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Abstract 
This paper develops a theory of probabilistic models for risky choices. This theory can be viewed as 
an extension of the expected utility theory. One probabilistic version of the Archimedean Axiom and 
two versions of the Independence Axiom are proposed. In addition, additional axioms are proposed of 
which one is Luce’s Independence from Irrelevant Alternatives. It is demonstrated that different 
combinations of the axioms yield different characterizations of the probabilities for choosing the 
respective risky prospects. An interesting feature of the models developed is that they allow for 
violations of the expected utility theory known as the common consequence effect and the common 
ratio effect. 
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1. Introduction 
In the standard theory of decision making under uncertainty, it is assumed that the agent’s preference 

functional is deterministic. This assumption is maintained in most of the recent theoretical and 

empirical literature. It has been recognized for some time, however, that even in seemingly identical 

repetitions (replications) of the same choice setting, the decision maker often makes different choices, 

cf. Tversky (1969). This means that the deterministic theory cannot be applied directly in an empirical 

context unless some additional stochastic “error” is introduced. As Fishburn (1976, 1978), Hey (1995), 

Carbone (1997), Loomes and Sugden (1995, 1998) and Starmer (2000) discuss, this raises the question 

of how axiomatization of theories for choice under uncertainty should be extended to accommodate 

stochastic error. 

 This paper proposes an axiomatic foundation of probabilistic models for risky choice 

experiments that may be viewed, in part, as a generalization of the von Neumann–Morgenstern 

expected utility theory. This setting means that the agent’s choice behavior in replications of choice 

settings (with uncertain outcomes) is assumed to be governed by a probability mechanism. The 

motivation for this generalization is twofold. First, as mentioned above, it is of interest to establish a 

probabilistic framework that is justified on theoretical grounds and that can be used in 

microeconometric empirical analysis of choice behavior under uncertainty. Apart from a few rather 

particular cases, no such framework seems to be available. Second, it is of independent theoretical 

interest to extend the von Neumann–Morgenstern theory to allow for errors in the decision process of 

the agents. There is a huge literature on stochastic choice models with certain outcomes; see, for 

example, chapter 2 in Anderson, Palma and Thisse (1992) and Fishburn (1998) for reviews of discrete 

choice models. In fact, it was empirical observations of inconsistencies, dating back to Thurstone 

(1927a,b), that led to the study of probabilistic theories in the first place. Thurstone argued that one 

reason for observed inconsistent choice behavior is bounded rationality in the sense that the agent is 

viewed as having difficulties with assessing the precise value (to him or her) of the choice objects. 

Whereas probabilistic models for certain outcomes have been studied and applied extensively in 

psychology and economics, it seems that there has been less interest in developing corresponding 

models for choice with uncertain outcomes. (For a summary of models with uncertain outcomes, see 

Fishburn (1998) and Starmer (2000, Section 6.2).) This is somewhat curious, as one would expect that 

if an agent has problems with rank ordering alternatives with certain outcomes, he or she would most 

certainly find it difficult to choose among lotteries. 

 The importance of developing theoretically justified stochastic choice models for uncertain 

outcomes has been articulated by Harless and Camerer (1994) and Hey and Orme (1994). For 

example, Hey and Orme summarize their view as follows: 

 “... we are tempted to conclude by saying that our study indicates that behavior can be reasonably well 

modeled (to what might be termed a ‘reasonable approximation’) as ‘Expected utility plus noise’. 
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Perhaps we should now spend some time thinking about the noise, rather than about even more 

alternatives to expected utility?” (pp. 1321–1322). 

 In this paper, we consider a generalization of the von Neumann–Morgenstern’s expected 

utility theory.1 We first restate axioms known from the theoretical literature on probabilistic choice, 

which are known as the Solvability condition, the Balance condition, the Quadruple condition and the 

Independence from Irrelevant alternative condition (IIA). The Solvability, Balance and Quadruple 

conditions were originally proposed by Debreu (1958). Subsequently, we propose an axiom that can 

be viewed as a probabilistic version of the so-called Archimedean Axiom, and two axioms than can be 

viewed as probabilistic versions of the Independence Axiom in the von Neumann–Morgenstern theory 

of expected utility. These probabilistic versions extend the basic von Neumann–Morgenstern axioms 

in the following sense: whereas the Archimedean and Independence Axioms may not necessarily hold 

in a single-choice experiment, the probabilistic versions state that they will hold in an aggregate sense 

(to be made precise below) when the agent participates in a large number of replications of a choice 

experiment. A Thurstonian type of intuition is that the agent may be boundedly rational and make 

errors when he or she evaluates the value to him or her of the respective choice alternatives (strategies) 

in each single replication of the experiment, but on average (across replications of the experiment), the 

agent shows no systematic departure from the von Neumann–Morgenstern type of axioms. 

Alternatively, the probabilistic axioms may be conveniently interpreted in the context of an 

observationally homogeneous population of agents that face the same choice experiment. Whereas 

each agent’s behavior is allowed to deviate from the von Neumann–Morgenstern axioms, the 

“aggregate” behavior in the population is assumed to be consistent with these axioms. The latter type 

of interpretation is analogous to the most common one within the theory of discrete choice (see, for 

example, McFadden, 1981, 1984). 

 We demonstrate that different combinations of the probabilistic Archimedean and 

Independence Axioms, combined with the other axiom mentioned above, imply particular 

characterizations of the probabilities for choice among risky prospects as a function of the lottery 

outcome probabilities. 

 As a particular case within our generalized Expected Utility theory, we study settings with 

monetary rewards. What distinguishes this case from the general situation is that the outcomes 

(money) are realizations of an ordered variable. Accordingly, it is possible to use this property to 

obtain additional characterization of the model. The (additional) axiom that yields this characterization 

states the following: if the probability of preferring lottery one over lottery two is less than the 

probability of preferring lottery three over lottery four, this inequality remains true when all outcomes 

are rescaled by the same factor while the lottery outcome probabilities remain unchanged. 

                                                      
1 Most of the results presented in this paper have appeared previously in Dagsvik (2005). However, some results are new, the 
presentation of results have been reorganized and errors have been corrected. 
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 In an empirical context, the choice probabilities implied by the proposed axioms in this paper 

are essential for establishing the link between theory and the corresponding empirical model. More 

precisely, the agents’ choices among lotteries are, from a statistical point of view, outcomes of a 

multinomial experiment with probabilities equal to the respective choice probabilities mentioned 

above. Accordingly, when the structure of the choice probabilities has been obtained, one can, in the 

context of empirical analysis, apply standard inference methods such as maximum likelihood 

estimation procedures and likelihood ratio tests. 

 The first work on stochastic models for choice among lotteries occurred in the 1960s. Becker 

et al. (1963) proposed a probabilistic model for choice among lotteries, which they called a Luce 

Model for Wagers. Luce and Suppes (1965) considered a special case of the Luce model for wagers, 

which they called the Strict Expected Utility Model. However, neither these authors nor more recent 

contributions discuss the issue of deriving a stochastic model from axiomatization. To the best of our 

knowledge, the only contribution that provides a model founded on an axiomatic basis is by Fishburn 

(1978), and Gul and Pesendorfer (2006). Fishburn (1978) develops the incremental expected utility 

advantage model. His model does not contain the expected utility model as a special case, although 

the expected utility model can be approximated by an incremental expected utility advantage model. 

As pointed out by Fishburn (1978, pp. 635–636), the incremental advantage model seems extreme as it 

implies that there is a positive probability of choosing $1 in a choice between $1 for certain or a 

gamble that yields $10 000 with probability .999 or $0 with probability .001. Gul and Pesendorfer 

(2006) define a random utility function to be a probability measure on some set of utility functions 

which they take to be von Neumann-Morgenstern utilities.  They identify properties of random choice 

rules that ensure the existence of such a random utility function. Although Gul and Pesendorfer (2006) 

have established important existence results in a very general setting, they have not provided explicit 

characterization of choice probabilities. In contrast, the theory developed in the present paper does not 

require the a priori assumption that utilities are von Neumann-Morgenstern utilities. As described 

above, our alternative approach is based on particular probabilistic versions of the von Neumann-

Morgenstern axioms. When additional assumptions (such as the IIA, the Balance -and the Quadruple 

conditions) are imposed, it is demonstrated that explicit functional form characterizations follow.  

 Allais (1953) argued that individuals may systematically violate the expected utility theory. 

His examples have later been viewed as special cases of phenomena called the common consequence 

effect and the common ratio effect. It is interesting that the stochastic version of the expected utility 

theory developed here in fact allows for the common consequence and the common ratio effects. 

 The paper is organized as follows. In the next section, we present some basic concepts and 

notation. In Section 3, we discuss the generalization of the Expected Utility theory. In Section 4, we 

specialize to the case with monetary rewards, and in Section 5, we discuss a random utility 

representation. However, in this paper we only demonstrate the existence of a random utility 

functional in the case where IIA holds for choices among lotteries . 
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In Section 6, we show that the models developed are able to rationalize the common consequence 

effect and the common ratio effect.  

2. Preliminaries 
The aim of this section is to introduce axioms that enable us to characterize choice among lotteries 

when some randomness is present in the agent’s choice.  

 Let X denote the set that indexes the set of outcomes, which is assumed to be finite and to 

contain m outcomes, i.e., { }X 1,2,...,m≡ . In the following, we shall assume, as is customary, that the 

agent’s information about the chances of the different realizations of lottery s can be represented by 

lottery outcome probabilities 

 ( )s s s sg : g (1),g (2),...,g (m)= , 

where gs(k) is the probability of outcome k, k X∈ ,  if lottery s is chosen. Let S denote the set of 

simple probability measures on the algebra of all subsets of the set of outcomes. Recall that a 

preference relation refers to a binary relation, f
%

, on S that is: (i) complete, i.e., for all gr, sg S∈  either 

r sg gf
%

 or s rg gf
%

; and (ii) transitive, i.e., for all gr, gs, gt, in S, r sg gf
%

 and s tg gf
%

 implies r tg gf
%

. A 

real-valued function ( )sL g  on S represents f
%

 if for all gr, sg S∈ , r sg gf
%

, if and only if 

( ) ( )r sL g L g≥ . Let B be the family of finite subsets of S that contain at least two elements. 

 Consider now the following choice setting. The agent faces n replications of a choice 

experiment in which a set B of lotteries, B∈B , is presented in each replication. We assume that there 

is no learning. As there is an element of randomness in the agent’s choice behavior, he or she may 

choose different lotteries in different replications. We assume that the agent’s choices in different 

replications are stochastically independent. Let ( )B s sP g , g B,∈  be the probability that gs is the most 

preferred vector of lottery outcome probabilities in B. Let ( )r sP g ,g  be the probability that lottery gr is 

chosen over gs, i.e., ( ) { } ( )
r sr s rg ,gP g ,g P g≡ . It then follows that ( ) ( )r s s rP g ,g P g ,g>  if and only if 

( )r sP g ,g 0.5> . The argument above provides a motivation for the following definition. 

 

 Definition 1 

 For r sg ,g S∈ , lottery gr is said to be strictly preferred to gs in the aggregate sense, if and 

only if ( )r sP g ,g 0.5 .>  If ( )r sP g ,g 0.5,=  then gr is, in the aggregate sense, indifferent to gs. 

 

 Thus, Definition 1 introduces a binary relation, f
%

, where r sg gf  means that gr is strictly 

preferred to gs (in the aggregate sense), whereas gr ~ gs means that gr is indifferent to gs. Note, 
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however, that the relation is not necessarily a preference relation. The reason for this is that the binary 

relation f
%

 is not necessarily transitive. That is, for 1 2 3g ,g ,g S∈ , the statement that ( )1 2P g ,g 0.5≥  

and ( )2 3P g ,g 0.5≥  imply ( )1 3P g ,g 0.5≥  is not necessarily true. 

 Let 1 2g ,g S∈ . The mixed lottery, ( ) [ ]1 2g 1 g , 0,1α + − α α ∈ , is a lottery in S yielding the 

probability ( )1 2g (k) 1 g (k)α + − α  of outcome k, k X∈ . Here, we assume that the agents perceive the 

lotteries ( )1 2g 1 gαβ + − αβ  and ( ) ( )1 2 2g 1 g 1 gβ ⎡α + − α ⎤ + − β⎣ ⎦ , [ ]α β, ,∈ 0 1  as equivalent. This 

property is known as the axiom of reduction of compound lotteries, cf. Luce and Raiffa (1957). 

 For sets, A,B∈B such that A B,⊆ let 

 ( ) ( )
s

B B s
g A

P A P g .
∈

≡ ∑  

The interpretation is that PB(A) is the probability that the agent will choose a lottery within A when B 

is the choice set. 

3. Probabilistic extensions of the expected utility theory 
We start by restating an axiom that is originally due to Debreu (1958). This axiom is crucial because it 

ensures a cardinal utility representation in the context of stochastic choice models. 

 

 Axiom 1 

 Let 1 2 3 4g ,g ,g ,g S.∈ The binary choice probabilities satisfy 

(i) the Quadruple condition: ( ) ( )1 2 3 4P g ,g P g ,g≥  if and only if ( ) ( )1 3 2 4P g ,g P g ,g ;≥  

moreover, if either antecedent inequality is strict, so is the conclusion; 

(ii) Solvability: for any ( )∈y 0,1  and any 1 2 3g ,g ,g S ,∈  satisfying ( ) ( )1 2 1 3P g ,g y P g ,g≥ ≥ , 

there exists a g S∈  such that ( )1P g ,g y;=  

(iii) the Balance condition: ( ) ( )1 2 2 1P g ,g P g ,g 1.+ =  

 

 The intuition of the Quadruple condition is related to the following example, where the binary 

choice probabilities have the form of the representation 

 ( ) ( ) ( )( )1 2 1 2P g ,g K f g f g= − , 

where K is a strictly increasing cumulative distribution function on R, and f is a suitable mapping from 

S to R. Clearly, the choice model in this example satisfies the Quadruple condition. The example 

shows that when the average value of some lottery outcome probabilities g is represented by a scale 
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functional, f(g), in such a way that the propensity to prefer lottery outcome probabilities g1 over g2 is a 

function of the “distance”, ( ) ( )1 2f g f g− , then the Quadruple condition must hold. The Solvability 

condition is fairly intuitive. If K is continuous, the Balance condition will also be fulfilled in the 

example above. 

 

 Theorem 1 

 Axiom 1 holds if and only if there exists a continuous and strictly increasing cumulative 

distribution function K with ( ) ( )K x K x 1,+ − =  and a mapping f from S to some interval I such that 

the binary choice probabilities can be represented as 

(3.1) ( ) ( ) ( ){ }1 2 1 2P g ,g K f g f g .= −  

for 1 2g ,g S,∈  where 

 { }( )I .x : x f g , g S= = ∈  

The mapping f is unique up to a linear transformation. The cumulative distribution function K is 

unique in the sense that if K1 and K0 are two representations, then ( ) ( )=0 1K x K ax , where a 0>  is a 

constant. 

 

 The proof of Theorem 1 is given in the Appendix. In the special case with scalar 

representation of alternatives, proofs are given in Falmagne (1985) and Suppes et al. (1989). However, 

their proofs do not apply when the lotteries are represented by vectors of lottery outcome probabilities. 

Only in the special case with binary outcomes, can the lottery outcome probabilities of lottery j be 

represented by a scalar, namely by [ ]j jg (1), g (1) 0,1∈ . 

 The model in (3.1) is known in the literature as the Fechnerian representation (Fechner, 

1860/1966), and it clearly implies that the relation given in Definition 1 is a preference relation. It has 

the advantage of providing a cardinal utility functional representation. This model is, however, still too 

general to be directly useful in empirical applications because Theorem 1 is silent about the structure 

of the functional f and the c.d.f. K. If f is linear in the lottery outcome probabilities, we get a binary 

probabilistic version of the expected utility theory as a special case. Different versions of probabilistic 

nonexpected utility models follow as special cases with f as suitable nonlinear functionals (see for 

example, Starmer, 2000). From a theoretical perspective, however, such specifications are so far ad 

hoc. 

 A crucial building block for corresponding choice probabilities in the multinomial case is the 

following axiom. 
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 Axiom 2 (IIA) 

 For a given sg S,∈ ( ) ( )s rP g ,g 0,1∈  for all rg S,∈ where S  contains at least 3 alternatives. 

Furthermore, for sg A B, A,B∈ ⊆ ∈B , 

 ( ) ( ) ( )B s A s BP g = P g P A . 

 

 Axiom 2 was first proposed by Luce (1959) in the context of probabilistic choice with certain 

outcomes, and it is called “Independence from Irrelevant Alternatives” (IIA). As is well known, it 

represents a probabilistic version of rationality in the following sense: Suppose the agent faces a set B 

of feasible lotteries. One may view the agent’s choice as if it takes place in two stages. In stage one, 

the agent selects a subset from B, which contains the most attractive alternatives. In the second stage, 

he or she chooses the most preferred alternative from this subset. In the second stage, the alternatives 

outside the subset selected in stage one are irrelevant. Thus, rationality is associated with the property 

that the agent only takes into consideration the lotteries within the presented choice set. The 

probability that a particular set A (say) will be chosen in the first stage is PB(A), and the probability 

that gs is chosen (when alternatives in B\A are irrelevant) is ( )A sP g . Thus, ( ) ( )B A sP A P g  is the final 

probability of choosing gs. As indicated above, the crucial point here is that ( )A sP g  is independent of 

alternatives outside A. For the sake of interpretation, let J(B) denote the agent’s chosen lottery from B. 

With this notation, we can express IIA as: 

 ( ) ( ) ( ) ( )B s s sP g P J(B) g P J(B) A P J(A) g= = = ∈ = . 

The conditional probability of choosing gs given that the choice belongs to A, equals 

 ( ) ( )
( )

s
s

P J(B) g
P J(B) g J(B) A

P J(B) A
=

= ∈ =
∈

, 

so that IIA can be rewritten as 

 ( ) ( )s sP J(B) g J(B) A P J(A) g= ∈ = = . 

Whereas ( )sP J(A) g=  is the probability of choosing gs from a given choice set A, the conditional 

probability 

 ( )sP J(B) g J(B) A= ∈  

expresses the conditional probability of choosing gs from a given choice set B, given that the choice 

from B belongs to A. Clearly, 
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 ( )sP J(B) g J(B) A= ∈  

will in general be different from 

 ( )sP J(A) g= . 

They only coincide when IIA holds. 

 As Axiom 2 is a probabilistic statement, it means that it represents probabilistic rationality in 

the sense that lotteries outside the second-stage choice set A may matter in single-choice experiments 

but will not affect average behavior.  

 Next, we introduce axioms that are intuitive probabilistic versions of the so-called 

Archimedean and Independence Axioms of von Neumann and Morgenstern. 

  

 Axiom 3 (Archimedean) 

 For all 1 2 3g ,g ,g S∈ , if 

 ( ) ( )1 2 2 3
1 1P g ,g and P g ,g
2 2

> > , 

then there exist ( ), 0,1α β ∈  such that 

 ( )( ) ( )( )1 3 2 2 1 3
1 1P g 1 g ,g and P g , g 1 g
2 2

α α β β+ − > + − > . 

 

 Axiom 3 is a probabilistic version of the Archimedean Axiom in the von Neumann–

Morgenstern expected utility theory because, by Definition 1, it is equivalent to the following 

statement: if 1 2g gf  and 2 3g gf , then there exist ( ), 0,1α β∈  such that ( )1 3 2g 1 g gα + − α f  and 

( )2 1 3g g 1 gβ + − βf , cf. Karni and Schmeidler (1991, p. 1769). Note that Axiom 3 is weaker than the 

assumption that ( )r sP g ,g  is continuous. This is because if ( )r sP g ,g  is continuous in ( )r sg ,g , then 

whenever ( )1 2P g ,g 1 2>  and ( )2 3P g ,g 1 2> , continuity implies that ( )( )1 3 2P g 1 g ,g 1 2α + − α >  

and ( )( )2 1 3P g , g 1 g 1 2β + − β >  for a suitable α, (0,1)β∈ . 

 

 Axiom 4 (Independence) 

 For all 1 2 3g ,g ,g S∈ , and all [ ]0,1α ∈ , if 

 ( )1 2
1P g ,g
2

≥ , 
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then 

 ( ) ( )( )1 3 2 3
1P g 1 g , g 1 g
2

α α α α+ − + − ≥ . 

 

 Axiom 4 is a probabilistic version of the Independence Axiom in the von Neumann–

Morgenstern expected utility theory because it is equivalent to the statement that if 1 2g gf , then 

( ) ( )1 3 2 3g 1 g g 1 gα + − α α + − αf , cf. Karni and Schmeidler (1991, p. 1769). 

 Even if the binary relation given in Definition 1 satisfies Axioms 3 and 4, we would still not 

be able to specify choice probabilities that represent a generalization of the expected utility theory. We 

would at most be able to ascertain whether gr is preferred to gs (say) in the aggregate sense. 

Consequently, additional theoretical building blocks are needed to ascertain precisely how the choice 

probabilities ( ){ }r sP g ,g  can be represented by the lottery outcome probabilities gr and gs. This is 

crucial for establishing a link between the theoretical concepts introduced above and a model that is 

applicable for empirical modeling and analysis. The conditions in Axiom 1 turn out to be constructive 

to this end. 

  

Theorem 2 

 For all 1 2g , g S∈ , Axioms 1, 3 and 4 hold if and only if 

(3.2) ( ) ( )( ) ( )( ){ }1 2 1 2P g ,g K h V g h V g= − , 

where 

(3.3) ( ) ( ) ( )
∈

= ∑s s
k X

V g u k g k , 

and K is a continuous and strictly increasing cumulative distribution function defined on R with 

( ) ( )+ − =K x K x 1 , h : R R→  is strictly increasing and →u : X R . The mappings K, h and V  are 

unique in the sense that if ( )0 1 0 0K and K , h V  and ( )1 1h V  are two representations, then 

( ) ( )=0 1K x K ax , where a 0>  is a constant, ( ) ( )1 s 1 0 s 1V g b V g c= +  and ( ) ( )1 1 1 2 0 2h b x c b h x c+ = + , 

where 1b 0> , 2b 0> , 1c and 2c are constants. 

 

 The proof of Theorem 2 is given in the Appendix. 

 

 Remark 

 Note that the formulation in (3.2) is equivalent to 
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 ( ) ( )( ) ( )( )( )1 2 1 2P g ,g K h V g h V g= % %% , 

where K% is a continuous and strictly increasing c.d.f. on R+ and h%  is positive and strictly increasing. 

This follows immediately from (3.2), by defining ( )xK(x) K e=%  and h(x) log h(x)=% .  

 By Theorem 2 Axioms 1, 3 and 4 yield a characterization of the binary choice probabilities up 

to a c.d.f., and an increasing transformation h. Thus, in an empirical setting the problem of how to 

select specifications of h and K remains. 

 Consider next the multinomial setting with S consisting of at least 3 alternatives. 

 

Theorem 3 

 Assume that ( ) ( )r sP g ,g 0,1∈  for all r sg , g S,∈  where S contains at least 3 alternatives. 

Then, for B ∈B ,  Axioms 2, 3 and 4 hold if and only if 

(3.4)  ( )
( )( )( )

( )( )( )
r

s
B s

r
B

exp h V g
P g

exp h V g
∈

=
∑
g

,  

where 

 ( )s s
k X

V g u(k) g (k)
∈

= ∑ , 

and →h:R R  is strictly increasing and u: X R→ . The mappings h and V are unique in the sense that 

if ( )0 0h V  and ( )1 1h V  are two representations, then ( ) ( )1 r 0 rV g bV g c= +  and 

( ) ( )1 0h bx c h x d ,+ = + where b 0,>  c and d are constants. 

 

 The proof of Theorem 3 is given in the Appendix. 

 The choice model obtained in Theorem 3 is a special case of the Luce model for wagers, 

proposed by Becker et al. (1963). They postulated that 

(3.5) ( )
( )( )

( )( )
r

s
B s

r
B

V g
P g

V g
∈

ψ
=

ψ∑
g

, 

where : R R+ψ →  is a strictly increasing mapping that is unique up to a multiplicative constant. By 

letting log (x) h(x)ψ = , we find that (3.5) is equivalent to (3.4). 

 The model in (3.4) characterizes the choice probabilities in terms of a linear preference 

functional V up to an unknown monotone mapping h. However, the underlying axioms imply no 

additional restrictions on h. 
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 Axiom 5 (Strong independence) 

 For all * *
1 2 1 2 3g ,g ,g ,g ,g S∈  and all [ ]∈ 0,1α , if 

 ( ) ( )* *
1 2 1 2P g ,g P g ,g ,≥  

then 

 ( ) ( )( ) ( ) ( )( ).* *
1 3 2 3 1 3 2 3P g + 1- g , g + 1- g P g + 1- g , g + 1- gα α α α α α α α≥  

 

 Axiom 5 states that if the fraction of replications where *
1g  is chosen over *

2g  is less than or 

equal to the fraction of replications where 1g  is chosen over 2g , this inequality still holds when gj is 

replaced by ( )j 3g 1 gα + − α  and *
jg  is replaced by ( )*

j 3g 1 gα + − α , for j 1,2.=  Note that in Axiom 5, 

it is not claimed that ( )1 2P g ,g  is equal to ( ) ( )( )1 3 2 3P g + 1 g , g + 1 gα − α α − α . 

 It follows that Axiom 5 implies Axiom 4. To realize this, note that when * *
1 2g g= , then 

( )* *
1 2P g ,g 1 2,=  and 

 ( ) ( )( )* *
1 3 2 3P g 1 g , g 1 g 1 2α + − α α + − α = . 

Thus, it follows from this and Axiom 5 that when 

 ( )1 2P g ,g 1 2≥ , 

then 

 ( ) ( )( )1 3 2 3P g 1 g , g 1 g 1 2α + − α α + − α ≥ , 

which we recognize as Axiom 4. 

 The intuition why Axiom 5 is stronger than Axiom 4 is related to the fact that it represents a 

statement that involves comparisons between the degree to which one lottery is chosen over a second 

and the degree to which a third lottery is chosen over a fourth. It is this strengthening that enables us to 

derive strong functional form restrictions on the choice probabilities, to be considered next. 

 

 Theorem 4 

 Axioms 1, 3 and 5 hold if and only if the choice probabilities have the form as in (3.2) with 

(3.6) ( )h x x= +β κ , 
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where 0β >  and κ are constants. 

 

 The proof of Theorem 4 is given in the Appendix. Note that the constant β will, as long as the 

c.d.f. is unspecified, be absorbed in the c.d.f. K, and it can therefore be normalized to one with no loss 

of generality. Similarly, the constant κ will vanish in utility comparisons and can therefore be 

normalized to zero. 

 

 Note that Axiom 5 is weaker that the linearity property proposed by Gul and Pesendorfer 

(2006). Clearly, their linearity property assumption is equivalent to ( )1 2P g ,g  being equal to 

( ) ( )( )1 3 2 3P g + 1 g , g + 1 gα − α α − α . Since this property implies Axiom 5, Theorem 4 must hold. 

Hence, it follows that 1 2 1 3 2 3V(g ) V(g ) V( g (1 )g ) V( g (1 )g )α α α α− = + − − + − = 1 2V( g ) V( g )α α−   

1 2(V(g ) V(g )),α= −  for any lottery outcome probabilities g1, g2 and g3. However, this can happen 

only if α = 1, which is a contradiction. Thus, we have demonstrated that this linearity property is too 

strong in our context.  

 

 Corollary 1 

 Assume that ( , ) (0, ),r sP g g 1∈  for all r sg ,g S ,∈ where S contains at least 3 alternatives. For 

B ∈B ,  Axioms 2, 3 and 5 hold if and only if 

 ( ) ( )( )
( )( )

r

s
B s

r
B

exp V g
P g

exp V g
∈

=
∑
g

. 

 

 The proof of Corollary 1 is given in the Appendix. 

 Thus, we have established that Axioms 2, 3 and 5 are sufficient for a complete 

characterization of the model apart from the utility weights {u(k)}, whereas under Axioms 1, 3 and 5 

only the c.d.f. K remains unspecified. 

 There are two alternative interpretations of the Axioms above, which represent extensions of 

the corresponding von Neumann–Morgenstern axioms. The first interpretation is as follows. Consider 

an agent who participates in a large number of replications of a choice experiment. The agent may be 

boundedly rational in the sense that he or she has difficulties assessing the precise value (to him or 

her) of the strategies in each single replication. This may be so even if the agent has no problem with 

assessing the values of the outcomes, simply because the evaluations of the respective lottery 

strategies do not follow immediately from the values of the outcomes and the outcome probabilities. 

The axioms state that whereas the agent is allowed to make “errors” when selecting strategies in each 
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replication of the experiment (in the sense that his or her behavior is not consistent with the von 

Neumann–Morgenstern theory), the agent will still⎯in the aggregate sense specified in the 

axioms⎯behave according to the respective versions of the probabilistic extension of the von 

Neumann–Morgenstern theory. 

 In the alternative interpretation, we consider a large observationally homogeneous population. 

In this setting, each agent in the population faces the same choice experiment. Although the behavior 

of each individual agent may be inconsistent with the von Neumann–Morgenstern theory, the axioms 

above state that aggregate behavior in the population will be consistent with the probabilistic version 

of the theory. 

4. Monetary rewards 
The setting we shall discuss here is somewhat different from the previous one in that we focus on 

applications where money is involved. Specifically, we now assume that the set of outcomes is a set of 

money amounts. Thus, the lottery outcomes of the choice experiment consist of pairs 

{ ( )kk,w X W}∈ × , where W is a subset of [ )0,∞  or equal to [ )0,∞  and kw W∈ is a given amount 

associated with outcome k. The corresponding probability of outcome ( )kk, w , given lottery s is 

denoted by ( )s kg k, w . The utilities are now given as ( ){ }ku k, w .  Let S and B be defined as in Section 

2. What distinguishes the present setting from the previous one is that one component (money) of the 

outcome is an ordered variable. The purpose of this section is to utilize this property to characterize 

the functional form of the utility function ( )u k, w . To this end we shall apply ideas from the 

psychophysical literature. In psychophysics there is a tradition that addresses the problem of scale 

representation of the relation between physical stimuli and sensory response. A central part of this 

literature is concerned with the interpretation and implications of specifications and laws that are 

invariant under scale transformations of the input variables. Analogous invariance principles have 

been applied in physics to characterize laws. See Falmagne (1985) and Narens (2002) for discussions 

on this topic. See also Dagsvik et al. (2006) for further discussion and application in economics. 

 Let wδ  denote the Dirac measure, that is 

 w

1 if w x
(x)

0 otherwise,
=⎧

δ = ⎨
⎩

 

and define sgλ by 

 ( ) ( ) ( )
ks k s k w kg k w g k w w, ,λ

λ= δ% % , 
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where ( )kk, w X W∈ ×% and λ is a positive real number. Although sgλ also depends on { }kw ,  this is 

suppressed in the notation. 

 

 Axiom 6 

 Let sg S∈  for s 1,2,3,4.=  Then 

 ( ) ( )1 1 1 1
1 2 3 4P g ,g P g ,g≤ , 

if and only if 

 ( ) ( )1 2 3 4P g ,g P g ,gλ λ λ λ≤ , 

for any 0λ >  and kw W , k X .∈ ∈  

 

 Axiom 6 means that if the fraction of individuals that prefer g1 over g2 is less than the fraction 

that prefers 3g  over 4g , then this inequality does not change if all the incomes (potential outcomes) 

are rescaled by the same factor while the lottery outcome probabilities remain unchanged. 

 Before we state the next result, we adopt the definition: 

 x 1 log x,
θ −

=
θ

 

when 0θ = . The function ( )x 1θ − θ  will then be differentiable and strictly increasing for all θ. 

 The intuition is, loosely speaking, that the agent is “to some degree” viewed as being 

indifferent with respect to scale transformations of the potential money rewards when comparing 

lotteries. By the above notion of “some degree”, it is meant that the respective binary choice 

probabilities may change as a result of the rescaling of rewards, but only in such a way that the 

original inequality of Axiom 6 is preserved. 

 

 Theorem 5 

 Axioms 1, 3, 4 and 6 hold if and only if the choice probabilities have the form as in (3.2) with 

either 

(i) ( ) ( ) ( )
x

k

e 1
h x and u k ,w blog w c ,

−
= + = +

θβ
κ

θ
 

for w 0> , and θ ≠ 0, 
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(ii) ( ) ( ) k k
w 1h x x and u k ,w b c ,

⎛ ⎞−
= + = +⎜ ⎟

⎝ ⎠

ρ

β κ
ρ

 

for w > 0, or 

(iii) ( ) ( ) ( ) k

x 1
h x and u k ,w b w ,

−
= + =

θ
ρ

β
κ

θ
 

for w 0,≥  where > 0β , kb 0,>  0,b > 0ρ > , κ and kc  are constants. 

 

 The proof of Theorem 5 is given in the Appendix. 

 

 Axiom 7 

 Let 1 2g ,g S.∈  Then 

 ( ) ( )1 1
1 2 1 2P g ,g P g ,gλ λ= , 

for any real number > 0λ  and kw W , k X .∈ ∈  

 

 Axiom 7 is stronger than Axiom 6 because it postulates that the choice probabilities are 

invariant under scale transformations of the rewards. This means that the agent is viewed as being 

indifferent with respect to rescaling of the potential money rewards. 

  

 Corollary 2 

 Axioms 1, 3, 4 and 7 hold if and only if the choice probabilities have the form as in (3.2) with 

0θ = , i.e., either 

(i) ( ) ( ) kh x x and u k ,w blog w c ,= + = +β κ  

for w 0> , or 

(ii) ( ) ( ) kh x log x and u k ,w b w ,= + = ρβ κ  

for w 0≥ , where > 0β , b > 0, kb 0> , 0ρ > , κ and ck  are constants. 

 

 The proof of Corollary 2 is given in the appendix. Note that when 1β = , the choice model in 

Corollary 2 (ii) reduces to the so-called Strict Expected Utility model for uncertain outcomes proposed 

by Luce and Suppes (1965). 
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 Corollary 3 

 Axioms 2, 3, 4 and 6 hold if and only if the choice model (3.4) holds with h and u as in 

Theorem 5. 

 

 Proof 

 The “if” part of the corollary is evident. Consider the “only if” part. Recall that Axioms 2, 3 

and 4 imply Theorem 3. As Axiom 1 is implied by Axiom 2, the conditions of Theorem 5 are fulfilled, 

and thus the structure of h and u must be as in (i), (ii) or (iii) of Theorem 5. 

  Q.E.D. 

 

 Corollary 4 

 Axioms 1, 3, 5 and 6 hold if and only if the choice model in (3.2) holds with 

 ( ) ( ) k k
w 1h x x and u k ,w b c ,

⎛ ⎞−
= + = +⎜ ⎟

⎝ ⎠

ρ

β κ
ρ

 

for w≥ 0 if ρ ≠ 0, and w > 0 if ρ = 0. 

 

 Proof 

 Evidently, the “if” part of the corollary is true. Consider the “only if” part. Recall that Axioms 

2, 3 and 5 imply Theorem 4. As Axiom 1 is implied by Axiom 2, the conditions of Theorem 5 are 

fulfilled, and as h must, by Theorem 4, be linear, the structure of h and u must be as in (ii) of Theorem 

5, or as in (iii) of Theorem 5 with θ = 1. 

  Q.E.D. 

 

 The next result is analogous to Corollary 3 and follows from Corollary 4. 

 

 Corollary 5 

 Axioms 2, 3, 5 and 6 hold if and only if the choice model (3.4) holds with h and u as in 

Corollary 4. 
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Figure 1. Overview of axioms 

Axiom 1 
(i)    ( ) ( ) ( ) ( )1 2 3 4 1 3 2 4P g ,g P g ,g P g ,g P g ,g≥ ⇔ ≥ , 

(ii)  For y such that ( ) ( )1 3 1 2P g ,g y P g ,g ,≥ ≥  there is a g S∈  

       such that ( )1P g ,g y= , 

(iii) ( ) ( )1 2 2 1P g ,g P g ,g 1+ = . 
 

Axiom 2 (IIA) 
( ) ( )

( ) ( ) ( )
s s r r

B s A s B s

For given g S, P g ,g 0,1 for all g S,

P g P g P A , g A B, A,B

∈ ∈ ∈

= ∈ ⊂ ∈B
. 

 
Axiom 3 

If ( ) ( )1 2 2 3
1 1P g ,g and P g ,g
2 2

> > , 

there exist ( ), 0,1α β∈  such that: 

( )( ) ( )( )1 3 2 2 1 3
1 1P g 1 g ,g and P g , g 1 g
2 2

α + − α > β + − β > . 

 
Axiom 4 

( )1 2
1P g ,g
2

>  

⇓ 

( ) ( )( )
[ ]

1 3 2 3
1P g 1 g , g 1 g
2

for all 0,1

α + − α α + − α >

α ∈
. 



 19

Figure 1 (cont). Overview of axioms 

Axiom 5 

( ) ( )* *
1 2 1 2P g ,g P g ,g≥  

⇓ 

( ) ( )( ) ( ) ( )( )
[ ]

* *
1 3 2 3 1 3 2 3P g 1 g , g 1 g P g 1 g , g 1 g

for all 0,1

α + − α α + − α ≥ α + − α α + − α

α∈
. 

 
Axiom 6 

( ) ( )1 1 1 1
1 2 3 4P g ,g P g ,g≤ , 

c  

( ) ( )1 2 3 4P g ,g P g ,g , 0λ λ λ λ≤ ∀λ > , 

where ( ) ( ) ( )
ks k s k w kg k, w g k, w wλ

λ= δ% % . 

 
Axiom 7 

( ) ( )1 1
1 2 1 2P g ,g P g ,g for all 0λ λ= ∀λ > . 

 

Axiom 2 ⇒ 
Axiom 1 

 
   

Axiom 5 ⇒ Axiom 4 

   

Axiom 7 ⇒ Axiom 6 
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Figure 2. Relationship between axioms and binary choice probabilities 

Axiom 1 ⇔ 

Theorem 1. ( ) ( ) ( )( )1 2 1 2P g ,g K f g f g= − , 

for some function f that is unique up to a positive 
linear transformation and a c.d.f. K that is strictly 
increasing, symmetric and continuous. 

   
   

Axioms 1, 3, 4 ⇔ 
Theorem 2. ( ) ( )( ) ( )( ){ }1 2 1 2P g ,g K h V g h V g= − , 

with h and K strictly increasing, symmetric and 
continuous. 

   

Axioms 1, 3, 5 ⇔ Theorem 4. ( ) ( ) ( ){ }1 2 1 2P g ,g K V g V g= − ,  
with K strictly increasing, symmetric and continuous. 

 

  

 Figure 3. Relationship between axioms and multinomial choice probabilities 

Axioms 2, 3, 4 ⇔ 
Theorem 3. ( )

( )( )( )
( )( )( )

r

s
B s

r
B

exp h V g
P g

exp h V g
∈

=
∑
g

,  

for some strictly increasing h. 
   

Axioms 2, 3, 5 ⇔ Corollary 1. ( )
( )( )

( )( )
r

s
B s

r
B

exp V g
P g

exp V g
∈

β
=

β∑
g

, 0.β >  
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 Figure 4. Relationship between axioms and choice probabilities for the case with monetary 
rewards 

Axioms 1, 3, 4, 6 ⇔ 

Theorem 5. Choice probabilities are as in Theorem 2 with 
( )xe 1

h(x)
θβ −

= + κ
θ

 and ku(k, w) blog w c , w 0, 0,= + > θ ≠

h(x) x= β + κ  and 
( )k

k

b w 1
u(k, w) c ,w 0,

ρ −
= + >

ρ
 or 

( )x 1
h(x)

θβ −
= + κ

θ
 and ku(k, w) b w , w 0,κ= ≥ 0,κ >  

k0, b 0, b 0β > > > . 
   

Axioms 1, 3, 4, 7 ⇔ 

Corollary 2. Choice probabilities are as in Theorem 2 with 
h(x) x= β + κ  and ku(k,w) blog w c , w 0= + > , 
or 
h(x) log x ,= β + κ  x > 0, and ku(k,w) b w , w 0,ρ= ≥  

k0, b 0, b 0,β > > > 0.ρ >  
   

Axioms 2, 3, 4, 6 ⇔ 

Corollary 3. Choice probabilities are as in Theorem 3 with 
( )xe 1

h(x)
θβ −

= + κ
θ

 and 

( ) ku k,w blog w c , w 0, 0,= + > θ ≠  
h(x) x= β + κ  and k ku(k, w) b log w c ,= + w 0,> or 
 

( )x 1
h(x)

θβ −
= + κ

θ
 and ( ) ku k, w b w , w 0ρ= ≥ , 

k0, b 0, b 0,β > > > 0.ρ >  
   

Axioms 1, 3, 5, 6 ⇔ 

Corollary 4. Choice probabilities are as in Theorem 2 with 

h(x) x= β + κ  and ( ) k
k

b (w 1)u k, w c ,w 0,
ρ −

= + ≥
ρ

0,ρ ≠  

k0, b 0β > > , and w 0>  when 0ρ = . 
   

Axioms 2, 3, 5, 6 ⇔ 

Corollary 5. Choice probabilities are as in Theorem 3 with 

h(x) x= β + κ  and ( ) k
k

b (w 1)u k, w c ,w 0,
ρ −

= + ≥
ρ

0,ρ ≠  

k0, b 0β > > , and w 0>  when 0ρ = . 

 

 Figures 1–4 display a convenient overview and summary of the results obtained in the paper. 

It is an important feature of the axioms that they have direct empirical counterparts. Figures 3 and 4 

emphasize the equivalences between sets of axioms and the structure of the respective choice 

probabilities. However, some of these choice probabilities depend on unknown functional forms (f, K 
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and h). For example, all the binary choice probabilities depend on an unknown c.d.f. K. Only 

Corollaries 1, 3 and 5 yield fully specified functional forms for the choice probabilities. As all the 

axioms have explicit empirical counterparts, they can be applied to test these models without relying 

on ad hoc functional form specifications. To carry out rigorous nonparametric tests of these axioms is 

in itself a complicated task. In fact, it seems that the general case with ordinal restrictions on choice 

probabilities of the type displayed in Figure 1 lies outside the scope of a large body of literature 

devoted to statistical hypotheses testing under ordinal constraints. As far as we know, only Iverson and 

Falmagne (1985) and Dagsvik and Røine (2006) have explicitly addressed the challenge of developing 

test procedures for this type of setting. In particular, Iverson and Falmagne (1985) discuss how one 

can test property (i) of Axiom 1 within a maximum likelihood setting. 

5. A random utility representation 
In this section, we shall consider the problem of a random utility representation of the agent’s 

preferences over lotteries that yield choice probabilities satisfying Axioms 2, 3 and 4. From the theory 

of discrete choice, we know that the Luce choice model is consistent with an additive random utility 

representation in which the error terms are independent (across alternatives) with extreme value c.d.f., 

( )xexp e−− . Here, the setting is not as simple as in the standard discrete choice case because S is not 

countable and g is a vector. Therefore, if a random utility representation { }U(g),g S∈  exists, it must 

be a multiparameter stochastic process, i.e., a random field. 

 

 Theorem 6 (Random utility representation) 

 There exist a probability space and random variables ( ){ }g , g Sε ∈  defined on it, such that 

( )s sg , s 1,2,...,g Sε = ∈ , are independent for distinct 1 2g ,g ,...,  and 

(5.1) ( )( ) ( )y
sP g y exp eε −≤ = − , 

for ∈y R . The random utility representation 

(5.2) ( ) ( )( ) ( )U g = h V g gε+ , 

for g S∈ , is consistent with Axioms 2, 3 and 4, i.e., for ∈B B . 

(5.3) ( ) ( ) ( )
( )( )( )

( )( )( )r

r

s
B s s rg B

r
B

exp h V g
P g = P U g = maxU g = .

exp h V g∈

∈

⎛ ⎞
⎜ ⎟
⎝ ⎠ ∑

g
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 The proof of Theorem 6 is given in the appendix. The next result is immediate. 

 

 Corollary 5 

 Axioms 2, 4 and 5 are consistent with the random utility representation 

 ( ) ( ) ( )U g V g gε= + , 

for ∈g S ,  where the c.d.f. of ( )gε  is given in (5.1). 

 

 Note that the random utility representation given here depends on the choice model satisfying 

IIA. As mentioned in the introduction, Gul and Pesendorfer (2006) have proven the existence of a  

random utility representation under different assumptions. 

 

 Remark 

 The distribution function given in (5.1) is a so-called type III extreme value distribution.2 In 

statistics, the extreme value distributions arise as the asymptotic distributions of the maximum of i.i.d. 

random variables. Many authors have studied this distribution in the context of the theory of discrete 

choice and random utility models; see, for example, McFadden (1973), Yellott (1977) and Strauss 

(1979). Under different regularity conditions, they have demonstrated that (6.1) is the only distribution 

that implies a random utility representation that is consistent with the Luce model (IIA). 

  

6. The Allais paradox 
Starting with Allais (1953), it has long been known that people’s behavior under uncertainty may 

systematically violate the Independence axiom in the expected utility theory. The examples that Allais 

(1953) discussed have played an important role in the development of nonexpected utility theory. The 

examples discussed by Allais are special cases of more general phenomena called the common 

consequence effect and the common ratio effect. To explain what these phenomena mean, let g1 and g2 

be two lotteries with binary outcomes such that lottery one has payoff y with probability g and payoff 

c with probability 1 g− . Lottery two has payoff q with probability g and payoff c with probability 

1 g− , where q is also a lottery that has payoff x with probability μ and payoff 0x with probability 

1 , 0 1− μ < μ < . The expected utilities of the first and second lotteries, 1 2V ,V ,  are 

                                                      
2 There seems to be some confusion in the literature about the terminology. Some authors call (5.1) the type III extreme value 
distribution, whereas other authors call it the type I extreme value distribution. Some authors also call it the Double 
Exponential Distribution. 
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 ( )1 2V g x 1 g c= + − , 

and 

 ( ) ( )2 1 0V g x 1 g x 1 g c= μ + − μ + − . 

The payoffs are nonnegative (usually monetary) consequences such that 2 1 0x x x> < . Note that both 

lotteries yield payoff c with probability 1 g− . This is the “common consequence”. As 

( )2 1 0x x 1 x> μ + − μ , it follows that 1 2V V> , irrespective of the value of c. However, researchers have 

found that behavior is indeed systematically influenced by c, with a tendency to choose the first lottery 

when 2c x=  and the second when 0c x= . This kind of behavior was predicted by Allais and is known 

as the Allais paradox, cf. Allais (1953). 

 A second type of phenomenon, also discussed by Allais, is called the common ratio effect. To 

explain what this means, consider lotteries three and four, where lottery three has payoff x2 with 

probability g and payoff x0 with probability 1 g− . Lottery four has payoff x1 with probability μg and 

payoff x0 with probability 1 g− μ , where 2 1 0x x x> > . The corresponding expected utilities are: 

 ( ) ( )3 2 0 2 0 0V g x 1 g x g x x x= + − = − + , 

and 

 ( ) ( )4 1 0 1 0 0V g x 1 g x g x x x= μ + − μ = μ − + . 

Evidently, 3 4V V ,>  irrespective of the value of g. However, experimental evidence indicates that 

when μ is fixed, individuals reveal a tendency to switch towards lottery four as g decreases. 

 Let us now consider these phenomena in the present case with probabilistic choice, and under 

the Axioms 1, 3 and 4. Then, the choice probability of preferring lottery 1 over lottery 2 is given by: 

 ( ) ( )( ) ( )( ) ( ) ( )( )( )1 2 2 1 0K h V h V K h g x 1 g c h g x 1 g x 1 g c− = + − − μ + − μ + − . 

From this expression, we realize that the choice probability will depend on the common consequence 

c, provided the mapping h is nonlinear. Although 

 ( )( ) ( ) ( )( )( )2 1 0
1K h g x 1 g c h g x 1 g x 1 g c
2

+ − − μ + − μ + − > , 

owing to the fact that ( )2 1 0g x g x 1 g x> μ + − μ , the fraction that prefers lottery two is less than 1 2  

but may be close to 1 2 . Similarly 
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 ( ) ( )( ) ( )( ) ( )( )( )3 4 2 0 0 1 0 0K h V h V K h g x x x h g x x x− = − + − μ − + . 

In this case, the choice probability will depend on g and 0x even if h is linear. Also, in this case: 

 ( )( ) ( )( )( )2 0 0 1 0 0
1K h g x x x h g x x x
2

− + − μ − + > . 

Thus, we realize that with probabilistic models, such as the ones developed in this paper, the common 

consequence and common ratio effect may occur for less than 50 per cent of the population. 

 Only under Axioms 1, 3 and 5 does the common consequence effect vanish. The common 

ratio effect will only vanish when h(x) log x= β + κ  and 0x 0= . 

7. Conclusion 
In this paper, we have developed a theory of probabilistic choice for risky choices based on different 

combinations of particular axioms. First, we have considered choice models with “minimal” structure 

on the choice probabilities. Second, we have generalized the expected utility theory to a probabilistic 

version. We have explored the relationship between sets of axioms and the structure of the 

corresponding choice probabilities. In particular, some sets of axioms imply a complete 

characterization of the functional form of the choice probabilities. The case in which the outcomes are 

money amounts is given particular attention, and it is demonstrated that particular invariance axioms 

that may apply in this setting yield an explicit characterization of the functional form of the model. 

 An interesting property of the models is that they rationalize the so-called common 

consequence effect and the common ratio effect. 

 As most of the axioms proposed are nonparametric, they can be utilized to carry out 

nonparametric tests of the respective structures of the choice probabilities.  
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Appendix 
 

 Proof of Theorem 1 

 Debreu (1958) has proved that Axiom 1 implies that there exists a cardinal representation 

f (g), g S∈ , such that for 1 2 3 4g ,g ,g ,g S∈  

(A.1) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 1 2 3 4P g ,g P g ,g f g f g f g f g≤ ⇔ − ≤ − , 

where the inequality on one side is strict if and only if the inequality on the other side is strict. From 

(A.1), it follows that g1, g2, g3 and g4 satisfy ( ) ( )1 2 3 4P g ,g P g ,g= , if and only if 

( ) ( ) ( ) ( )1 2 3 4f g f g f g f g− = − . However, this means that we can write 

 ( ) ( ) ( ){ }1 2 1 2P g ,g K f g f g= − , 

for some suitable function K. Evidently, K(x) is strictly increasing and takes values in [0,1]. Without 

loss of generality, it can be chosen to be a cumulative distribution function. The Balance condition 

implies that K(x) K( x) 1+ − = , which means that K is symmetric. Recall that a cumulative distribution 

function is continuous to the right. As K is symmetric, it must also be continuous to the left. Hence, K 

is continuous. 

 Next, we shall prove the uniqueness of K. Suppose that ( )0 0f ,K  and ( )1 1f ,K  are two 

representations of the binary choice probabilities. Then 

 ( ) ( )( ) ( ) ( )( )0 0 1 0 2 1 1 1 1 2K f g f g K f g f g− = − , 

for any 1 2g , g S∈ . As f0 and f1 are unique up to a linear transformation, we can write 

 1 0f (g) a f (g) b= + , 

for g S∈ , where a and b are constants and a 0> . This yields 

 ( ) ( )( ) ( ) ( )( )( )0 0 1 0 2 1 0 1 0 2K f g f g K a f g f g− = − , 

which demonstrates that 0 1K (x) K (ax)= . 

 To prove that I is an interval, let 0g S∈  be a fixed point of reference. Let 1 2g ,g S∈  be such 

that ( ) ( )2 1f g f g≥ , and let ( ) ( )1 2x f g , f g∈ ⎡ ⎤⎣ ⎦  be arbitrary. Hence, 

( ) ( ) ( ) ( ) ( )1 0 0 2 0f g f g x f g f g f g− ≤ − ≤ − , or equivalently 

 ( )( ) ( ) ( )( )1 1
1 0 0 2 0K P g ,g x f g K P g ,g− −≤ − ≤ , 
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which yields 

(A.2) ( ) ( )( ) ( )1 0 0 2 0P g ,g K x f g P g ,g≤ − ≤ . 

By Axiom 2 (ii), there exists a *g S∈  such that ( ) ( )( )*
0 0P g ,g K f g x= − . Thus, (A.2) implies that 

 ( ) ( )( ) ( ) ( )( )* *
0 0 0K f g f g P g ,g K x f g− = = − , 

so that ( )*x f g= . Therefore, x I∈ . Hence, we have proved that I is an interval. 

  Q.E.D. 

 

  

 In the proof of Theorem 2 below we need the following well known result: 

 

 Lemma 1 (von Neumann-Morgenstern) 

 Let f
%

 be a binary relation. The following two conditions are equivalent: 

(i) f
%

 is a preference relation satisfying Axioms 5 and 6. 

(ii) There exists a function, u : X R→ , that is unique up to a positive affine transformation such that 

the functional V : S R→  defined by 

(iii)     
k X

V(g) u(k) g(k)
∈

= ∑  

represents the preference relation. 

 

 Lemma 1 is the von Neumann-Morgenstern Expected Utility Theorem, cf. Karni and 

Schmeidler (1991), pp. 1769-70. 

 

 Proof of Theorem 2 

When the choice probabilities given in Theorem 2 hold, then Axioms 1, 3 and 4 are satisfied. 

Consider the “only if” part. Debreu (1958) proved that Axiom 1 implies that there exists a mapping f 

from S to some interval such that for 1 2 3 4g , g , g , g S∈  

 ( ) ( )1 2 3 4P g ,g P g ,g≥ , 

if and only if 

 ( ) ( ) ( ) ( )1 2 3 4f g f g f g f g− ≥ − . 

Thus, with 3 4g g=  we get 
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 ( ) ( ) ( )1 2 1 2P g ,g 0.5 f g f g≥ ⇔ ≥ , 

and ( ){ }f g , g S∈  therefore represents f
%

 on S. Consequently, f
%

 is a preference relation. Then, 

Lemma 1 and Axioms 3 and 4 imply that f (g)  must be a strictly increasing function h (say) of ( )V g . 

That is 

(A.3) ( ) ( )( )f g h V g= . 

As Axiom 1 implies Theorem 1, we can combine (A.3) and (3.1), from which we get the desired 

result. Furthermore, by Theorem 1, V(⋅) is unique up to a linear transformation. As evidently f(⋅) must 

also be unique up to a linear transformation, we obtain the restrictions on ( )h V( )⋅  stated in the 

theorem. 

  Q.E.D. 

 

 Proof of Theorem 3 

 It follows immediately that the “if” part of the theorem is true. Consider the “only if” part. 

From the theory of discrete choice (see, for example, McFadden, 1984), it follows that Axiom 2 holds 

if and only if for any B∈B  

 ( ) ( )
( )

r

s
B s

r
B

a g
P g

a g
∈

=
∑
g

, 

where ( )s sa g , g S∈ , is a positive scalar that depends solely on gs and is unique apart from a 

multiplicative positive constant. Let { }r sB g ,g= . Then 

 ( ) ( )
( ) ( ) ( ) ( )

s
s r

s r r s

a g 1P g ,g .
a g a g 1 a g a g

= =
+ +

 

Thus 

  ( ) ( ) ( )s r s rP g ,g 0.5 a g a g≥ ⇔ ≥ , 

and ( ){ }s sa g ,g S∈  therefore represents f
%

 on S. Consequently, f
%

 is a preference relation. Then, by 

Lemma 1, ( )sa g  must be a strictly increasing function of ( )sV g . Hence 

 ( ) ( )( )s slog a g h V g= , 

for some strictly increasing function h. 
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  Q.E.D. 

 

 Proof of Theorem 4 

 Note first that when choice probabilities are given as in Theorem 4, it follows readily that 

Axioms 1, 3 and 5 are satisfied. Note next that when Axiom 5 holds, if 

(A.4) ( ) ( )* *
1 2 1 2P g ,g P g ,g= , 

then 

(A.5) ( ) ( )( ) ( ) ( )( )* *
1 3 2 3 1 3 2 3P g 1 g , g 1 g P g 1 g , g 1 gα + − α α + − α = α + − α α + − α , 

for * *
1 2 1 2 3g , g , g , g , g S∈  and [ ]0,1α∈ . 

 To realize this, note that 

 ( ) ( )* *
1 2 1 2P g ,g P g ,g=  

is equivalent to 

 ( ) ( ) ( ) ( )* * * *
1 2 1 2 1 2 1 2P g ,g P g ,g and P g ,g P g ,g≥ ≤ . 

When applying Axiom 5 twice, with the inequality sign reversed the second time, we obtain (A.5). 

 Let ( )j jx V g , j 1,2,3= = , where V(⋅) is given as in Theorem 2. Then, as Axiom 5 implies 

Axiom 4, it follows that Theorem 2 holds. Accordingly, (3.2) yields 

(A.6) ( ) ( )( ) ( )( )
( )( )

1 3
1 3 2 3

2 3

h x 1 x
P g 1 g , g 1 g K

h x 1 x

⎛ ⎞α + − α
α + − α α + − α = ⎜ ⎟⎜ ⎟α + − α⎝ ⎠

%
%

%
, 

where K%  and h%  are defined by ( )K(x) K log x=%  and log h(x) h(x)=% , where h 0>%  is a strictly 

increasing function defined on R. 

 By (A.4), (A.5) and (A.6), we have that whenever *
jx , given by ( )* *

j jx V g= , *
jg S, j 1,2,∈ =  

satisfies 

(A.7) ( )
( )

( )
( )

*
11
*

2 2

h xh x
K K

h x h x

⎛ ⎞⎛ ⎞
⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

%%
% %

% %
, 

then it follows that 
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(A.8) 
( )( )
( )( )

( )( )
( )( )

*
1 31 3
*

2 3 2 3

h x 1 xh x 1 x
K K

h x 1 x h x 1 x

⎛ ⎞α + − α⎛ ⎞α + − α
⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟α + − α α + − α⎝ ⎠ ⎝ ⎠

%%
% %

% %
, 

for any [ ]0,1α∈ . Without loss of generality, we normalize V such that when ( )0g 1,0,0,...= , 

( )0V g 0= . In particular, when 3 0g g= , then 3x 0= , and it follows from (A.7) and (A.8) that 

whenever *
1x  and *

2x  are such that: 

(A.9) ( )
( )

( )
( )

*
11
*

2 2

h xh x
h x h x

=
%%

% %
, 

then 

(A.10) ( )
( )

( )
( )

*
11
*

2 2

h xh x
h x h x

αα
=

α α

%%

% %
, 

for all [ ]0,1α∈ . Next, note that (A.9) and (A.10) imply that we can write: 

(A.11) ( )
( )

( )
( )

1 1

2 2

h x h x
f

h x h xα

⎛ ⎞α
= ⎜ ⎟⎜ ⎟α ⎝ ⎠

% %

% %
, 

for some strictly increasing continuous function fα  that depends on α. To realize this, observe that 

( ) ( )1 2h x h xα α% %  depends on 1 2x ,x  solely through ( ) ( )1 2h x h x% %  because (by (A.10)) the value of 

( ) ( )1 2h x h xα α% %  is unchanged when ( )1 2x ,x  is replaced by ( )* *
1 2x ,x  when (A.9) is satisfied. 

 Let ( )1u h x= % , ( )21 v h x= % . From (A.11) we then get 

(A.12) 
( )

( )
1

1

h h (u)
f uv .

1h h
v

−

α
−

α
=

⎛ ⎞⎛ ⎞α ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

% %

% %
 

From (A.12), it follows that fα(z) is strictly increasing in z. 

 Without loss of generality, assume now that h%  is normalized such that for some g S∈ , 

( )h V(g) 1=% . This implies that u and v can attain the value one. By letting u and v successively be 

equal to one, (A.12) implies that 

(A.13) 1f (u) .
1f
u

α

α

=
⎛ ⎞
⎜ ⎟
⎝ ⎠
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Hence, by (A.12) and (A.13) 

(A.14) ( ) f (u)f uv f (u)f (v).
1f
v

α
α α α

α

= =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

(A.14) is a functional equation of the Cauchy type. As fα(u) is strictly increasing, the only possible 

solution of (A.14) is given by 

(A.15) c( )f (u) u α
α = , 

where c(α) is a function of α; see, for example, Falmagne (1985), Theorem 3.4. 

 Recall that h( )⋅%  is unique only up to a multiplicative constant. Therefore, h( )⋅%  can be 

normalized such that h(1) 1=% . From (A.11) and (A.15), with 1x x=  and 2x 1= , we obtain that: 

(A.16) ( )h x c( )h(x) h( )α = α + α , 

where h is defined on [0,1]. In the following, it will be convenient to organize the rest of the proof into 

two cases depending on whether or not c(α) is a constant. 

 

Case (i). c(α) is a constant. 

In this case (A.16) yields, by symmetry 

 ( ) ( )h x ch(x) h( ) h x ch( ) h(x)α = + α = α = α + , 

and hence 

 ( ) ( )c 1 h(x) c 1 h( )− = − α , 

which must hold for all [ ]x, 0,1α∈ . This implies that c 1= . Thus, (A.16) reduces to a well-known 

Cauchy type functional equation. Then, necessarily 

(A.17) h(x) log x= β + κ , 

where β and κ  are constants; see, for example, Falmagne (1985), Theorem 3.4. 

 

Case (ii). c(α) is not a constant. 

In this case, there is at least one α, say α0, such that ( )0c 1α ≠ . Hence, (A.16) leads to: 

(A.18) ( ) ( ) ( ) ( ) ( )0 0 0 0 0h x c h(x) h h x c(x)h h(x)α = α + α = α = α + . 
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The last equation yields 

(A.19) ( ) 0h(x) c(x) 1 b= − , 

where 

 
( )

( )
0

0
0

h
b

c 1
α

=
α −

. 

When (A.19) is inserted into (A.16) and the terms are rearranged, we obtain 

(A.20) ( )c x c( )c(x)α = α , 

for [ ], x 0,1α ∈ . The only strictly increasing solution of (A.20) is given by 

(A.21) c( ) γα = α , 

for some constant γ  (see Falmagne, 1985, Theorem 3.4). When (A.19) and (A.21) are combined we 

get 

(A.22) ( )0h(x) b x 1γ= − , 

for [ ]x 0,1∈ . Note next that (A.7) and (A.8) imply that 

(A.23) ( )( ) ( )( ) ( )( ) ( )( )* *
1 3 2 3 1 3 2 3x 1 x x 1 x x 1 x x 1 x

γ γγ γ
α + − α − α + − α = α + − α − α + − α , 

whenever 

(A.24) ( ) ( )* *
1 2 1 2x x x x .

γ γγ γ− = −  

Now, keep * *
1 2x , x  and x3 fixed and differentiate (A.23) with respect to x1 subject to (A.24). This gives 

(A.25) ( )( ) ( )( ) ( )( )
1

1 1 12 1
1 3 2 3 2 3

1 2

dx xx 1 x x 1 x x 1 x
dx x

γ−
γ− γ− γ− ⎛ ⎞

α + − α = α + − α = α + − α ⎜ ⎟
⎝ ⎠

. 

Suppose that 1γ ≠ . Then, (A.25) implies that 1 2x x= , which is a contradiction. We therefore conclude 

that 1γ = , i.e., 

(A.26) ( )0h(x) b x 1= − . 
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Recall that the normalization h(1) 0=  we adopted above was made purely for notational convenience 

so that the general form of h is 0h(x) b x= + κ , where κ is an arbitrary constant. 

 This completes the proof. Q.E.D. 

  

 Proof of Corollary 1 

 As Axiom 5 implies Axiom 4, it follows from Theorem 3 that (3.4) must hold. Consider the 

special case with { }1 2B g ,g= . In this case, (3.4) reduces to a special case of (3.2) with 

 1K(x)
1 exp( x)

=
+ −

. 

Hence, Theorem 4 applies and implies (3.6). Without loss of generality, we can set 0κ =  and 1β =  

because κ cancels and β is absorbed in the utilities { }u(k)  in the expression for the choice probability. 

 Corollary 1 represents the most satisfactory model so far, in the sense that the choice 

probabilities are characterized completely in terms of a linear preference functional (3.3) of the 

respective lottery outcome probabilities. This is a rather strong result, and it is achieved at the cost of 

strong assumptions such as Axioms 2 and 5. In the special case with binary comparisons, i.e., 

{ }1 2B g ,g= , the Luce model is not particularly restrictive. Thus, in this case, Axiom 5 is the most 

objectionable assertion because it implies the Independence Axiom (Axiom 4). 

 Q.E.D. 

 

 Proof of Theorem 5 

 Note first that it follows immediately that when (i) or (ii) in Theorem 5 hold, then Axioms 1, 

3, 4 and 6 are true. We shall next prove that (i) or (ii) is also necessary. Recall that the utility function 

u(k,w) and the transformation h(x) characterize the preferences and are independent of the lottery 

outcome probabilities. Without loss of generality, we consider lotteries with only two outcomes, that 

is, lottery j has outcome ( )j1, w  or (2,1) with probabilities ( )j jg 1, w  and ( ) ( )j j jg 2,1 1 g 1, w= −  for 

j 1,2,3,4= , with 2 4g g= , 1w w=  and 3w a,=  where a is a fixed positive number. 

 Let 

(A.27) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )j j j j j j j jV g u 1, w g 1, w u 2, g 2,1 g 1,w u 1,w u 2, u 2,λ = λ + λ = λ − λ + λ , 

for j 1,2,3,4= , and 0λ > . Clearly, ( )jV gλ  is the expected utility of lottery j when j{g }λ  represents the 

outcome probabilities. From Axioms 1, 3 and 4, Theorem 2 follows, which yields 

(A.28) ( ) ( )( ) ( )( )( )1 2 1 2P g ,g K h V g h V gλ λ λ λ= − , 
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where K is a c.d.f. that is continuous and strictly increasing, and h is strictly increasing. Similarly to 

the proof of Theorem 4, it follows that Axiom 6 implies that if 

(A.29) ( ) ( )1 1 1 1
1 2 3 2P g ,g P g ,g= , 

then 

(A.30) ( ) ( )1 2 3 2P g ,g P g ,gλ λ λ λ= , 

for 0λ > . By (A.28), and because 2 4g g= , this is equivalent to the statement that if 

(A.31) ( ) ( )1 1
1 3V g V g= , 

then 

(A.32) ( ) ( )1 3V g V gλ λ= , 

for 0λ > . If (A.31) holds, then by (A.27) 

(A.33) 3

1

g (1,a) u(1, w) u(2,1)
g (1, w) u(1,a) u(2,1)

−
=

−
. 

Let 

 ( ) ( )
( ) ( )

u 1, x u 2,1
(x)

u 1,a u 2,1
−

ψ =
−

 

and 

 ( ) ( )
( ) ( )

u 2, x u 2,1
k(x)

u 1,a u 2,1
−

=
−

. 

When (A.33) is inserted into (A.32), we obtain 

(A.34) ( ) ( )( )w k( ) (w) a k( )ψ λ = λ + ψ ψ λ − λ . 

(A.34) is a functional equation, the solution to which can be found in Falmagne (1985, p. 89) case 

(iv)). The solution is given by 

(A.35) w 1(w) c 1
ρ⎛ ⎞−

ψ = +⎜ ⎟ρ⎝ ⎠
, 

and 
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(A.36) ( ) ( )w 1
k(w) a 1

ρ −
= −

ρ
, 

where c and ρ are constants. Hence, it follows that the utility function must be of the form  

(A.37) k k
w 1u(k, w) b c

ρ −
= +

ρ
, 

for suitable constants, bk and ck. 

 Next, consider the functional form of h. Let jg , j 1,2,3,4= , represent four lotteries with  

outcomes j{(k, w )}, with probabilities g(k),k 1,2,= that are independent of j. 

 

Case (i): 0ρ ≠ . 

In this case we can write the utility function in (A.37) as 

 

     k ku(k, w) d w sρ= +  

 

where dk and sk, k = 1, 2, are constants with dk > 0.  Hence  

(A.38) ( )j jV g zλ =μ + γ , 

where ρμ = λ , j j 1 2z w (g(1)d g(2)d )ρ= +  and 1 2g(1)s g(2)s .γ = +  Let w1, w2, w3 and w4 be such that 

 ( ) ( )1 1 1 1
1 2 3 4P g ,g P g ,g≤ . 

Then, by Axiom 6 

 ( ) ( )1 2 3 4P g ,g P g ,gλ λ λ λ≤ . 

An equivalent statement of Axiom 6 is that whenever 

 ( ) ( )( ) ( ) ( )( )1 2 3 4K h z h z K h z h z≤% % % %% %  

then 

 ( ) ( )( ) ( ) ( )( )1 2 3 4K h z h z K h z h zμ μ ≤ μ μ% % % %% % , 

for 0μ > , where ( )K(x) K log x=%  and ( )log h(x) h x= + γ% . We can now apply Theorem 14.19, in 

Falmagne (1985, p. 338), which yields 
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(A.39) ( ) ( )( ) ( ) ( )1 1 2 2
1 2

a z 1 a z 1
K h z h z F

θ θ⎛ ⎞− − −
⎜ ⎟+ γ − + γ =
⎜ ⎟θ⎝ ⎠

, 

for some strictly increasing continuous function, F, where θ, a1 and a2 are independent of z1 and z2. By 

symmetry, one must have that 1 2a a= . Let 1M(x) K F(ax)−= . Hence, (A.39) yields 

(A.40) ( ) ( )
( ) ( )1 2

1 2

z 1 z 1
h z h z M

θ θ⎛ ⎞− − −
⎜ ⎟+ γ − + γ =
⎜ ⎟θ⎝ ⎠

. 

With 2z 1=  we get 

(A.41) ( ) ( )
( )1

1

z 1
h z h 1 M

θ⎛ ⎞−
⎜ ⎟+ γ = + γ +
⎜ ⎟θ⎝ ⎠

, 

and with 1z 1= , we get 

(A.42) ( ) ( )
( )2

2

z 1
h z h 1 M

θ⎛ ⎞− −
⎜ ⎟+ γ = + γ −
⎜ ⎟θ⎝ ⎠

. 

By setting z1 = z2, we realize that M(x) = −M(−x), for suitable x. Let ( )j jx z 1θ= − θ . By subtracting 

(A.42) from (A.41), (A.40) follows, and we can express the resulting equation as 

 ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2M x x M x M x M x M x− = + − = − , 

or, setting 2x x=  and 1 2y x x= − , we obtain the equivalent equation 

(A.43) ( )M x y M(x) M(y)+ = + , 

for x and y belonging to a suitable interval. As M(x) is continuous, we must have that M(x) x= β  

where β is a constant (see for example, Falmagne, 1985, Theorem 3.2). Consequently, we obtain that 

 j
j

z 1
h(z )

θ −
+ γ = β + κ

θ
, 

which means that  

 

(A.44)     (x ) 1h(x)
θ− γ −

= β + κ
θ
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for real x ,γ≥ where θ, γ and 0β >  are constants. It is enough to consider the case θ ≠ 1 , because 

when 1,=θ h(x) (x 1) ,= − − +β γ κ  which is equivalent to h(x) = x ,+β κ which is case (ii) of 

Theorem 5. Since h represents aspects of preferences it must be independent of the lottery outcome 

probabilities, and thus (A.44) implies that γ must be independent of {g(k)}. This can only happen if 

ks s=  for all k, and this yields .s=γ  Moreover, (A.44) implies that the constant s is irrelevant 

because     

  

   1 1
j j jh(V(g )) ((V(g ) s) 1) / (( z ) 1) / ,θ θ= β − − θ + κ = β μ − θ + κ  

 

from which follows that the right hand side does not depend on s. Without loss of generality we can 

therefore put s = 0.  

 

Case (ii): 0ρ = . 

In this case  

(A.45) 
( ) ( )j 1 2 j 1 2

1 2 1 2 j 1 2

j

V g (b g(1) b g(2)) log w g(1)c g(2)c

(b g(1) b g(2)) log (b g(1) b g(2)) log w c g(1) c g(2)

log log z

λ = + λ + +

= + λ + + + +

= μ +

 

where ( )1 2log g(1)b g(2)b logμ = + λ  and j 1 2 j 1 2log z (g(1)b g(2)b ) log w g(1)c g(2)c= + + + . By 

Axiom 6, it follows that whenever 

 ( ) ( )( ) ( ) ( )( )* * * *
1 2 3 4K h z h z K h z h z≤% % , 

then 

 ( ) ( )( ) ( ) ( )( )* * * *
1 2 3 4K h z h z K h z h zμ μ ≤ μ μ% %  

for 0μ > , where ( )( )*h (x) exp h log x= . By Theorem 14.19 in Falmagne (1985, p. 338), we obtain 

that 

(A.46) ( ) ( )( ) ( ) ( )1 1 2 2
1 2

a z 1 a z 1
K h log z h log z F

θ θ⎛ ⎞− − −
⎜ ⎟− =
⎜ ⎟θ⎝ ⎠

, 

for some strictly increasing and continuous function F where a1 and a2 are positive constants. Eq. 

(A.46) is completely analogous to (A.39), and it therefore follows in the same way as the analysis 

under Case (i) that 
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 ( ) z 1h log z
θ⎛ ⎞−

= β + κ⎜ ⎟θ⎝ ⎠
, 

implying that 

(A.47) 
( )xe 1

h(x) ,
θ −

= β + κ
θ

 

where 0,β >  θ and κ are constants.  

 It remains to prove that the parameter kb must be independent of k. To realize this, consider 

the special case with lottery outcome probabilities ( , ) 1,j jg j w = for j = 1, 2, 3, 4. Recall that Axiom 6 

is equivalent to (A.29) and (A.30). With ( , ) logk ku k w b w c= +  and (A.47) it follows that (A.30) 

implies that  

 

(A.48)    31 2 4
1 2 3 4 ,bb b bB B B Bθθ θ θλ − λ = λ − λ  

where 

                    exp[ ( log )].j j j jB b w c= θ +  

 

With no loss of generality, assume that 1b is the largest among { , 1,2,3,4}.jb j = Let 1.j jr b b= θ − θ By 

dividing on both sides of (A.48) by 1bθλ  we get from (A.48) that 

 

(A.49)    32 4
1 2 3 4 .rr rB B B B= λ + λ − λ  

 

Note that the , 1,2,3,jr j = are negative or zero. If only one of them is different from zero, say 3 0,r <  it 

follows that when λ  tends to infinity, (A.49) tends towards the relation 1 2 4 ,B B B= −  which 

contradicts Axiom 6.  Similar relations contradicting Axiom 6 follow if another of the { }jr is different 

from zero or if more than one of the{ }jr are different from zero. Hence, we conclude that 

2 3 4 ,r r r= = which implies that .kb b= This completes the proof. 

  Q.E.D. 

 

 Proof of Corollary 2 

 Clearly, Axiom 7 implies Axiom 6. Therefore, by Theorem 4, it follows that Theorem 5 must 

hold. Let  

 j j k k
k

x g (k)(b log w c )= +∑ , 
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for j = 1, 2, and consider the functional forms in (i) of Theorem 5. In this case, Axiom 7 implies that: 

 
( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( ) ( )

1 2
1 2

1 21 1
1 2

exp blog x exp blog x
h V g h V g

exp x exp x ,h V g h V g

λ λ β θ λ + − β θ λ +
− =

θ

β θ − β θ
= − =

θ

 

for 0λ > . The equation above implies that ( ) bexp b log 1θθ λ = λ = , which can only be true if 0θ = .          

 Consider next case (ii) of Theorem 5. In this case, Axiom 7 implies that for all positive λ  

  

      ( )( ) ( )( )1 2 1 2 k k
k

w 1h V g h V g (g (k) g (k)) b c
ρ ρ

λ λ ⎛ ⎞⎛ ⎞λ −
− = − +⎜ ⎟⎜ ⎟⎜ ⎟ρ⎝ ⎠⎝ ⎠

∑  

      ( )( ) ( )( )1 1
1 2 1 2 k k

k

w 1h V g h V g (g (k) g (k)) b c .
ρ

ρ
⎛ ⎞⎛ ⎞−

= − = − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑  

 

The last equation implies that    

    1 2 k
k

1 (g (k) g (k))b 0.
ρλ
ρ

⎛ ⎞−
− =⎜ ⎟

⎝ ⎠
∑  

The first factor in the product above can never be zero and consequently bk = b, for all k.  

 Consider finally case (iii) of Theorem 5. Similarly to the argument above, Axiom 7 implies 

that for all positive λ  

 

           1 k k 1 k k 1 k k 1 k k
k k k k

g (k)b w g (k)b w g (k)b w g (k)b w .
θ θ θ θ

θ ρ θ ρ ρ ρλ λ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

− = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑  

 

The last equation can only be true if ,0=θ  which means that h(x) = log .xβ + κ Hence the proof is 

complete. 

  Q.E.D. 

 

  

 Proof of Theorem 6 

 By applying a special case of Kolmogorov’s Theorem on the construction of random 

variables, the existence of the probability space on which the random field { }(g), g Sε ∈  is defined, 

follows. See, for example, Corollary, page 18, in Lamperti (1966). This corollary establishes the 

desired results for the case that is relevant in our context, namely when ( )sg , s 1,2,...,ε =  are 

independent and identically distributed (i.i.d). The choice probability in (3.4) follows from a well-
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known result in discrete choice theory (see, for example, McFadden, 1984). The result now follows 

from Theorem 3. 

  Q.E.D. 

 


