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DISCRETE CHOICE IN CONTINUOUS TIME: IMPLICATIONS OF AN 

INTERTEMPORAL VERSION OF THE IIA PROPERTY 

 

BY JOHN K. DAGSVIK1 

 

 This paper proposes a particular behavioral axiom to characterize the stochastic 

structure of static discrete choice models with serially correlated utilities. This assumption 

extends Luce’s axiom; “Independence from Irrelevant Alternatives”, to the intertemporal 

setting. Under general regularity conditions the implication of this assumption is that the 

individual choice process is a Markov chain with transition probabilities that have a 

particularly simple structure. It is also discussed how the framework can be extended to deal 

with structural state dependence. 

 

 KEYWORDS: Choice over time, state dependence, Markovian choice processes, 

extremal processes, random utility processes, independence from irrelevant alternatives. 

 

1. INTRODUCTION 

During the last decades significant progress has been made in developing and applying 

(static) discrete choice models. Some of these analyses were based on earlier theoretical 

contributions by Luce (1959), and Luce and Suppes (1965). Specifically, Luce (1959) 

proposed the axiom known as “Independence from Irrelevant Alternatives” (IIA). Although 

the IIA assumption is strong, and is known not to hold in many choice settings, it nevertheless 

represents an intuitive and powerful principle of stochastic rationality.2 

 In this paper we propose an intertemporal version of the IIA Axiom (IIIA) and we 

derive the implications for the corresponding choice model in continuous time. The point of 
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departure is a static- or myopic random utility setting where utilities are serially correlated 

due to temporally persistent unobservables. It is, even in a static setting, of interest to obtain a 

characterization of serial dependence in preferences. First, if panel data is available one needs 

to account for serial correlation in the estimation procedure. Second, it may be of interest to 

predict the effect of policy simulations on transition rates from one alternative to another. 

This axiom (IIIA) can be described as follows: Consider the particular case in which there are 

no structural state dependence as a result of previous choice experience and the past choice 

sets are all the same but where the choice set in the current period is expanded to include new 

alternatives that were never feasible before. Then IIIA states that choices among the new 

alternatives that enter the choice set are independent of any choice in the past. The intuition is 

that even if previous choices provide information about preferences over the alternatives in 

the “old” choice set, these choices provide no information about the utilities of the “new” 

alternatives, since they were not feasible in the past. Under suitable regularity conditions we 

demonstrate that IIIA implies a random utility representation where the utilities associated 

with each alternative are independent extremal processes, cf. Resnick (1987). 

 Now, it follows from Dagsvik (1983 and 1988) that when the choice sets are constant 

or increasing over time, the extremal utility processes yield a choice model which is a Markov 

chain (in continuous time), and where the transition probabilities have a particular structure as 

a function of the choice set and the parameters of the utility processes. Note that the 

markovian property does not follow immediately from IIIA, since IIIA is silent about 

situations where current choices also were feasible in the past. 

 The paper is organized as follows: In Section 2 the choice setting is formally 

described, the main assumptions are introduced and the implications for the preferences and 

the choice process derived. In Section 3 the implications for the choice probabilities are 



discussed. In Section 4 we consider an extension of the framework that allows for state 

dependence. 

 

2. CHARACTERIZATION OF THE PREFERENCES AND THE INDIVIDUAL CHOICE 

PROCESS 

 In this section we discuss the basic assumptions and derive their implications for the 

random utility process. Specifically, we propose a behavioral assumption that enables us to 

characterize preferences in the case when there are no effects from past experiences on future 

preferences nor on future choice opportunities. 

 The individual decision-maker (agent) is supposed to have preferences over a finite set 

of alternatives. Future preferences are assumed random (to the agent himself) in the sense that 

they vary from one moment in time to the next in a way that cannot fully be predicted by the 

agent. Alternatively, one may interpret the utilities as deterministic to the agent but random to 

the observer due to variables that are perfectly foreseeable to the agent but unobserved by the 

analyst. 

 Let S be the index set of m alternatives, a1, a2,..., am, and let  be the index set that 

corresponds to the collection of all non-empty subsets from S. We assume that S contains at 

least three alternatives. To each alternative, aj, there is associated a stochastic process, 

ℑ

{ }( ), 0 ,jU t t ≥  where  is the agent’s (conditional indirect) utility of aj given the 

information and choice history at time t. Moreover,  where  is a 

deterministic component that may depend on alternative-specific attributes, and  is a 

stochastic term. The agent chooses aj at age t if  is the highest utility at t. Here age 

(time) is continuous. Let 

( )jU t

( ) ( ) ( ) ,j j jU t v t t= +

)t

ε ( )jv t

( )j tε

(jU

( ){ }, ( )B tJ t  denote the choice process, i.e., 
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   ( )
, ( )

, ( ) if ( ) max ( )j k
k j k B t

J t B t j U t U t
≠ ∈

= >

 

where { }( ), 0, ( )B t t B t> ∈ℑ  denotes the choice set process. If ( ) ( )B t B s=

( )) , ( )ε ε=

 for all s and t, the 

choice set process is constant. Let   

and  We assume that 

1 2( ) ( ), ( ),..., (mU t U t U t U t=

)

( )1 2( ), ( ),..., ( )mt t t tε ε

( 1 2( ) ( ), ( ),..., (mv t v t v t v= ) .t { }( )U t  is separable and continuous in 

probability.3 Moreover, we assume that the cumulative distribution function (c.d.f.) of  is 

absolutely continuous for any . This implies that there are no ties, that is 

( )U t

0t >

 

   ( )( ) ( ) 0.i jP U t U t= =

 

When the finite dimensional distributions of the utility process { }( ), 0U t t >  have been 

specified it is in principle possible to derive joint choice probabilities for a sequence of 

choices. However, since the class of intertemporal random utility models is quite large it is 

desirable to restrict this class on the basis of behavioral arguments. A related problem is that it 

seems to be rather difficult to find stochastic processes that are convenient candidates for 

utility processes in the sense that they imply tractable expressions for the choice probabilities 

in the intertemporal context. 

 One way of introducing structural restrictions into the model is to apply probabilistic 

versions of the assumption of rational behavior. A famous example of this type of assumption 

is Luce Choice Axiom; “Independence from irrelevant alternatives”, (IIA) (cf. Luce, 1959). A 

first attempt to extend IIA to the intertemporal setting was made by Dagsvik (1983).
4
 Next we 

shall discuss the implications from another version of IIA, which is stated below. 
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 AXIOM A1 (IIIA): Let ( ) 1B s B=

1

, for all  , and let  be such that 

5 Then for 

,s t< 1B ∈ ℑ 2B ∈ ℑ

2 1 .B \ B ≠ ∅ 2j B \∈ B ,  

 

(2.1)  ( ) ( )( ) ( )( )2 1 2,P J t,B j J s,B s t P J t,B j .= ∀ < = =  

 

 It is important to stress that (2.1) does not mean that ( ){ }, ( ) , 0J t B t t >  is a Markov 

chain, nor is it a Bernoulli process.6 This is so because (2.1) is assumed to hold only when 

1j B∉

1 .

 and is silent about the relationship between the choices at different points in time when 

j B∈  Axiom A1 states that when the most attractive element of B2 is contained in 2 1\B B , 

the event, “aj is the preferred alternative in B2”, is stochastically independent of the preference 

orderings in B1 at time s, for  It is therefore natural to interpret Axiom A1 as an 

intertemporal extension of the IIA property. The intuition is that even if previous choices 

provide information about the preferences over the alternatives in the “old” choice set, these 

choices provide no information about the utilities of the “new” alternatives, since they were 

not feasible in the past. 

.s t<

 

 AXIOM A2: At each point in time the distribution of the random vector, ), does not 

depend on . 

( )tε

( )v t

 

 AXIOM A3: Let ( )jZ t  denote a vector of attributes specific to alternative j at time t 

that is differentiable with respect to t. The structural term  is given by  

where  is a differentiable function that is known apart from a set of parameters and 

( )jv t ( )( ) ( )j jv t v Z t= 

( )v ⋅

5 
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,defined on a suitable set K. For any  and any real number x, there exists a value of 0t >

Z K∈  such that  ( ) .v Z x=

( )

 

 Axiom A2 states that at each moment in time the random term of the utility function is 

independent of the structural term. Axiom A3 states that the structural term of the utility 

function can vary over the whole real line when attributes vary within K. Moreover, the 

attributes vary smoothly over time. 

 

 PROPOSITION 1: Assume that A2 and A3 hold. Then for any  Axiom A1 implies 

that 

,B∈ℑ

(2.2)  ( )
( )

( )v t

j

k

v t

k B

e
j

e

α

α

∈

= =


P J t,B  

where  is an arbitrary constant. 0α >

 

 PROOF: Recall that { }( ), 0U t t >  is continuous in probability. Recall also that since the 

utilities are independent of the choice set process, we are allowed to specify any sequence of 

choice sets which is useful for deriving implications about the preferences. To this end, let 

( )B t = B  and ( ) \{ }.B t B− =

( ), (j kU t U t= −

By Theorem 50, p. 354, in Luce and Suppes (196

j  Then A1 implies that 

 

(2.3)

 
{ } ( ) { }\ \

( ) max ) max ( ) max ( ) ( ) max ( ) .i j k i k
k B k B j k B k B j

t U P U t U t P U t U t
∈ ∈ ∈ ∈

= − = = =


( )k t  
 

P U 


5), (2.3) implies that the choice probabilities 

are given by the Luce model. Finally, Strauss (1979), pp. 42-43, has demonstrated that the 
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hall in the following put 

Let us now proceed by investigating the intertemporal structure of the random utilities 

ver, to demonstrate that such processes really exist. In the one-period 

parameters of the Luce model are related to the systematic part of the utility function as 

specified in (2.2), apart from an additive constant. Q.E.D. 

 

 REMARK 1: Without loss of generality we s 1α = . 

 

that follows from A1. 

 Above we postulated the existence of random utility processes such that A1 to A3 

hold. It remains, howe

case Yellott (1977) and Strauss (1979) have, under different sets of conditions, demonstrated 

the equivalence between IIA and extreme value distributed utilities in a random utility model 

with independent utilities. We state a version of this result in the next theorem. 

 

 PROPOSITION 2: Assume that A1 to A3 hold. If the utility processes, { }( ) 0 ,jU t ,t ≥  

1,2,..., ,j m=  are independent at each point in time they have type 

 

em 5 of Yellott (1977) is combined with Proposition 1 the result of 

roposition 2 follows. Q.E.D. 

e that although there exists random utility models that satisfy I

terdependent utilities, there is, under IIA, no loss of generality in assuming that utilities are 

III extreme value 

distributed marginals.7 

 PROOF: If Theor

P

 

 REMARK 2: Not IA with 

in

independent across alternatives. 
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AXIOM A4: The utility processes { }( ) 0 1,2jU t ,t , j ,...,m,≥ =  are stochastically 

REMARK 3: Recall that two stochastic processes 

independent. 

 

 and { }( ), 0jU t t ≥

correl

j

{ }( ), 0iU t t ≥  may 

 

 

at th ty pro ties a  poin

AXIOM A5: The utility process 

be stochastically dependent even if ( )U t  and ( )U t  are stochastically independent at each 

point in time. For example, ( )iU t  an ( )s  m  dependent for s t≠ , even if ( )iU t  and

( )jU t  are independent. How  it see ausible that in many app tions the ation

en ( )U t  and ( )U s  is less than the correlation between ( )U t  and ( )U t , which 

implies th e utili cesses are independent when the utili t each t in time are 

independent. 

 

i

d jU

ms

j

ay be

ever,  pl l

i

ica

betwe i j

{ }( ), 0 , 1, 2,..., ,jU t t j m≥ =  is a max-stable process. 

The next result is the main result of this paper. 

Axiom A5 represents no loss of generality because Dagsvik (1995) has proved (under 

 

 

 

 

the absence of state dependence) that the choice probabilities of a multiperiod random utility 

model can be approximated arbitrarily closely by choice probabilities of the random utility 

model with max-stable utility processes. Recall that the max-stable processes have finite-

dimensional marginal distributions that are multivariate extreme value distributions, cf. de 

Haan (1984). 

 



 THEOREM 1: Assume A1 to A5. Then the utilities are extremal processes with type III 

extreme value marginal distribution. 

 

 The proof of Theorem 1 is given in the appendix. 

 

 A description of the class of extremal processes can be found in Resnick (1987). An 

extension to inhomogeneous extremal processes has been made by Weissman (1975). For our 

purpose it will be convenient to work with a modified inhomogeneous extremal process. The 

modified extremal process differs from the (standard) inhomogeneous extremal process by a 

deterministic time trend. More precisely, a modified inhomogeneous extremal utility function 

will be defined as processes { }( ), 0 , 1, 2,..., ,jU t t j m> =  given by 

 

(2.4)   ( )( )( ) max ( ) , ( , ) ,j j jU t U s t s W s tθ= − −

 

,s t<  where   is a constant and where Wj(s,t) is independent of Uj(s) and 

has cumulative distribution function 

(0) ,jU = − ∞ 0θ >

 

(2.5)  ( ) ( )( )( ) ( ) ( )( , ) exp j jv t v s t s y
jP W s t y e e eθ γ− − − −≤ = − −  

 

for ,y R∈  where 0.5772...γ = , (Euler's constant) and { }( )jv t  are deterministic functions of t 

such that  is nondecreasing for all j. Moreover, Wj(s,t) and  are independent 

when  It follows readily that vj(t) has the interpretation  

Tiago de Oliveira (1973) has demonstrated that when vj(t) is constant then Uj(t) becomes 

( )jv t θ+

(, ,s∩

t

) .t′ ′ =∅

( ,jW s t′ ′)

( )s t ( ) ( ).j jv t EU t=

9 



(strictly) stationary. As demonstrated by Resnick and Roy (1990) we can express a 

particularly version of the autocorrelation function of the utility process (2.4) as 

 

(2.6)   ( ) ( )( ) ( )exp ( ) ,exp ( ) exp ( ) ( ) ( ) .j j j jcorr U s U t v s v t t s θ− − = − − −
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)

Eq. (2.6) shows that when vj(t) varies slowly over time then the autocorrelation function is 

close to  In other words, the parameter θ characterizes the strength of 

temporal persistence in the preferences. Note that from a theoretical point of view it does not 

matter whether we use a modified extremal process or a (standard) extremal process since the 

time trend (θt) cancels in utility comparisons. However, the modified extremal process 

formulation allows a convenient interpretation due to (2.6). 

(exp ( ) .t s θ− −

 Recall that  must be nondecreasing for all j. We shall next introduce a 

reparametrization that does not suffer from this restriction. This reparametrization is given by 

( )jv t tθ+

 

(2.7)  
( )

( ) ( ) log j
j j

v t
w t v t

θ
θ

′+ 
= +  

 
. 

 

From (2.7) it follows that with ; (0)jv = −∞

 

(2.8)   ( ) ( ) ( )
0

exp ( ) exp ( ) exp ( ) ( ) .
t

j j jEU t v t w t dθ τ τ θ= = − − τ

 

This particular reparametrization implies that  is increasing for any ( )jv t tθ+ { }( ), 0jw t t > . 

However, the main motivation behind (2.7) is that the reparametrization above is interesting 



for theoretical reasons. To realize this note first that when Δt is small we get from (2.5) and 

(2.8) that 
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)

)

(2.9)   ( )( ) ( )( ), exp (jw t y
jP W t t t y t e o tγθ − −− Δ ≤ = − Δ + Δ

 

which shows that wj(t) has, apart form an additive term, the interpretation as the mean of 

“instantaneous” utility increments, ({ },jW t t t− Δ .  When wj(t) is independent of time (2.8) 

reduces to 

 

(2.10)   ( ) ( )exp ( ) 1 .jw t
jEU t e e θ−= −

 

Thus for large θt, constant { }( )jw t  yield constant mean utility levels. Also from (2.8) we 

realize that θ is analogous to a preference time rate parameter because by (2.8), the mean 

utility at time t can be expressed as an integral of past weighted “instantaneous” mean 

utilities. Specifically, the contribution from the period s-specific systematic utility component 

to the current mean utility is evaluated by multiplying  by the “depreciation” 

factor 8 This depreciation factor accounts for the loss of memory and/or 

decrease in taste persistence as the time lag increases. 

( )exp ( )jw s ds

( )(exp .t s θ− − )

 To clarify the interpretation further, consider the autocorrelation function (2.6) with 

constant { }( ) .jw t  Then (2.6) reduces to 

 

(2.11)  ( ) ( )( ) ( )1
exp ( ) ,exp ( )

1

s
t s

j j t

e
corr U s U t e

e

θ
θ

θ

−
− −

−

−− − = ⋅
−

.  
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)Thus when  is large, the mean utility in this case equals wj, (apart from an additive 

constant) and the autocorrelation function becomes exponential. 

(min s, tθ θ

 

 REMARK 4: It is important to emphasize that in the discussion of the extremal process 

above we have made no assumptions that restricts the class of inhomogeneous extremal 

processes with extreme value marginals. 

 In the following we shall use the concept of modified extremal process, to mean a 

stochastic process which satisfies (2.4) and (2.5) with , and with vj(t) 

differentiable in t for all j. 

(0)jU = − ∞

 

 THEOREM 2: Assume that the random utilities are independent modified extremal 

processes. Assume that the choice set process is constant over time. Then the choice process 

{ }( , ), 0J t B t >  is a Markov chain. 

 

 The result of Theorem 2 was originally proved by Dagsvik (1983) and (1988). 

 Recall that by (2.4) the utility processes are Markov processes. However, utility 

processes with the Markov property do not usually imply that the corresponding choice 

process ( ){ },J t B  is Markovian.9  

 

3. IMPLICATIONS FOR THE STRUCTURE OF THE CHOICE PROBABILITIES 

 In this section we discuss the implications of the proceeding results for the structure of 

the choice model and its interpretation. 

 



 THEOREM 3: Assume that the utilities are independent modified extremal processes 

and the choice set process is constant over time. Then for  B ∈ ℑ

 

(3.1)  ( )
( ) ( )

0

( ) ( )

0

( , ) ,

j

k

t
w t

t
w t

k B

e d

P J t B j

e d

τ τ θ

τ τ θ

τ

τ

− −

− −

∈

= =


 
 

 

and 

 

(3.2)  ( )
( ) ( )

( ) ( )

0

( , ) ( , ) ,

j

k

t
w t

s
t

w t

k B

e d

P J t B j J s B i

e d

τ τ θ

τ τ θ

τ

τ

− −

− −

∈

= = =


 
 

 

for , and i j≠ ( ) ( )(P J t,B i J s,B i= )=  is determined by the adding-up condition. The 

transition probability, given a transition out of the occupied state, , equals ( )ij tπ

 

(3.3)  ( ) ( )( )
{ }

( )

( )

\

( )
j

k

w t

ij w t

k B i

e
t P J t,B = j J t-,B i

e
π

∈

≡ ≠ =


 

 

for . Moreover i j≠

 

(3.4)  ( ) ( )( )
( ) ( )

( )0

( ) ( )

0

exp max ( ) ,exp max ( ) .

k

k

s
w s

k B t s
k k tk B k B

w t

k B

e d

Corr U s U t e

e d

τ τ θ

θ

τ τ θ

τ

τ

− −

∈ − −

∈ ∈
− −

∈

− − =
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 PROOF: The results (3.1) and (3.2) follow from Dagsvik (1988) by inserting (2.8). Eq. 

(3.3) follows readily from (3.2). Eq. (3.4) follows from Resnick and Roy (1990).10 Q.E.D. 

 

 From Theorem 3 one can easily derive the corresponding transition intensities. 

Dagsvik (1988) and Resnick and Roy (1990) extend the result of Theorems 2 and 3 to the 

case where { }( ), 0U t t ≥  is a multivariate extremal process. Dagsvik considers the case where 

U(t)—at each t—has a type III multivariate extreme value distribution that is absolutely 

continuous. The resulting (marginal) choice probabilities at a given point in time in this case 

become generalized extreme value probabilities. Resnick and Roy (1990) allow U(t) to have a 

multivariate c.d.f. that is not necessarily absolutely continuous.  

 The results obtained above are useful for justifying the choice of functional form of 

the likelihood function of observations on { }( , ),J B tτ τ ≤  for a particular agent in the absence 

of structural state dependence. The first step in specifying an empirical model is to specify the 

structural parts of the model. 

 In empirical applications one would typically specify wj(t) as  where 

Xj(t) is a vector of observable attributes specific to alternative aj at time t and w(·) is a suitably 

chosen functional form that is known apart from an unknown vector of parameters. 

(( ) ( )jw t w X t= )j

 Let us next consider the particular case where { }( ) , 1, 2,..., ,jw t j m=  are constant over 

time i.e.,  Then the transition intensity for transitions from state i to j reduces to ( ) .jw t w= j

 

(3.5)  
( )

( )
1

( ) , ( ) ,
1 11

j

k

w
ji

ii ijt twt

k B

PP e
q t q t

e ee eθ θθ

θθ θ
− −−

∈

−
= − = ≡

− −− 
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j

i

j

for  where Pj is the probability of being in state j. Recall that the degree of serial 

correlation in the indirect utility can be measured by θ. Specifically, when θ is large there is 

weak serial correlation (provided θt is large) while when θ is close to zero tastes are strongly 

correlated over time. Moreover, (3.5) shows that the transition intensities are stationary when 

t is large. However, when t is small then the transition intensities given by (3.5) depend on 

time. This is due to the fact that in the beginning of a choice process the length of the choice 

history (age) will influence the strength of the serial correlation of the utilities. 

i ≠

 Let us finally consider the probability distribution of the holding time in state i. Let 

Ti(s) be the holding time in state i given that ai was chosen at time s. Since the choice process 

is an inhomogeneous Markov chain we have that 

 

(3.6)   ( )( ) exp ( ) .
s y

i i

s

P T s y q x dx
+ 

> =   
 


 

 From (3.5) we realize that in the stationary case the hazard function, , 

belongs to the proportional hazard family.11 However, the hazard function  does not 

have a simple Cox type of structure as a loglinear function of attributes specific to alternative 

i, but depends on the attributes of all the alternatives in the choice set. 

( )1 iPθ −

)(1 iPθ −

 From (3.2) we realize that when i  then the transition probability of going from i to 

j does not depend on i. This, however, does not necessarily mean that the corresponding 

aggregate transition probabilities are independent of i. To realize this consider again the case 

where wj(t) is constant over time, but depend on individual characteristics x (say). Then (3.2) 

reduces to 

≠



 

  

( )( )1 (

1

t s
j

t

e P

e

θ

θ

− −

−

−

−

)x

j

 

 

when , where Pj(x) is the probability of being in state j conditional on x. However, the 

corresponding aggregate transition probability equals 

i ≠

 

  

( )( ) ( )
( )

1 ( )

1 ( )

t s
i j

t
i

e E P x P x

e E P x

θ

θ

− −

−

−

−

( )
 

 

where expectation is taken with respect to x. Evidently, this expression is not necessarily 

independent of i. 

 

4. EXTENDING THE MODEL TO ALLOW FOR STATE DEPENDENCE 

 So far we have only discussed the functional form of the choice probabilities of 

( ){ },J t B when there is no structural dependence from past choice experience. The question 

now arises how the particular functional form that follows should be modified in the presence 

of state dependence. The interpretation of this setting is that the agent has myopic preferences 

and he does not take into account how past and current experience affect future preferences. 

Notice first that when the utility processes are altered by the choice history the structural 

terms of the utility processes become endogeneous. This is so because the structural terms of 

the utility processes become dependent on past choices, and consequently they will depend on 

past realizations of the utility processes.  

16 



 Let h(t) denote the choice history prior to t. For expository simplicity, consider the 

discrete time case. One natural way of introducing state dependence is to assume that the 

utility processes are independent modified experience-dependent extremal processes defined 

by 

 

(4.1)   ( )( )( ) max ( 1) , , ( )j j jU t U t W t h tθ= − −
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)where  is a random variable with distribution ( , ( )jW t h t

 

(4.2)  ( )( ) ( )( )( ), ( ) ( 1) exp exp , ( )j jP W t h t u U t w t h t u≤ − = − −  

 

and where  is a parametric function of the attributes of alternative j and past choice 

experience. 

( , ( )jw t h t )

 In Dagsvik (2000) it is demonstrated that under (4.2) the transition probabilities are 

modified versions of the ones given in Theorem 3 where the modification consists in 

replacing { }( )jw t  by ( ){ }, ( )jw t h t

, (jw t h t

( ) (

 and replacing the integrals by sums. In other words, we 

can treat the “choice history variable”, h(t), as if it were exogenous. Now provided the choice 

set B contains at least 3 alternatives, including a1, a2 and aj, (3.3) (with wj(t) replaced by 

) implies that  is nonparametrically identified since it is 

determined by 

( , (jw t h t )) ( ) (1) , ( )w t h t−

)

)

2 21, ( ) , ( )t h tπj t h tπ . Thus, if one believes that IIIA represents a reasonable 

behavioral assumption (under the absence of state dependence) the modeling framework 

developed in this paper allows one to identify state dependence effects. We refer to Heckman 

(1978), (1981a), (1981b), (1991) and Keane (1997) for a further discussion of this issue. 
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 To express the corresponding result in continuous time it is necessary to apply the max 

spectral representation of the extremal process, cf. Resnick and Roy (1990). This is, however, 

beyond the scope of this paper. 

 

5. CONCLUSIONS 

 In this paper we have considered the problem of extending the IIA Axiom to the 

intertemporal setting. It is demonstrated that a particular extension of Luce IIA axiom implies 

a random utility model where the utilities are extremal processes. In myopic settings with no 

state dependence effects and choice sets that are nondecreasing over time this model has the 

Markov property with a particular structure of the transition probabilities. Finally, we discuss 

how the choice model can be extended to allow for structural state dependence.  

 Although the modeling framework discussed there is based on a static setting it can 

nevertheless be applied to analyze particular intertemporal discrete/continuous choice 

problems under perfect foresight and two stage budgeting. An example of this approach is 

provided by Heckman and MaCurdy (1980) where the choice of working versus not working 

is reduced to a static one conditional on a fixed effect representation of the initial marginal 

utility of wealth. (See also Blundell and MaCurdy (1999) for a review of this type of 

approach.) Although Heckman and MaCurdy only consider binary discrete choice this 

technique could readily be extended to cover cases with multinomial choices (corner 

solutions), see Dagsvik (2000). 

 

 Microeconometric Research Division, Statistics Norway, P.B. 8131 Dep., 0033 Oslo, 

Norway; E-mail: john.dagsvik@ssb.no 
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)

−

)

Below we shall draw on the properties of the multivariate extreme value distribution. To this 

end we start by listing some of the properties of the bivariate extreme value distribution. Let 

 be a standardized type III bivariate extreme value distribution. Then for any  ( ,F x y ,z R∈

 

(A.1)   ( )log ( , ) log , ,zF x y e F x z y z−= −

 

(cf. Resnick, 1987). In general, the multivariate extreme value distribution is not absolutely 

continuous with respect to the Lebesgue measure. However, we have the following result: 

 

 LEMMA 1: Let ( ,F x y  be a bivariate (type III) extreme value distribution. Then 

 is convex and the left and right derivatives, (log ,F x y− − − ) ( ),F x y x±∂ ∂  and ( ),F x y y±∂ ∂ , 

exist and are non-decreasing. 

 

 PROOF: Let . Since F is a c.d.f. it follows that L is non-

decreasing. Moreover, since F is a bivariate extreme value distribution it follows by 

Proposition 5.11, p. 272 in Resnick (1987) that there exists a finite measure µ on 

( ) (, log ,L x y F x y= − − − )

 

  { }2 2 2
1 2: 1z R z z+Δ = ∈ + =  

 

such that 

 

   ( ) ( )1 2 1 2( , ) max , , .x yL x y z e z e dz dzμ= 
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)

)

)

Since z1e
x and z2e

x are convex functions in x it follows that  is convex. Since  

is convex the left and right derivatives of  exist. (See for example Kawata, Theorem 

1.11.1 p. 27.) Q.E.D. 

( ,L x y ( ),L x y

( ,F x y

 

 From now on the notion “derivative”, will mean the (first order) right derivative. 

 Let ( ,F x y  be a bivariate (type III) extreme value distribution and let 

 

  ( ) log ( ,0).x F xϕ = − −  

 

Then it follows immediately from (A.1) that 

 

(A.2)   log ( , ) ( )yF x y e y xϕ−= − −

 

which implies that 

 

(A.3)  2 log ( ,0) ( ) ( )F x x∂ xϕ ϕ′− = −  

 

where ∂k means the derivative with respect to component k. The relations above will be useful 

in the proof below. 

 

 PROOF OF THEOREM 1: We assume  since the general case is completely 

analogous. Let 

2n =

{ } { }1( ) , , , and ( , .) ,B s B i j s t B j k= = < t i=  Let ( ,b )F x y  be the c.d.f. of 
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)( )( ), ( ) , .b bU s U t s t<  By Axiom A5  is a bivariate extreme value (type III) 

distribution. Note that since 

( ,bF x y

{ }( ),bU t t ≥ 0  is assumed continuous in probability it follows that 

( ),bF x y  is continuous in ( ),x y

log ( , )b bF x y

( )

( )( )

1 1

( ), ( )

( ), (

1 ,

j

i j

i j

k j

s U t

U s U

x dy F

F y F

> −

∞

( )bU t

( )xp y
b bm e−−

.5772.

. Let 

 

   ( ,G x

1 2
1 2

(

x x
y y

P U

P

>
< <

= −





( ),bF y∞

log (b bm EU

( ),bG x y

)y .

(

( ) (

2 2

( ),

) ( )

, ,

,

i

k j

i

U t

t U

dx dy F

x dy F d

>

>

= −

i jU

s

d

= >

, e

0

 

We have, since the utility processes are continuous in probability, that 

 

(A.4)   

( )( )
( )

) ( )

)

3

3

) ( ) max ( ), ( )

( ) ( )

,

, .

k i j

i

k

y

s U t U t U t

U t U t

F dy

x y

− >

>

= ∞

 

Since the marginal distribution of  is type III extreme value (Proposition 2) we can write 

 as 

 

(A.5)   ( )F y∞ =

 

where  By Lemma 1 the first order left and right derivatives of 

 exist. Since F by assumption is a bivariate extreme value distribution it follows 

from (A.1) that for  

)t= −

z R∈

 



(A.6)   
( ) ( ) ( )( )

2
1 2

, , exp ( ,0) ( ,0)

.( ,0) ( ,0)

y
j i i j

y
i j

F x dy F dx y e G x y G x y

Ge G x y x y dx dy∂ ∂

−

−

 = − − + − 

⋅ − −

 

Let ( ) ( ,0)b bx G xϕ = − . From (A.2) and (A.3) it follows that 

 

   ( , ) ( ,0) ( )y y
b b bG x y e G x y e y xϕ− −= − = −

b

 

and 

 

(A.7)  2 ( ,0) ( ) ( ).b bG x x x∂ ϕ ϕ′− = − +  

 

By Lemma 1, ( )b xϕ  is convex and therefore has derivatives that are non-decreasing. From 

(A.4), (A.5), (A.6) and (A.7) it follow after the change of variable ,x u y= − +  that 

 

(A.8)  
( )

( )( ) ( )( ) ( )
2

2

( ) ( ), ( ) ( ) ( )

1 exp exp ( ) ( ) ( ) ( ) ( ) .

i j k j i

y y y
k i j i j j

R

P U s U s U t U t U t

m e e u u u u u e du dyϕ ϕ ϕ ϕ ϕ− − −

> > >

  ′ ′= − − + − 

 

Due to the fact that for any  0c >

 

  ( ) 2
2

1
exp ,y y

R

c e e dy
c

− −− =  

 

(A.8) reduces to 
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(A.9)  

( )
( ) ( )

( )22

( ) ( ), ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
,

( ) ( )

i j k j i

i j j i j j

ijR R ij k

P U s U s U t U t U t

u u u du u u u du

u u m

ϕ ϕ ϕ ϕ ϕ ϕ
ϕ ϕ

> > >

′ ′ ′ ′− −
= −

+
 

 

 

where ( ) ( ) ( ).ij i ju u uϕ ϕ ϕ= +  Now Axiom A1 and (A.4) imply that 

 

(A.10)  

( )
( )( )

( )( ) ( )

( )

( ) ( ), ( ) ( ) ( )

( ) ( ), ( ) ( ), ( ) max ( ), ( )

( ) max ( ), ( ) ( ) ( ), ( ) ( )

( ) ( ), ( ) ( ) .

i j k j i

i j j i k j j

k i j i j j

k
i j i j

i j k

P U s U s U t U t U t

P U s U s U t U t U t U t U t

P U t U t U t P U s U s U t U t

m
P U s U s U t U t

m m m

> > >

= > − > − >

= > > >

= ⋅ > <
+ +

 

i

rom (A.9) we obtain, by letting , that 

 

(A.11)  

 

km → ∞F

( ) ( )
2

( ) ( ) ( )
( ) ( ), ( ) ( ) .

( )
i j j

i j i j
ijR

u u u du
P U s U s U t U t

u

ϕ ϕ ϕ
ϕ

′ ′−
> < =   

 

Hence, (A.9), (A.10) and (A.11) imply that 

 

(A.12)  
( ) ( )

( )22

( ) ( ) ( ) ( ) ( ) ( )
.

( ) ( )

i j j i j ji j

i j k ijR R ij k

u u u du u u u dm m

m m m u u m

ϕ ϕ ϕ ϕ ϕ ϕ
ϕ ϕ

′ ′ ′ ′− −+
=

+ + +
   

u

 



 Suppose now that x r= ≥ −∞ , is the largest point at which ( ) ( ) 0.i jx xϕ ϕ′ ′+ =  Then 

since ( )b xϕ′  is nondecreasing and non-negative it must be true that ( ) ( )i jx x 0ϕ ϕ′ ′= =  for 

.x r≤  As a consequence the mapping [ ): ,ij R rψ + → ∞ , defined by 

 

(A.13)   ( )( ) ( )ij ij ijz zϕ ψ ϕ= − r

z

 

exists, is invertible and has (right) derivatives everywhere on R+. By change of variable 

 

   1( )iju uψ −→ =

 

(A.12) takes the form 

 

(A.14)  
( ) ( )2 2

0 0

( ) ( )
,

( ) ( )

i j ij ij

i j k ij ij k

m m f z dz f z dz

m m m r z r z mϕ ϕ

∞ ∞+
=

+ + + + +
   

 

where 

 

(A.15)  ( ) ( ) ( )( )( ) ( ) ( ) ( ) ( ) .ij i ij ij j ij j ijf z z z zϕ ψ ψ ϕ ψ ϕ ψ′ ′ ′= − z  

 

But the right hand side of (A.14) is a generalized Stieltjes transform of ( )ijf ⋅  (see Widder, 

1938), evaluated at ( ) .ij kr mϕ +  The generalized Stieltjes transform is well defined provided 

( )ijf z  is integrable and the integral (A.14) exists. The generalized Stieltjes transform of a 

function determines the function uniquely almost everywhere. Thus, due to the uniqueness 
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property of the generalized Stieltjes transform, (A.14) implies that ( )ijf ⋅

i jm m

 must be constant 

almost everywhere for  since the left hand side of (A.14) is the generalized Stieltjes 

transform of a constant. As a consequence, we must have that 

0,z ≥

( ).ij rϕ+ =  From the 

definition of ( )ij zψ  we get 

 

(A.16)   ( )1 (ij ψ′ ′)ij ijz zϕ ψ= ( ).

 

Hence, (A.15) and (A.16) with ( ) ,iju zψ=  yield 

 

(A.17)   ( )( ) ( )i j j iju u Cϕ ϕ ϕ ϕ′− =( )

( )

( )ij

( )u u′ ′

( ( )u u′ ′

( ) ju u′ ′

( )ij uϕ

ij

ji

−

 

for  where Cij is a constant. Similarly we get, by interchanging i and j in the 

demonstration above, that 

,u r>

 

(A.18)   )( ) ( )j i i iju u Cϕ ϕ ϕ ϕ′− =

 

for  where Cij is another constant. By subtracting (A.18) from (A.17) we get ,u r>

 

   ( )( ) ( ) ( )j ij ij ij jiu u u C Cϕ ϕ ϕ ϕ ϕ′− =

 

which, when dividing by  becomes equal to 2
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(A.19)  
( )

2 2

( )( ) ( ) ( ) ( )
.

( ) ( )
ij ij jij ij j ij

ij ij

u C Cu u u u

u u

ϕϕ ϕ ϕ ϕ
ϕ ϕ

′ −′ ′−
=  

 

Next, integrating both sides of (A.19) yields 

 

  1

( )

( ) ( )
j ij ji

ij ij

u C C
d

u u

ϕ
ϕ ϕ

−
= +  

 

for  where d1 is a constant. Hence we obtain ,u r>

 

(A.20)  1( ) ( )j ij ji iju C C u dϕ ϕ= − +  

 

for  By inserting (A.20) into (A.18) we get .u r>

 

   ( ) 1( ) ( ) ( ) ( )ij i i ij jiu u u d u Cϕ ϕ ϕ ϕ′ ′ ′− =

 

for  which, since ,u r> ( ) 0,ij uϕ′ >  is equivalent to 

 

(A.21a) 1( ) ( ) .i i jiu u C dϕ ϕ′− =  

 

Similarly, it follows that 

 

(A.21b) 2( ) ( )j j iju u C dϕ ϕ′− =  
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for  Eq. (A.21a,b) are first order differential equations which have a solution of the form .u r>

 

(A.22)  ( ) u
b b bu eϕ α β= +  

 

for  Since , , .u r b i j> ≥ −∞ = ( ) 0b uϕ′ =  for u , and r≤ ( )b uϕ  is continuous we get from 

(A.22) that 

 

(A.23)  ( ) r
b bu ebϕ α β= +  

 

for  As a consequence it must be true that (almost everywhere) .u r≤

 

(A.24)   ( )( , ) ( ) exp min( , ) .y y
b b b bG x y e y x e x y rϕ α β− −= − = + − −

 

From (A.24) we obtain that for  s t<

 

(A.25)  ( )( ) ( ) 0b bP U t y U s x≤ = =  

 

when  and ,y x r< +

 

(A.26)  ( ) ( )( ) ( ) ( )b b bP U t y U s x P U t y≤ = = ≤  
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when .y x r≥ +  Eq. (A.25) means that { }( )bU t

( )b bU s>

 is non-decreasing with probability one. Eq. 

(A.26) means that conditional on , Ub(t) is stochastically independent of Ub(s). 

But then we must have that 

( )U t

{ }( )bU t  is equivalent to the utility process defined by 

 

(A.27)   ( )( ) max ( ), ( , )b b bU t U s W s t r= +

 

where  is extreme value distributed and independent of Ub(s). Since  is 

independent of r for any t we may without loss of generality choose  But since (s,t), 

with  were arbitrarily chosen points in time, (A.27) defines the (inhomogeneous) 

extremal process (cf. Dagsvik, 1988) which was to be proved. Q.E.D. 

( ,bW s t

,s t<

) 1 2( ) ( )U t U t−

0.r =
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Footnotes: 

1 Thanks to Rolf Aaberge, Leif Andreassen, Tor Jakob Klette, Tom Kornstad, Pedro de Lima, 

Chris Flinn, John Rust and Steinar Strøm for criticism and comments and Anne Skoglund for 

technical assistance and correction of errors. I also thank participants in workshops at the 

University of California, Berkeley, University of Chicago and University of Wisconsin for 

comments on earlier versions of the paper. I am particularly grateful for all help from Richard 

Blundell through the revision and editing process. 

 

2 Although IIA is a strong assumption, and clearly does not hold in situations in which 

alternatives are perceived as dissimilar, it should be remembered that due to unobserved 

population heterogeneity it may very well be the case that it holds conditional on relevant 

individual characteristics but fail to hold when individual characteristics are not properly 

controlled for.  

 

3 Loosely speaking, a separable function is, by definition, in a certain sense determined by its 

values in an everywhere-dense, enumerable set of points. A stochastic process is called 

separable when its sample functions process, with probability one, have this property. 

However, for a rigorous definition of separability the reader is referred to any book on the 

theory of probability and stochastic processes. Recall that a process { }( ), 0Y t t >  being 

continuous in probability means that  such that for any 0δ∃ > 1 2, 0η η >  

  ( )1 2( ) ( )P Y t Y s η η− > <  

whenever ,t s δ− <  where ⋅  is the standard Euclidian metric. 
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3= 3

)

j

)

4 In Dagsvik (1983), p. 11, a particular behavioral assumption (Axiom 1) was proposed. This 

axiom is weaker than A1. Axiom 1 makes a statement analogous to IIA for choice careers 

 at time epochs , where j1, j2 and j3 are all different. ( ) ( ) ( )1 1 2 2 3, ,J t j J t j J t j= = 1 2t t t< <

 

5 Recall that the notation B\A means the set of elements which belong to B but not to . A B∩

 

6 In a Bernoulli process there is no serially dependence. 

 

7 Recall that the type III extreme value distribution has the form  where 

are constants (cf. Resnick, 1987).  

(exp bxae−−

0, 0a b> >

 

8 Note that we may interpret  as mean utilities. Specifically, consider the utility 

function 

( ) ( )andjw t v te e

   ( )* / 1j jw
jU e κε κ+= Γ −

where ( ) (exp x
jP x eε −≤ = −

.

 and κ is a positive constant less than one. The utility  is of 

course equivalent to 

*
jU

j jw κε+  The mean of  is given by *
jU

   * .jw
jEU e=

 

9 It is not known whether the class of extremal processes is the only one that yields the 

Markov property of the choice model in continuous time. 

 

10 Similarly to Dagsvik (1983) it can also be proved that the autocorrelation function in (2.16) 

has the interpretation as 



  { }
( ) ( )

( ) ( )0

( ) ( )
( ) ( )

( ) 0

max ( ), max ( )

k

k

s
w s

k B s t s
k k tk B s k B t

w t

k B t

e d

corr U s U t e

e d

τ τ θ

θ

τ τ θ

τ
ρ

τ

− −

∈ − −

∈ ∈
− −

∈

 
 
 = ⋅ 
  
 

 

 
 

where [ ] [ ]: 0,1 0,1ρ →  is an increasing function with (0) 0ρ =  and (1) 1ρ = . The function 

ρ(·) has the form 

  
2

0

6 log
( ) ,

1

y
x dx

y
x

ρ
π

= −
−  

(cf. Tiago de Oliveira, 1973). 

 

11 See An (1995) for a justification of the proportional hazard family derived within a 

dynamic choice setting under uncertainty. 
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List of symbols 

L S ≥ 

F, Fj m θ 

aj G, Gj ,−∞ ∞  

( ), ( )j jU t U s  1 2, , ,j∂ ∂ ∂ ∂  ∞  

R t ( ), ,b bx jϕ ϕ ϕ′  

γ ( )jv t  mj 

( ) (, , ,j jW s t W s t′ ′)

)

 ,ij ijψ ψ ′  ( )j tε  

∩  ( ), ( )J t B t  ,ij ijϕ ϕ′  

  ( ),J t B  1
ijψ −  

( )jw τ  fij ( ), , ( )B t B B s  

αb ℑ  τ 

βb P Δ  

r ∀  , (ij ij tπ π  

\ ⋅ ` τ− 
∅  

1 2,η η  ( )( )jw X t  
, (j )Z Z t  

∃  
( )jX t  

( )( ), ( )jv v Z t⋅   ( )Y t  

, , ( )i j iP P P x  
( )1J t  ( )jv t  

( )iiq t  
K κ 

( )iT s  
x (ex) Γ  

( )h t  ∈ (element of) ρ 

y, z, u ∉ (not element of) π 

35 


