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Estimates for small area compositions subjected 
 to informative missing data 
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Abstract 

Estimation of small area (or domain) compositions may suffer from informative missing data, if the probability of missing 

varies across the categories of interest as well as the small areas. We develop a double mixed modeling approach that 

combines a random effects mixed model for the underlying complete data with a random effects mixed model of the 

differential missing-data mechanism. The effect of sampling design can be incorporated through a quasi-likelihood sampling 

model. The associated conditional mean squared error of prediction is approximated in terms of a three-part decomposition, 

corresponding to a naive prediction variance, a positive correction that accounts for the hypothetical parameter estimation 

uncertainty based on the latent complete data, and another positive correction for the extra variation due to the missing data. 

We illustrate our approach with an application to the estimation of Municipality household compositions based on the 

Norwegian register household data, which suffer from informative under-registration of the dwelling identity number. 
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1. Introduction 
 

Small area (or domain) population counts cross-classified 

by various social-economic characteristics are increasingly 

demanded for fund allocation, regional planning and social-

economic research. Purcell and Kish (1980) outlined the so-

called “Structure preserving estimation” (SPREE), which 

operates by modifying the small area estimates in a way so 

that they vary from one area to another in accordance with 

the variation that exists in another known auxiliary table of 

the same dimension. Typically the auxiliary table is obtained 

from a previous census, or some administrative register 

containing similar information. Zhang and Chambers (2004) 

developed a generalized SPREE (GSPREE) approach. Both 

fixed effects and random effects mixed models were 

introduced, and the restricted log-linear model underlying 

SPREE was shown to be a special case. This provides means 

for reducing the potential bias of the traditional SPREE 

estimates. We refer to Ghosh, Natarajan, Stroud and Carlin 

(1998) and Longford (1999) for alternative hierarchical and 

empirical Bayes approaches to this type of data.  

In this paper we extend the GSPREE approach to 

situations subjected to missing data. This can be useful in 

sample surveys where nonresponse is unavoidable. We 

concentrate on small area compositions that can be arranged 

in a two-way table, where one of the two dimensions refers 

to the small areas and the other refers to the categories of 

interest. The cell counts summarize to a fixed area total that 

may or may not be known. For instance, each person 

between 16 and 74 years of age can be classified according 

to the labour force status “employed”, “unemployed” and 

“not in the labour force”. The sum of the three counts inside 

a small area is the total number of persons between 16 and 

74 years of age within this area.  

In the context of small area composition we say that the 

missing-data mechanism is informative provided it varies 

across the categories of interest. As such it is also not 

missing-at-random (Rubin 1976). In addition, the overall 

rate of missing differs across the areas. Differential 

missingness as such leads to distortion of the underlying 

complete data, and bias if the estimation is carried out as if 

the observed data were complete. We propose a double 

mixed modeling approach that combines the random effects 

mixed model for the underlying complete data with a 

random effects mixed model of the missing-data 

mechanism. The double-smoothing approach is outlined in 

Section 2.  

It should be noted that national statistical offices that 

conduct large scale surveys will have accounted for missing 

data by weighting adjustments or imputation. This, how-

ever, will have been done at levels that are significantly 

higher than the small areas, and will be for variables that do 

not necessarily correspond to those of interest for the small 

areas. When available, the adjusted totals can be 

incorporated into the GSPREE as marginal totals for 

iterative proportional fitting (IPF). But modeling of the 

differential probabilities of missing across the small areas 

will generally remain a matter of interest.  

It should also be noticed that informative missing data as 

such makes it less straightforward to assess the potential 

bias of any estimation approach. SPREE may be biased on 

two accounts: (i) the underlying restricted log-linear 

assumptions are likely to be unrealistic, (ii) direct IPF may 

fail to account for the differential probabilities of missing 
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adequately. The proposed double mixed modeling approach 

deals with problem (i) by GSPREE modeling of the 

underlying complete data, and it deals with problem (ii) by 

introducing a more flexible missing-data model, as we shall 

discuss in Section 2.2. Nevertheless, bias is likely to persist 

to a certain extent. Since the estimation of model parameters 

and random effects is more complicated under the double 

mixed modeling approach, alternative estimation methods 

that are able to preserve the computational simplicity of 

SPREE, while making more adequate adjustment for 

informative missing data, are worth investigating in future.  

When it comes to the assessment of estimation un-

certainty, Booth and Hobert (1998) argued for the 

conditional mean squared error of prediction (CMSEP) 

given the observed data. We extend their approach and 

derive approximate CMSEP in the current multivariate 

incomplete-data situation. This results in a three-part 

decomposition of the CMSEP, corresponding to a naive 

prediction variance, a positive correction that accounts for 

the hypothetical estimation uncertainty of the parameters 

based on the latent complete data, and another positive 

correction for the extra variation due to the missing data. 

The details are given in Section 3.  

Estimation procedures for the parameters, the CMSEP 

and the small area compositions are described in Section 4. 

In Section 5 we apply our approach to derive estimates of 

the Municipality household compositions based on the 

Norwegian household register, which suffers from infor-

mative under-registration of the dwelling identity number 

(DIN). A summary is given in Section 6. 

 
2. Double mixed modeling  

2.1 Random effects mixed model in the complete-

data case  
2.1.1 Models for finite population  

The small area counts can be arranged in a two-way 

contingency table, denoted by { },akX=X  where 

1, ,a A= …  indexes the small areas and 1, ,k K= …  the 

categories of interest. The interest of estimation is the 

within-area proportions given by  

1

K
X

ak ak a ak aj
j

X X X X.
=

θ = / = ∑  

referred to as compositions since 1.X
k ak∑ θ =  Typically 

under the GSPREE approach we assume that the marginal 

totals  { }aX .  and { },kX .  also known as the allocation 

structure, are either known or can be reliably estimated, in 

which case estimating { }X

akθ  is equivalent to estimating 

{ }.akX  For simplicity we then make no distinction between 

counts and compositions in the exposition. Otherwise, 

without the allocation structure, one can still use our 

approach to estimate { }X

akθ  but not { }.akX   

Assume that we have available an auxiliary table of the 

same dimension, denoted by 0 0{ },akX=X  and the 

corresponding within-area proportions 0{ }.akθ  To model 

1( , , )X X X T

a a aKθ = θ θ…  we use the multinomial standardized-

log (mslog) link function, given by  

1

1

log log
K

X X X

ak ak aj
j

K −

=

µ = θ − θ∑  (1) 

and similarly for 0

akµ  and 0 .akθ  Zhang and Chambers (2004) 

introduced the following generalized linear structural mixed 

model (GLSMM) 

0X

ak k ak akvµ = λ + βµ +  

where (2) 

1 1

0 and 0
K K

k ak
k k

v
= =

λ = =∑ ∑  

and (1) 2( , , )Ta a aKv v=v …  assumes a multivariate normal 

distribution with covariance matrix ( ),G G= δ  where δ  

contains the variance parameters. Notice that there is no 

area-specific term in (2) because 0 0.k kak akµ∑ ∑= µ =  The 

term “structural” refers to the fact that this is a model of the 

finite-population parameters { }X

akθ  directly, although the 

emphasis is not common in the small area estimation 

literature. For instance, the well-known Fay-Herriot model 

(Fay and Herriot 1979) is “structural” in the same sense.  

There is an important interpretation of the model (2) in 

terms of the log-linear interactions of { }akθ  due to the 

choice of the link function (1), i.e.,  

X X

ak k akµ = α + α  (3) 

where by the standard theory of log-linear models (e.g., 

Agresti 2002), we have  

0log log log X X X X X

ak a ak a k akX X .= + θ = α + α + α + α  

for 1

0 ( ) log ,X
a k akAK X−
,∑α =  and 1 logX

ka akK X− ∑α = −  

0 ,Xα  and 1

0log ,X X
ak akA X− ∑α = − α  and X

akα =  

0log ,X X X

ak a kX − α − α − α  such that X X
a ka k∑ ∑α = α =  

0.X X
a kak ak∑ ∑α = α =  We refer to (3) as the log-linear 

identity, and we refer to the log-linear parameters X

akα  as 

the (first-order) interactions of the compositions X

akθ  as well 

as the counts .akX  Similar identity holds for 0 .akµ  Zhang 

and Chambers (2004) showed that the GLSMM is 

equivalent to the following proportional interactions mixed 

model (PIMM)  

0 1 2( ).X
ak ak ak pv O A− /α = βα + +  (4) 

The parameters kλ ’s in (2) do not entail any model 

restriction beyond the PIMM, and they do not affect the 
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interactions. The parameter β  is called the proportionality 

coefficient. Clearly, SPREE based directly on the asso-

ciation structure 0{ }akX  amounts to setting 1β ≡  and 

0.akv ≡  We therefore refer to the model (2) as a GSPREE 

model, which contain both fixed and random effects 

extensions of the SPREE model. 
 
2.1.2 Model for sample  

To complete the model specification we assume sample 

classifications { }.akx=x  Let 

1 1( , , ) ( ( ), , ( ))T T

a a aK a K at t t t= =t x x… …  

be such that ( ) ( ) ,X

ak ak akE t E t| = | = θv X  where { }.akv=v  

The expectation is typically with respect to the sampling 

design. However, it can also be taken under a suitable model 

of the sampling distribution, such as a multinomial model 

for ax  provided simple random sampling within each area. 

We therefore make no distinction in the notation.  

We assume that at  is independent of a′t  for ,a a′≠  and 

put  

1 1( ) ( ) and Cov( , ) ( )ak k a ak aj kj aV t t t= ν ω = ν ωX X  (5) 

where ( )kω ⋅  and ( )kjω ⋅  are specified variance and 

covariance functions, and 1ν  is the dispersion parameter 

that may or may not be known. This is essentially the quasi-

likelihood set-up for dependent data (McCullagh and Nelder 

1989). The dependence on aX  allows us to incorporate the 

sampling design effect, in which case the expectations in (5) 

may be evaluated with respect to the sampling distribution. 

This is an important reason why we do not directly assume 

that the distribution of at  belongs to the exponential family, 

as e.g., in the generalized linear mixed models (Breslow and 

Clayton 1993). 
 
2.1.3 Parameter estimation  

Zhang and Chambers (2004) outline an iterative 

weighted least square (IWLS) algorithm for the GLSMM 

(2), which is a variation of the PQL approach (Schall 1991; 

Breslow and Clayton 1993). Let 1( , , ) .X X T

a a aKµ = µ µ…  The 

GLSMM (2) can formally be given by  

(1)( )a a a ag H Bµ = θ = ζ + v  

where ( )ag θ  is the mslog link function, and ζ =  

2( , , , ) ,TKλ λ β…  and (1) 2( , , ) .Ta a aKv v=v …  The K K×  

design matrix aH  and ( 1)K K× −  design matrix B are, 

respectively,  

0 1
1

1 1

[ ] and

T

K
a K K a

K K

H B B
I

 
 −
 × −   − × − 

−
= µ =

1
 

where 1 is a vector of 1 and I is an identity matrix. Define 

the working variables  

def.

and ( )X

a a a a a a a a aH B Q= µ + = ζ+ + = − θz e v e e t  (6) 

where X X

a aQ = ∂µ /∂θ  is the Jacobian matrix of partial 

derivatives. Denote by aR  the conditional covariance 

matrix of at  given X

aθ  defined by (5). Under the PQL 

approach we assume that ae  has an approximate multi-

variate normal distribution with covariance matrix ,TaQR Q  

and apply standard methods for linear mixed models 

(LMM) to the linearized data (6). Variants of the PQL 

approach differ in the estimation of the variance parameters 

.δ  The details are omitted here. 
 
2.1.4 On model hierarchy  

The GLSMM (2) is specified at the finite population level. 

More generally, we may consider the finite population { }akX  

to be randomly generated from an infinite super-population. 

Let akθ  be the within-area probability that a unit of the super-

population belongs to the cell ( , ),a k  where 1.k ak∑ θ =  

Conditional on ,ka akX X. ∑=  the within-area counts 

1( , , )Ta aKX X…  follow the multinomial distribution with 

parameters 1( , , ) .Ta aKθ θ…  A multinomial standardized-log 

mixed model (MSLMM) of { }akθ  is given by 

0

ak k ak akvµ = λ + βµ +  

where (7) 

1 1

0 and 0
K K

k ak
k k

v
= =

λ = =∑ ∑  

where akµ  is given by aθ  through the mslog link function. 

Unlike the GLSMM (2), the equation (7) defines a 

regression model. There are then three different hierarchy 

one may choose from in the sample survey situation:    
1. Assume the GLSMM (2) for the finite population 

and the quasi-likelihood model (5) for the sample, 

yielding the GSPREE approach of Zhang and 

Chambers (2004).    
2. Assume the MSLMM (7) for the super-population 

and model sample data at  based on aθ  directly, 

yielding a purely model-based two-level approach.    
3. Assume the MSLMM (7) for the super-population, 

and assume that the finite population totals aX  

follow the multinomial distribution given ,aθ  and 

assume the quasi-likelihood model (5) given ,aX  

yielding a general three-level model.  
 

Provided the finite population is large, it makes little 

difference in practice to adopt the GSPREE approach, in 
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which case one does not have to deal explicitly with one 

extra level of hierarchy. But the distinction between (2) and 

(7) becomes necessary if the areas are so small that the 

stochastic variation in aX  is not negligible compared to the 

sampling variation in ax  (or at ). In our application later, 

we have register data that would have given us the 

interested population counts { }akX  had they not suffered 

from missing data. And the small area level of aggregation 

is so detailed that the stochastic variation in aX  can not be 

ignored. We therefore adapt the GSPREE approach by (a) 

adopting the MSLMM (7) instead of the GLSMM (2), and 

(b) modeling aX  as a ‘sample’, albeit a very large one, 

from the super-population directly.  
 
2.2 A random effects mixed model of missing data  

Missing data add another level of stochastic variation on 

top of the underlying complete data. In the exposition 

below, we consider the sample counts { }akx  as the 

complete data, which is the most common situation in 

practice. Our application later in Section 5 can be viewed as 

a special case where .=X x   

Denote by 1( , , )Ta a aKy y=y …  the observed cell counts, 

for 1, , .a A= …  Suppose that, conditional on akx  and a 

random effect ,ab   

( )ak ak a ak akE y x b x p| , =  

and (8) 

2( ) (1 )ak ak a ak ak akV y x b c p p| , = ν −  

where akc  is a known constant, and 2ν  is the dispersion 

parameter. We assume that aky  is independent of ajy  for 

,k j≠  i.e., missing data are independent from one cell to 

another. Let the units in the complete sample cell ( , )a k  be 

indexed by 1, , .aki n= …  Let , 1i akr =  if the thi  unit is 

observed, and 0i akr , =  if it is missing. The parameter akp  

is the assumed probability of 1i akr , =  inside cell ( , ).a k  To 

see this, let ,i akx  be the contribution of the thi  unit to ,akx  

i.e., 1 ,akn
iak i akx x= ,∑=  such that aky =  1

akn
i i ak i akr x= , ,∑  and  

1

1 1

( , , , )

( ) ( 1 ) .

ak

ak ak

ak ak n ak a

n n

i ak i ak a i ak i ak a ak ak
i i

E y x x b

x E r b x P r b x p

, ,

, , , ,
= =

| =

| = = | =∑ ∑

…

 

Notice that akp  does not depend on the value of ,i akx ,  but 

only the position of the unit in the two-way table. We 

assume that akp  depends on ab  through the logistic link 

function given by  

log( (1 ))ak ak ak k ap p bη = / − = ξ +  

where (9) 
2(0, ).ab N σ∼  

The fixed effects kξ ’s allow the probability of missing to 

depend on the categories of interest, the area-level random 

effect ab  allows it to vary across the areas in addition.  

Obviously, under the assumptions (8) and (9), the 

missing data cause bias in the estimates of the kλ ’s, if the 

observed table y is treated as if it were complete. Moreover, 

it distorts the estimation of the first-order interactions 

{ }.X

akα  We have,  

log ( ) where log(1 exp( )).ak k a ak ak k ap b b= ξ + − γ γ = + ξ +  

The first-order interactions of { }akp  are then given by 

( ),p

ak akak a k. . ..α = − = − γ − − +γ γ γ γɶ  for the row and 

column means 
a.γ  and 

k.γ  and the overall mean ...γ  These 

are non-zero unless .kξ = ξ  By (8) the interactions of the 

expected observed table are given by  

( , )E x p x x

ak ak ak ak akak

|α = α + α = α − ≠ αγy x b
ɶ  

such that the estimates of { }X

akα  will be biased if y is treated 

as x.  

It is worth noting that, as far as the estimation of the 

interactions is concerned, it is in principle possible to treat 

the observed table y  as if it were the complete table x  

under a particular missing-data model given by  

log .ak k ap b′ ′= ξ +  (10) 

This is because the first-order interactions of { }akp  are all 

zero under (10), in which case we have ( ) .E

ak ak

|α = αy x x  

Disregarding the range restrictions, the assumption (10) 

defines an informative missing-data mechanism where the 

probability of missing varies across the categories of 

interest, while the area effect modifies all the within-area 

probabilities of missing by a factor exp( ),ab′  such that 

1 exp( ) exp( )K
j jak aj k jp p=∑ ∑′ ′/ = ξ / ξ  remains constant. The 

model (9), however, is more flexible since it allows the 

random effects to affect the interactions. Both (9) and (10) 

will be examined in Section 5.  

Finally, we notice that allowing for component-wise 

random effects in the model (9) may cause identification 

problems. For instance, assume simple random sampling 

from the finite population, in which case the interactions of 

the expected complete table are given by ( ) .E X

ak ak

|α = αx X  

With component-wise akb  in the model (9) we have 

log ,ak k ak akp b= ξ + + γ  where log(1 exp( )).ak k akbγ = + ξ +  

It follows from (4) and (8) that the interactions of the 

expected table ( , )E |y x b  is given by 0

ak akvβα + +  

.ak ak
b − γɶ  But there is no information in the observed data 

to distinguish between the two random effects akv  and .akb  
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3. Conditional mean squared errors of prediction 
 

We adopt the approach of Booth and Hobert (1998) and 

use the CMSEP as a measure of the uncertainty in 

prediction. Like them we consider the CMSEP on the 

linear-predictor scale. In vector form the akµ ’s in (1) belong 

to the following class of linear functions  

a a a aH Bµ = ζ + v  (11) 

where aµ  is the area-specific vector of linear predictors, 

and ζ  is the vector of fixed effects, and av  is the vector of 

area-specific random effects, and aH  and aB  are the 

corresponding design matrices. All the quantities have been 

specified in (6) for the GLSMM (2), where we actually have 

.aB B=  But we shall adopt the slightly more general 

formulation (11) in the following. Let ζ̂  and ˆ av  be, 

respectively, the estimates of ζ  and av  based on obser-

vations subjected to missing data, denoted by ay  for 

1, , .a A= …  The CMSEP of ˆ ˆˆ a a aa
H B= ζ +µ v  is defined 

as  

CMSEP {( )( ) }.ˆ ˆ
T

a a a aa a
E= − µ − µ |µ µ y  

We introduce first a decomposition through the 

hypothetical best predictor (BP) based on ,ax  given by 

a
=µɺ ( , , ) ( , , ),a a a a a aE H B Eµ | ζ δ = ζ + | ζ δx v x  when the 

parameters are known. We have  

CMSEP { (( )( ) ) }

{( )( ) }ˆ ˆ

{ Cov( ) }

{( )( ) }ˆ ˆ

T

a a a a aa a

T

aa a a a

T

a a a a a a

T

aa a a a

E E

E

E B B

E

= − µ − µ | |µ µ

+ − − |µ µ µ µ

= , | |

+ − − |µ µ µ µ

x y

y

v v x y

y

ɺ ɺ

ɺ ɺ

ɺ ɺ

 

because aa
− µµɺ  and ˆ

a a
−µ µɺ  are conditionally independent 

of each other given :a µ − µx ɺ  depends on the random 

effects ,av  whereas ˆ
a a
−µ µɺ  depends on random variations 

in the other areas. Next, for the second term on the right-

hand side, we introduce a decomposition through the 

hypothetical estimated best predictor (EBP) based on the 

complete data x, denoted by ,aa aa
H B v= ζ +µ ɶɶ ɶ  where 

( , )ζ δɶ ɶ  are the parameter estimates based on x, and 

( , , ).a a av E= | ζ δv x ɶ ɶɶ  We have  

{( )( ) } {( )( ) }ˆ ˆ ˆ ˆ

{ (( )( ) )}

{ (( )( ) )}ˆ ˆ

{( )( ) }

{ (( )( ) )}.ˆ ˆ

T T

aa a a a a a a a

T

a a a a

T

a a a a

T

a a a a

T

a a a a

E E

E E

E E

E

E E

− − | ≈ − −µ µ µ µ µ µ µ µ

= − − |µ µ µ µ

+ − − |µ µ µ µ

= − −µ µ µ µ

+ − − |µ µ µ µ

y

x

x

x

ɺ ɺ ɺ ɺ

ɶ ɺ ɶ ɺ

ɶ ɶ

ɶ ɺ ɶ ɺ

ɶ ɶ

 

The first approximation is correct to the order of 1( ),pO A−  

and can be justified as the number of areas tends to infinity. 

Intuitively, this makes sense if the information from any 

single area is asymptotically negligible compared to the 

information from all the other areas together. Next, the 

decomposition follows because 
a a
−µ µɶ ɺ  and ˆ

a a
−µ µɶ  are 

independent of each other given x: the former is a constant 

given .x  

In this way, we obtain an approximate CMSEP with a 

three-part decomposition  

1 2 3CMSEP ( ; , ) ( , ) ( ; , , )a a a a ah h h≈ ζ δ + ζ δ + ζ δ ψx x ɶ ɶ  

where ψ  contains the parameters of the conditional 

distribution of  ay  given ,ax  and  

def.

1 ( ; , ) Cov( , ) T

a a a a a a ah B Bζ δ = |x v v x  (12) 

def.

2 ( , ) {( )( ) }Ta a a a a
h Eζ δ = − −µ µ µ µɶ ɺ ɶ ɺ  (13) 

def.

3 ( ; , , ) {( )( ) }.ˆ ˆ
T

a a a a a
h Eζ δ ψ = − − |µ µ µ µx xɶ ɶ ɶ ɶ  (14) 

The three h-terms correspond, respectively, to a conditional 

prediction variance due to the random effects, a positive 

correction that accounts for the uncertainty in the estimation 

of the parameters based on the latent complete data, i.e., the 

sampling variation, and another positive correction for the 

extra variation due to the randomness in the missing data. 

Alternative approximations are possible. For instance, one 

might use { Cov( , ) }T

a a a a a aE B B| |v v x y  instead of 1 ,ah  or 

replace 3ah  with the unconditional {( )ˆ
a a

E −µ µɶ  

( ) }.ˆ
T

a a
−µ µɶ  The expressions (12) - (14) are chosen 

because they produce a clean separation between the 

sampling variation in the complete data and the extra 

variation owing to the missingness given the complete data. 

The difference from the CMSEP in the complete-data case 

(Booth and Hobert 1998) comes down to the third term 3 .ah  

 
4. Estimation 

 
4.1 Parameter estimation  

The structure of the data suggests an iterative procedure 

similar to the EM algorithm (Dempster, Laird and Rubin 

1977). Given the current values of the parameters and the 

random effects, we calculate at the E-step the conditional 

expected complete two-way table ( , ).E |x y m  At the M-

step we estimate the two random effects mixed models 

separately by some maximum penalized quasi-likelihood 

(MPQL) procedures. Iterations between the two yield an 

EMPQL algorithm.  
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For the E-step, let , 1i akI =  if the sample unit i belongs to 

the th( , )a k  cell, and , 0i akI =  otherwise. The value is 

observed provided , 1,i akr =  but is unknown if , 0.i akr =  Let 

akθ  be the generic compositions, depending of the adopted 

model. Suppose that  

,[ 1 ]i ak ak akP I i s d= | ∈ = θ  

where s denotes the complete sample, and akd  is some 

known constant which accounts for the eventual sampling 

design effect. For example, simple random sampling implies 

that 1akd =  for all ( , ).a k  An example of 1akd ≠  is when 

the sampling units are households, which are selected by a 

probability proportional to the household size. Let akm =  

,; 0 , , .
i aki rak ak i ak i akx y I x=∑− =  We have ( , )ak a aE x m .| =y  

( ),ak ak ay E m m .+ |  where  

{ }

0

( ) ( 0)

[ 1 0]

(1 ) (1 ) .

i ak

ak a i ak i ak i ak
i r

a i ak i ak

a ak ak ak aj aj aj
j

E m m E I r x

m P I r

m p d p d

,

. , , ,
; =

. , ,

.

| = | =

= = | =

= − θ − θ

∑

∑

 

(15)

 

Having thus ‘completed’ the sample data, we move to the 

MPQL-step, where we apply the IWLS algorithm outlined 

in Section 2.1.3, respectively, to the complete-data model 

and the missing-data model conditional on the complete 

data.   
4.2 Estimation of CMSEP  

Evaluating the CMSEP at the estimated parameter values 

yields a plug-in estimate of the CMSEP. Of the three h-

terms, 1ah  is of the order (1),pO  whereas both 2ah  and 3ah  

are of the order 1( ),pO A−  when the number of areas tends 

to infinity while the within-area sample sizes remain 

bounded. The results of Booth and Hobert (1998) and 

Prasad and Rao (1990), obtained in the univariate complete-

data case, suggest that the bias in the plug-in estimate 1
ˆ
ah  is 

of the same order as 2
ˆ
ah  and 3

ˆ .ah  These authors developed 

second-order correction through the Taylor expansion. We 

do not pursue such second-order asymptotics in this paper. 

Approximate expressions of the h-terms that accompany the 

EMPQL algorithm are given below. 

Take first 1ah  by (12). Based on the linearized data (6), 

the covariance matrix Cov( , )a a a|v v z  does not depend on 

either az  or  .ax  This is convenient because we then have  

1

1

( ; , ) Cov( , )

( )

T

a a a a a a a

T T

a a a a a

h B B

B G GB V B G B
−

ζ δ ≈ |

= −

x v v z
 

(16)

 

where T T

a a a aV B GB QR Q= +  is the marginal covariance 

matrix of .az   

Next, take 2ah  by (13). Let ( , ) .T T Tφ = ζ δ  Expanding φɶ  
around φ  yields ( ),aa a

′− ≈ µ φ − φµ µ ɶɺɶ ɺ  where ,a a
′µ = ∂µ /∂φɺ ɺ  

such that  

2 Cov( , ) .Ta a ah ′ ′≈ µ φ φ µɶ ɶɺ ɺ  (17) 

Based on (6) we derive ,aa aa
H D= ζ +µ uɺ ɺ  where 

1T

a a a aD B GB V −=  and .a a aH= − ζu zɺ  Denote by I the 

identity matrix. The partial derivatives in 
a
′µɺ  are given by  

( )a aa
I D H∂ /∂ζ = −µɺ  

and 
1( ) ( ) ( ) T

j a j a a a j a a aa
D I D B G B V −∂ /∂δ = ∂ /∂δ = − ∂ /∂δµ u uɺ ɺɺ  

where jδ  is the thj  variance parameter in the covariance 

matrix ( )G δ  of .av  To obtain Cov( , ),φ φɶ ɶ  suppose that the 

PQL approach is based on the following quasi log-

likelihood  

a

a

=∑ℓ ℓ  

and 

11 1
log ( ) ( ).

2 2

T

a a a a a a aV H V H−= − | | − − ζ − ζz zℓ  

The so-called sandwich formula yields then  

1 1
2 2

2 2
1

Cov( , ) .

TA
a a

a

− −

=

    ∂ ∂ ∂ ∂  
φ φ = − −      ∂φ ∂φ∂φ ∂φ       

∑
ℓ ℓℓ ℓ

ɶ ɶ  

Finally, take 3ah  by (14). Similarly as above we have 

( )a a a aa
I D H D= − ζ +µ zɶɶ ɶ ɶɶ  evaluated at ,φ = φɶ  and ˆ

a
=µ  

ˆˆ ˆ( ) ˆ ,a a a aI D H D− ζ + z  where ˆ az  is derived from ˆ
a =t  

ˆ( )at x  for ˆ ˆˆ ( , ; , ).a a a aE m .= | φ ψx x y  Expanding φ̂  around 

φɶ  and retain only the leading term, we obtain  

ˆ ( )a a a a a a aDµ − µ ≈ µ − µ = −z z
⌣ ⌣ɶɶ ɶ ɶ  

where ( ) ,a a a aa
I D H D= − ζ +µ z

⌣⌣ ɶɶ ɶ  and az
⌣

 is derived from 

( )a a=t t x
⌣ ⌣

 for ˆ( , ; , ).a a a aE m .= | φ ψx x y
⌣ ɶ  That is, we ignore 

the terms involving ˆ .φ − φɶ  The remaining variation in az
⌣

 is 

due to the estimation of the missing-data model alone. 

Expanding ψ̂  around ,ψ  we obtain, by the chain rule,  

3
ˆ ˆCov( , ) T

a a ah C C≈ ψ ψ | x  

and (18) 

a a a a a
a a

a a a a

C D

φ=φ,ψ

 ∂ ∂ ∂ ∂ ∂η      
=       ∂ ∂ ∂ ∂η ∂ψ      

z t x p

t x p
ɶ

 

where we assume that ˆ( )E ψ | = ψx  and [ ] .a aE | =z x z
⌣

ɶ  

Whereas the sandwich formula yields ˆ ˆCov( , )ψ ψ | x  under 

the conditional model of y given x, similarly to Cov( , )φ φɶ ɶ  

above.  
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4.3 Estimation of small area compositions  
Suppose first that the GLSMM, defined by (2) and in 

combination with (5), has been estimated, upon which we 

obtain ,ˆ
X

aµ  and ˆ exp( ) exp( ).ˆ ˆ
X XX

jak ak aj∑θ = /µ µ  

When the marginal totals aX .  and kX .  are known, it 

makes sense to apply the IPF, starting with the estimated 

table ˆ{ }.X

akθ  The difference from SPREE, which starts with 

the auxiliary table 0,X  is that the interactions have been re-

estimated. On convergence we obtain the estimated small 

area counts, denoted by ˆ ˆ{ },akX=X  and the corresponding 

compositions, denoted by 
ˆ ˆ ˆ ,
X

jak ak ajX X∑θ = /  which are 

different  from  the  direct  model  estimates  ˆ X
akθ  that have 

provided the starting values for the IPF.  

Often in practice, while the area totals { }aX .  may be 

known, the marginal totals { }kX .  need to be estimated 

based on the survey data available, separately using a 

method that is appropriate for the aggregated level. The IPF 

is still worth considering as long as these estimated marginal 

totals are judged to be more reliable and/or less biased than 

the aggregated small area estimates ˆ .X
a a akX .∑ θ  The reason 

is that the estimated interactions ˆ X

akα  are preserved in the 

IPF, i.e., 
ˆ

.ˆ
X X

akakα = α  By the log-linear identity (3), the 

difference between the direct model estimate ˆ X
akθ  and final 

estimate X̂

akθ  is due to the difference in the estimates of the 

main effects { }.X

kα  Thus, less biased estimates of { }kX .  

are expected to yield less biased estimates of { }Xkα  and, 

thereby, less biased estimates of { }.X

akθ  

Suppose next that the MSLMM (7) combined with (5) 

have been estimated. We may express the interest of 

estimation, i.e., { },X

akµ  in terms of az  defined as  

X x X

a a a a a a a a a a

X x X X x X

a a a a a

H B H B

H

|

| |

= ζ + + = ζ + + +

= µ + = ζ + +

z v e v e e

e v e

 

where ( )X X

a a aQ= θ − θe  and ( ).x X X

a a aQ| = − θe t  In 

accordance we have ,X x X

a a aR R R |= +  where X

aR =  

Cov( , )X X

a a aθ θ | θ  and Cov( , ).x X X

a a a aR | = | θt t  It follows 

that  

1ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( ).ˆ
X T X T

a a a a a a aa
H B GB QR Q V H−= ζ + + − ζµ z  (19) 

The rest follows as above where X

aµ  is estimated directly 

under the GLSMM.  
 

5. Example: Register-based small area 

      household compositions  
5.1 Register household data  

Register-based household data have undergone consid-

erable development in Norway. One of the goals is to 

produce detailed household statistics that traditionally are 

only available from the census. For this purpose the 

registration of a unique dwelling identity number (DIN) was 

initiated in the last census in 2001. The work is not yet 

completed, and the DIN is still missing for about 6% of the 

people residing in the country. The rate of missing is 

differential as it varies over the household type as well as 

across the Municipalities, the latter of which is a reflection 

of the overall effort of the local administration regarding the 

registration of the DINs.  

A household register can be complied in a year after the 

census based on a number of data sources. The most 

important ones include the central population register 

(CPR), the DIN-register and the census household file 

(CH01). Even without the DIN a register household can be 

compiled based on the other information available. But the 

result suffers from informative under-registration of the 

DIN. For instance, a typical source of bias is cohabitants 

living without children, because such a couple appear as two 

single-person households in the CPR, unless they have 

already been identified as a household in the CH01. 

Nevertheless, historic as well as cross-country comparisons 

suggest that the national totals are acceptable. A more 

urgent problem lies on lower levels of aggregation. For 

example, changes from the census in 2001 are unlikely large 

in certain Municipalities, including the capital city Oslo 

where the increase in the proportion of single-person 

households is almost three times as high as it is in the rest of 

the country - see top-left plot in Figure 1. And a large part of 

the problem in Oslo can be explained by a combination of 

high proportion of cohabitants living without children and 

low DIN-registration rate (indeed, the lowest in the 

country).  

 
5.2 Set-up of data 
 

We shall illustrate our approach using these register 

household data. The target population contains all persons 

living at multiple-dwelling addresses at the beginning of 

year 2005, who do not belong to households of married 

people or registered partners; the latter household types are 

excluded because the DIN is not critical for compiling the 

households of these people. There is no distinction between 

the finite population and the sample in this case, i.e., .=X x  

The households that have registered DINs are treated as the 

‘observed’ sample y, whereas the households that do not 

have registered DINs are viewed as the missing. In this way 

the population consists of 713,387 persons, of which 

558,136 persons have registered DINs. The overall rate of 

missing is about 22%.  
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Figure 1 Difference between estimates of proportion of Single-person households and census counts in 2001 against log 

Municipality size: Register households (top-left), Households with registered DINs (top-right), SPREE based on 

census (middle-left), DirSPREE based on households with registered DINs (middle-right), SupGSPREE of 
super-population proportions (bottom-left), and ImpGRSREE of imputed finite-population proportions 
(bottom-right). The dashed line marks no difference 

 

 

Let the Municipalities be the small areas of this study, 

where 433.A =  The households are classified into 4 

categories: 1k =  for “Single-person”, 2k =  for “Single-

parent”, 3k =  for “Cohabitants”, and 4k =  for “Other”, 

i.e., 4.K =  Let i index the households, and let ix  be the 

number of persons living in the household. Let ak akX x=  

be the number of persons in the th( , )a k  cell in the 

population, and let aky  be the corresponding ‘observed’ cell 

count. Let akN  be the number of households in the th( , )a k  

cell, and let akn  be the corresponding number of ‘observed’ 

households. Notice that only the total number of persons is 

known in each area, but not the total number of households. 

However, provided cell-specific probability of DIN-

registrations, an estimator of akN  based on ˆ
akX  is given by 

ˆ ˆ .ak ak ak akN n X y= /  We shall therefore concentrate on the 

estimation of akX  here.  

Let 0{ }akX  be the corresponding cell counts from the last 

census in 2001. Let ak ak akX y m′ ′= +  be the register counts 

in 2005, where akm′  is the number of persons without the 

DIN. A register household can be considered as a form of 

imputed household that may suffer from informative 

missing of DINs. The register area total is correct, i.e., 
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,a aX X. .′ =  and the national totals { }kX .′  are considered 

acceptable. The question is whether estimates of { }akX  can 

be derived, based on the ‘observed’ y and the allocation 

structure { }aX .  and { },kX .′  that better accounts for the 

differential missing DINs.   
5.3 Set-up of model  

Scatter plots of the register first-order interactions { }X

ak

′α  

against the census interactions 0{ }akα  provide motivation for 

the PIMM (4). To chose between the GLSMM (2) and the 

MSLMM (7), we look at the difference between the register 

proportion X

ak

′θ  and the corresponding census proportion 
0 ,akθ  i.e., 0 ,X

ak ak

′θ − θ  plotted against log :aX .  the case of 

1k =  is shown in the top-left plot of Figure 1. Clearly, the 

variance of the difference increases as aX .  decreases, and is 

not constant of .aX .  Notice that we are dealing with 

estimation at a very low level of aggregation here, where 

e.g., the median value of all { }akX ′  is only 70. We therefore 

adopt the model (7) for ,akθ  the quasi-likelihood (5) for 

,ak akX x=  and the quasi-likelihood (8) and the model (9) 

for .aky   

For the quasi-likelihood (5) we assume 1 1.ν =  Let 

.ak ak at X X .= /  We have  

1 (2) 2

.( ) (1 )ak a ak ak a aV t N X X−
.= θ − θ /  

and 
1 (2) 2

.Cov( , ) .ak aj a ak aj a at t N X X−
.= − θ θ /  

where 2(2)
1
aN

a i i ax NX
.

= .∑= /  and . .a a aX X N. .= /  Since 1,ix ≥  

we have (2) 2

. ,a aX X≥  and over-dispersion compared to the 

Multinomial- ( , )a aN . θ  distribution. We calculate the factor 
(2) 2

.a aX X′ ′/  based on the register data, which is then used as 
(2) 2
a aX X ./  in the estimation below. Moreover, for the quasi-

likelihood (8) we assume 2 1,ν =  and  

( ) ( )
1

2 2

( )

( ) .

akn

ak ak i ak i ak
i

i ak i ak ak i ak
i i

V y n V r x

x V r c x

, ,
=

, , ,

 
| =  

 

= ⇒ =

∑

∑ ∑
 

 
5.4 Estimation results  

Six different estimators of the proportion of Single-

person households (i.e., for 1k = ) are illustrated in Figure 1.  

To start with, we have the direct register proportions 1

X

a

′θ  

in the top-left plot, and the ‘observed’ proportions 1

y

aθ  in the 

top-right plot. On average the proportion is increased based 

on the entire register compared to the census in 2001, 

whereas it is slightly decreased according to the ‘observed’ 

part only. This demonstrates that the missing DINs are 

informative, as explained before. Inclusion of the register 

households without the DINs raises the proportion of 

Single-person households. But the result is implausible in 

some of the largest Municipalities. Of course, large bias also 

exists among the smaller Municipalities, but these are not 

easily detectable in a plot like this one.  

Next, in the middle-left plot of Figure 1, estimates are 

obtained by SPREE using the census counts 0{ }akX  as the 

starting values. For the simple two-way table here, this yields 

an almost constant adjustment of the census proportions, with 

negligible change in the between-area variation. In the 

middle-right plot, estimates are obtained by SPREE using the 

‘observed’ table { }aky  as the starting values. Notice that, to 

start with the observed sample counts would be too unstable 

to be useful in usual survey sampling situations, but it is a 

viable option here because of the large amount of ‘observed’ 

data. To distinguish from the standard SPREE we shall refer 

to it as the direct SPREE (DirSPREE). As noted earlier, 

DirSPREE is unbiased under the assumption (10) of 

informative missingness. Indeed, it is seen to lead to useful 

adjustments for the largest Municipalities.  

In the bottom-row plots of Figure 1, estimates are 

obtained using the double-mixed modeling approach. The 

estimates of the bottom-left plot are obtained by the IPF 

starting with the estimated super-population compositions 
ˆ{ },akθ  denoted by SupGSPREE. The extreme post-censal 

development in the largest Municipalities are reduced. But 

the changes from the census-proportions are clearly over-

shrunk towards to the population average for the smaller 

areas. The variation is e.g., much less than that of 0

ak ak
′θ − θ  

in the top-left plot. The estimates of the bottom-right plot 

are derived from the imputed finite-population counts, 

denoted by ImpGSPREE, which are calculated at the E-step 

of the EMPQL algorithm. The estimates for the largest 

Municipalities are similar to those of SupGSPREE, and the 

variation in the changes from the census-proportions is 

similar to that of DirSPREE.  
5.5 Estimation of CMSEP  

Approximate CMSEP of the ImpGSPREE compositions 

can be derived similarly as in Section 3. Denote by ˆ
akX  the 

ImpGSPREE count, and by akXɺ  the BP based on known 

conditional distribution of aX  given ( , ).a am .y  We have  

ˆCMSEP( ) {( )( ) , }

ˆ ˆ{( )( ) }.

T

a a a a a a a

T

a a a a

E m

E

.≈ − − |

+ − −

X X X X X y

X X X X

ɺ ɺ

ɺ ɺ
 

Moreover, let φɶ  be the hypothetical estimate of φ  based on 

the complete data ,=x X  and let ψ̂  be the estimate of ψ  

based on the observed data. Let 1Q  and 2Q  be, respectively, 

the Jacobian matrix of partial derivatives a∂ /∂φXɺ  and 

.a∂ /∂ψXɺ  We have  

1 1 2 2

ˆ ˆ{( )( ) }

{( )( ) }

ˆ ˆ{( )( ) }

ˆ ˆCov( , ) Cov( , ) .

T

a a a a

T

a a a a

T

a a a a

T T

E

E

E

Q Q Q Q

− −

≈ − −

+ − − |

≈ φ φ + ψ ψ |

X X X X

X X X X

X X X X X

X

ɺ ɺ

ɶ ɺ ɶ ɺ

ɶ ɶ

ɶ ɶ
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Together, these lead to a three-part decomposition of the 

CMSEP similar to (12) - (14). In the estimation of the 

CMSEP below we ignore the effect of IPF. This is justified 

in our case because the IPF essentially amounts to a 

constant multiplicative adjustment very close to unity, as 

can be seen in the middle-left plot in Figure 1.  

The CMSEP of a DirSPREE count is calculated as a 

‘sampling’ variance that is induced by missing-at-random 

within each cell of the two-way table, plus a squared bias 

term which is estimated by the squared difference between 

the ImpGSPREE count and the corresponding DirSPREE 

count, provided the assumption (9) is a more appropriate 

model for the missing data than the assumption (10). 

The estimated root CMSEPs (rcmsep) are given in Figure 

2. On average both are decreasing as the Municipality size 

increases. However, for some of the largest Municipalities, 

the CMSEP of the DirSPREE proportion is abnormally 

large for Single-person and Cohabitants households due to 

the bias term. On the whole the CMSEP of the 

ImpGSPREE composition is clearly smaller than that of the 

DirSPREE. The 1ah -term, corresponding to the prediction 

variance of ,aX  is by far the dominating contribution to the 

CMSEP (over 99% in many areas). This is understandable 

since there are over 550 thousand people in the ‘observed’ 

sample, such that the uncertainty in parameter estimation is 

comparatively negligible. But the quoted percentage will be 

lower in a sample survey situation, as the estimation 

uncertainty summarized in terms 2ah  and 3ah  increases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 Estimated root conditional mean squared error of prediction (rcmsep) of DirSPREE (circle) 

and ImpGSPREE (triangle) of Municipality household proportions 
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6. Summary 
 

In the above we outlined a double-mixed modeling 

approach that extends the GSPREE methodology to estima-

tion of small area compositions subjected to differential 

missing data. An approximate CMSEP was derived which 

contains a three-part decomposition, corresponding to the 

prediction variance of the unknown random effect, the 

sampling variance in the absence of missing data, and the 

extra variance due to the missing data, respectively. The 

approach was applied to the Norwegian register household 

data, which yielded useful adjustments for informative 

missing of dwelling identity numbers.  
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