consider first the case with  and . In this case it follows 

that 

0λ >  

( ) ( )exp expiE W αλ λ− = − .                                                     (A.46)

The left hand side of (A.46) is the Laplace transform of th tri

4) Proposition 1.2.12, p. 15, it follows that (A.46) holds Wi must be a strictly α-stable 

1α < .ra

  

 

 

2m = 1W =
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From Corollary 1 and (A.47) we obtain that 

.                                 (A.49) 

The multivariate case is completely analogous. It follows readily that when 

)1−      

ion equals 

j

  (A.47) 
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In particular, when u u≥ , (A.48) reduces to 2 1
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For 1 2 ... mu u u≤ ≤ ≤  and 1 2 ... my y y< < < , the corresponding joint density funct
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 now follows readily from (A.50) and (A.51). 

Q.E.D. 

  

 Proof of Corollary 3: 

Fro

 (A.51) 

The general case with random W

 Hence, the proof is complete. 

 m Theorem 5 and (14) we get that  

1( ( ) ) exp( ( ) )P Y u y E Wv y u v> = =
1/

1 1/

exp( ( ) )
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η η
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where ( )uη is exponentially distributed with parameter one. Hence  has the same c.d.f. 

(u)) has the same c.d.f. as 

Q.E.D. 

 

 Proof of Corollary 4: 

1 1/( ( ) )v u u αη−

α .  1/( )u uηas Y(u) and this implies that v(Y
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 We have from (7)

( )

 that 
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2 1 2
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b b

U y U y
= .                                              (A.52) 

Note that  and  are independent Fréchet distributed x>0 with parameter 

k equal to , respectively. Hence, from sults in discrete choice 
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( )v y −

( )1U y

)  and 

0> ): 
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(A.53) imHence, plies that we can write  
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By using the change of variable , and using (A.54) we get 

q dq> .         (A.55) 

1 2
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learly, the right hand side of (A.56) is strictly increasing in and it exists when b<1 and is 

Q.E.D. 

 Proof of Corollary 5: 

 From Corollary 4 and (A.53), we get that when 

 
 (A.56) 

2 1( ) / ( )v y v yC

equal to infinity for b 1. 

 
 

1q ≥  
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Since K(yi,yj) is increasing as a function of ( ) / ( )j iv y v y , it follows that 
( )

b
jU y 

( )i

P q
U y


 ≤    

 is 

ecreasing as a function of ( ) / ( )j iv y v y . Hence, the result of the corollard y follows.  

Q.E.D. 
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Tables: 
 
 
 
 
 

Table 1. Income Evaluation Questions. All numbers are in NOK as of September 1995 

Utility level ju  Disposable Income Mean Std. Minimum Maximum 

Bad ( )1Y u  160428 76268 30000  500000  

Insufficient ( )2Y u  203776 91260 50000  600000  

Sufficient ( )3Y u  247452 110469 70000  700000  

More than Sufficient  ( )4Y u  296180 131622 100000  800000  

Good ( )5Y u  349212 155918 120000  1000000  

Very good ( )6Y u  435932 214094 140000  1500000  

# observations  250      
 
 
 
 
 

Table 2. Summary statistics of basic characteristics of the sample 

 Mean Std. Minimum Maximum 

Family size 2.40 1.31 1 6 

# children less than 6 0.31 0.62 0 3 

# children between 7 and 15 0.28 0.59 0 2 

# children above 16 0.16 0.48 0 3 

Education Years 16.39 3.09 8 24 

Income (100 000 NOK) 3.67 2.03 0.3 19 

Number of Individual with positive debt 217    

Debt (those with positive debt, 100 000 NOK) 4.88 3.66 0.05 21 

# of observations 250    
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Table 3. Maximum likelihood estimates of the parameters of the utility of income 

 General model Model under EQA 

Variables/parameters Estimates Std. Estimates Std. 

Box-Cox exponent τ 0.048 0.020 0.037 0.019 

Dispersion parameter σ 0.166 0.004 0.166 0.004 

Characteristic exponent α 0.328 0.015 0.332 0.015 

Constant level 1, d1 0.364 0.307   

Constant level 2, d2 1.729 0.310   

Constant level 3, d3 3.048 0.317   

Constant level 4, d4 4.372 0.326   

Transformed 
utility levels 

logj ja d t I= +
 

Constant level 5, d5 5.723 0.339   
 Constant level 6, d6 7.545 0.362 7.365 0.300 

 Log income, t 1.517 0.194 1.486 0.190 

                           Utility ratio ρ    1.683 0.430 

Loglikelihood  -1141.7  -1143.4  

 
 
 
 
 
 
 
 

Table 4. Summary statistics, Norwegian Households with Positive Disposable Household 
Income, 1995 
 Mean Std Minimum Maximum 

Family size 2.23 1.30 1 12 

# children less than 6 0.22 0.55 0 4 

# children between 7 and 15 0.25 0.60 0 5 

# children above 16 0.05 0.23 0 3 

Income (100 000 NOK) 2.33 1.95 0.37 114 

Debt (100 000 NOK) 3.16 6.12 0 306 

# of observations 1 902 367    
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Figures: 
 

Figure 1.  Plot of K(y) against ln(y) 
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Figure 2. Distribution of the Money Flexibility 
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