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The design approach is evaluated, using a likelihood approach to survey sampling. It is argued
that a model-based approach is unavoidable from a scientific point of view. Estimating
population quantities can then be regarded as a prediction problem. Predictive likelihood
methods are considered in various cases, and evaluated by properties of related confidence
intervals and asymptotic consistency.
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1. Introduction

The traditional approach to survey sampling, primarily based on Neyman (1934), has

several shortcomings discussed in the literature the last 40 years. As long ago as 1966,

Godambe discovered the rather strange effect of likelihood considerations on survey

sampling and the humorous elephant example in Basu (1971) put the topic at the forefront.

To fix the ideas, let the finite population for the study be denoted by U ¼ {1; 2; : : : ;N}

and let y be a variable of interest with population values y ¼ ð y1; : : : ; yNÞ. The typical

problem is to estimate the total t or population mean t/N. A sample is a subset s of the

population, and is selected according to some sampling design p(s), a known probability

distribution for all possible subsets of U assumed to be noninformative about y. The

design-based inference has only s as the stochastic element and considers y as a constant.

Some of the shortcomings and problems with design-based inference are:

. Design-based inference is with respect to hypothetical replications of sampling for a

fixed population vector y

. Variance estimates may fail to reflect information in a given sample

. Difficult to combine with models for nonsampling errors like nonresponse

. If we want to measure how a certain estimation method does in quarterly or monthly

surveys, then y will vary from quarter to quarter or month to month, and we need to

assume that y is a realization of a random vector.

Likelihood and the likelihood principle will be used as a guideline for dealing with these

matters. Section 2 discusses the design approach from a likelihood perspective and argues

for the necessity of modelling the population. Section 3 considers likelihood in model-

based survey sampling as a special case of prediction and Section 4 deals with predictive

likelihood methods and asymptotic consistency features in general prediction problems.
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Section 5 applies the predictive likelihood approach in model-based survey sampling and

considers three different cases. Predictive likelihood is a general non-Bayesian likelihood

approach to prediction; see Hinkley (1979) and Butler (1986). A review is given in

Bjørnstad (1990, 1998). Bolfarine and Zacks (1992) consider methods based on predictive

likelihood in survey sampling.

2. Discussion of the Design Approach from the Likelihood Perspective

That there is something strange about the purely design-model approach, is attributable to

the nonexistence of optimal estimators. First discovered by Godambe (1955) for linear

unbiased estimators and then by Godambe and Joshi (1965) for the general case, we have

the following theorem:

Theorem. Let p(s) be any nontrivial sampling design, e.g., p(U) , 1. Assume each yi has

at least two possible values. Then there exists no uniformly best (minimum variance)

design-unbiased estimator for the total t.

No matter how small a population is and how simple the sampling design is, we cannot

find any uniformly best estimator. This negative fact should really make every survey

statistician take notice and do some serious reflecting about the design-model. Godambe

(1966) was the first to consider the likelihood function, noticing that it is flat for all

possible values of y given a set of sample values. Hence, from the perspective of the

likelihood principle, the model is “empty”; it gives no information about the unknown part

of y. Moreover from the likelihood principle, since two sampling plans leading to the same

sample s have proportional likelihood functions, statistical inference should not depend on

the sampling plan. And what else is there from a design point of view?

The only way to still have trust in the design approach is to disregard the likelihood

principle, but since the likelihood principle follows from the principles of sufficiency and

conditionality, as shown by Birnbaum (1962), one then has to claim that either the

sufficiency principle or the conditionality principle is not valid, or that neither is valid.

This seems like an impossible task considering that practically no statistician disagrees

with these two principles.

So, to sum up, we have the following rather troublesome features of a scientific nature

with a pure design approach to survey sampling:

(1) Nonexistence of best estimators no matter what sampling design, sample size and

population.

(2) A flat likelihood function telling us the data gives us no information about the

unknown values in the population. One might say the design model is a model of

“no information” about the unknown part of the population.

(3) The sampling plan is irrelevant when it comes to doing statistical inference according

to the likelihood principle.

(4) The likelihood principle follows from generally accepted principles of sufficiency

and conditionality also in survey sampling.

To my mind, there is simply nothing more to discuss. One has to accept that the design

approach has a model basis saying that the data contain no information about the unknown

Official Statistics in Honour of Daniel Thorburn2



part of the population, and in order to do proper statistical inference one has to model the

data versus the unknown quantities as in any other statistical investigation. Simply

because we have more control over the data collection in survey sampling than in the

typical observational study does not mean that we should not do statistical modelling. On

the contrary, it should in principle be easier in finite population studies based on a

controlled sample to do proper statistical modelling than it is in observational studies.

So as a conclusion on using likelihood considerations on the traditional sampling

approach, it reveals the flaws very clearly and tells us what to do. We simply cannot avoid

following Fisher’s modelling and likelihood point of view that revolutionized the science

of statistics in the early 1920’s. Fisher’s fundamental concepts are still very much the focal

point of statistical science in all fields of statistics.

It is easy to come up with examples that show real practical shortcomings of the design

approach. For example, regarding variance estimation where one possible sample is the

whole population, the estimated sample variance of an estimator will give a meaningless

result if the actual sample chosen is the whole population, while the model-based variance

is the variance of the prediction error, which in this case is zero.

A rather common misunderstanding when it comes to disregarding the sampling

design in the inference phase, is that the sampling design is therefore not important. This

is, of course, not true. In fact, the opposite is the case. The sampling design is very

important for gathering data in the production of official statistics (and for any other

finite population study). It is important that we get as informative data as possible for the

population at hand, making the optimal statistical inference of highest possible quality.

This means, typically, that in business surveys we want to have a high degree of

coverage while in household/person statistics we want a representative sample, like a

miniature of the population. But once we have made sure we have a good-quality

sample, the actual plan that was used to select the sample should play no role at the

inference stage.

Now, what to do about nonsampling errors like nonresponse is not in principle difficult.

There is no way around the fact that we do need to do modelling for these errors. The

problem here, of course, is that we do not observe the nonresponse group in the sample.

Hence, any modelling here is of a latent type that can be checked for validity only on the

basis of what we observe. We have to use the knowledge we have about the units not

responding in the actual survey. Of course, closing our eyes and assuming that

nonresponse does not matter except that we get a smaller sample than planned, is also a

modelling assumption, and typically of the worst kind.

Once a modelling approach is undertaken, we have the special feature in finite

population estimation problems that the unknown quantities are realized values of random

variables, so the basic problem now has the feature of being similar to a prediction

problem. It is therefore natural to look at a likelihood-based prediction approach here. This

leads to predictive likelihood as the basic approach. We shall see what this entails.

3. Likelihood in Model-based Survey Sampling

We now have the following model set-up:

y1,y2, : : : ,yN are realized values of random variables Y1,Y2, : : : ,YN.
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We have two stochastic elements in the model:

(1) Sample s , p(·)

(2) ðY1; Y2; : : : ; YNÞ , f u

In general we shall let fu(·) ( fu(·j·)) denote the (conditional) probability density or discrete

probability function of the enclosed variables. Let us consider the problem of estimating

the total t which we can decompose as

t ¼
X
i[s

yi þ
X
i�s

yi

Since the first term is observed, the problem is to estimate z ¼
P

i�s yi, the realized value

of the random variable

Z ¼
X
i�s

Yi

Hence we may say that the problem is to predict the value z of Z. This means that the

parameter u labelling the class of distributions for Y is a nuisance parameter. Now, the first

basic question when it comes to likelihood considerations under a population model is how

to define the likelihood function. From a general predictive perspective, if we let Yd ¼ yd

denote the data in s and Z the unknown variable whose value z we shall predict, Bjørnstad

(1996) shows that the likelihood function lðz; uÞ ¼ f uð yd; zÞ leads to a likelihood principle

that follows from generalized principles of prediction sufficiency and conditionality in the

same way as the parametric likelihood function. Hence this is also the likelihood function

in the sampling case. The data yd consists now of s and the observed y-values in s.

A likelihood-based method for predicting z is then a partial likelihood L(zjyd) based on

l(z, u), by eliminating u. Typical ways of eliminating u are by integration (resembling the

Bayes approach), maximization (resembling the profile likelihood in parametric

inference), and conditioning on sufficient statistics. We shall now first, in Section 4,

consider predictive likelihoods in general, and in Section 5 predictive likelihood in model-

based survey sampling for some specific cases.

4. Predictive Likelihood With Asymptotic Considerations and Benchmarks

For a summary and review of predictive likelihood we refer to Bjørnstad (1990, 1998). We

assume that a chosen predictive likelihood is normalized as a probability distribution in z.

We first consider the problem of asymptotic consistency in predicting sample means,

resembling the typical problem of estimating the finite population total in survey

sampling. Assume the data consists of n observations. Throughout this section we let the

data be denoted by y, i.e., y is a realized value of Y ¼ ðX1; : : : ;XnÞ. We consider the

problem of predicting the mean of the unobserved “sample” Y 0 ¼ X
0

1; : : : ;X
0

m

� �
,

i.e., Z ¼ Zm ¼
Pm

i¼1X
0

i=m.

Let now Ep(Z) and Vp(Z) be the (predictive) mean and variance of the normalized

predictive likelihood L(zjy). Then Ep(Z) is one possible predictor of z. Another important

issue in prediction is whether the predictive variance is a correct measure of the prediction
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uncertainty. Hence, one important aspect of evaluating how a certain predictive likelihood

performs as a prediction method is the property of the predictive variance. The main

purpose now is to study how Ep(Z) and Vp(Z) should behave asymptotically in n and m. It is

difficult to define benchmarks for the predictive mean and variance for fixed small m and n.

However, for large m or large n (typical cases in sampling, the first case being typical for

sample-based statistics while the second case is typical for register-based statistics) it is

possible to derive approximate benchmarks by considering the two asymptotic cases

(i) n ! 1 and (ii) m ! 1 separately. If n ! 1, u is known in the limit. In this case the

normalized predictive likelihood is the normalized l(z,u), f uðzjyÞ. A natural consistency

requirement for predictive likelihood is therefore that

LðzjYÞ=f uðzjYÞ
P
!1 as n !1:

It is assumed that, conditional on Y ¼ y, Zm
P
!m as m !1, where m ¼ gðuÞ may depend

on y if Y, Z are dependent. When m ! 1, predicting z is equivalent to estimating m in the

limit. Let l(mjy) denote the chosen normalized likelihood for m, based on the parametric

likelihood function for u, likðujyÞ ¼ fuð yÞ. We denote the mean and variance by Ei(m) and

Vi(m). If u ¼ m, then, of course, l(mjy) / fm( y). In the general case, when m ¼ gðuÞ, there

are several possible choices for l(mjy). It is not possible to avoid a certain degree of

arbitrariness. In the 1970’s and early 1980’s several articles studied the problem of

choosing a marginal parametric likelihood. Two main papers are Kalbfleisch and Sprott

(1970) and Barndorff-Nielsen (1983). We choose to derive the marginal likelihood in the

following way. Normalize the likelihood function for u to be a probability distribution in u.

Let ly(u) be the normalized likelihood, lyðuÞ ¼ likðujyÞ=
Ð

likðu 0jyÞdu 0. Let then l(mjy) be

the “distribution” of m, derived from ly(u). Then, e.g., the likelihood expected value of m is

ElðmÞ ¼
Ð

gðuÞlyðuÞdu.

We can summarize this discussion by defining variance consistency and mean

consistency as follows:

Definition 1. The predictive likelihood L is variance consistent if the following two

properties are satisfied:

1.1. VpðZÞ=VuðZjYÞ
P
!1 as n !1

1.2. VpðZÞ! VlðmÞ as m !1

Definition 2. The predictive likelihood L is mean consistent if the following two

properties hold:

2.1. EpðZÞ=EuðZjYÞ
P
!1 as n !1

2.2. EpðZÞ! ElðmÞ as m !1

We see that if Z and Y are independent, which is typically the case in model-based

sampling, L is variance consistent if

VpðZÞ
P
!VuðZÞ as n !1 and VpðZÞ! VlðmÞ as m !1 ð1Þ

and mean consistent if

EpðZÞ
P
!EuðZÞ as n !1 and EpðZÞ! ElðmÞ as m !1 ð2Þ
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Let us consider four basic predictive likelihoods and some examples. The estimative

predictive likelihood Le is obtained by eliminating u in the likelihood function using the

maximum likelihood estimate (mle) û, i.e., the normalized Le is given by

LeðzjyÞ ¼ f
û
ðzjyÞ

The profile predictive likelihood Lp, first considered by Mathiasen (1979), is obtained by

maximizing the likelihood function with respect to u for a given z value, i.e.,

LpðzjyÞ ¼ maxulyðz; uÞ ¼ lyðz; ûzÞ

Let R ¼ rðY ; ZÞ be a minimal sufficient statistic for Y and Z. In cases where sufficiency

provides a true reduction in the dimension of the data, Hinkley (1979) suggested

essentially the conditional predictive likelihood Lc given by

LcðzjyÞ ¼ f ð y; zjrð y; zÞÞ ¼ fuð y; zÞ=fuðrð y; zÞÞ

Lc is not invariant with respect to choice of minimal sufficient statistics in the continuous

case. A canonical type of conditional predictive likelihood, suggested by Butler (1986),

turns out to be invariant to choice of R. It is given by

LIðzjyÞ ¼ LcðzjyÞjJJ 0j
21=2

where J is the pxq – matrix of partial derivatives of r with respect to ( y,z). Here, p is the

dimension of r and q is the dimension of ( y,z).

A (1 2 a) predictive interval IL based on a normalized predictive likelihood L is simply

an interval with area (1 2 a) under L,

ð
IL

LðzjyÞdz
X

IL

LðzjyÞ in discrete case

 !
¼ 1 2 a:

Example 1. Consider Xi, X
0

j independent N m;s2
0

� �
where s2

0 is known and let Z be the

mean of the X
0

j’s. Then Lc, LI, Lp all give the same predictive likelihood,

L , N �x; ðm21 þ n21Þs2
0

� �
, where �x ¼

Pn
i¼1xi=n is the observed sample mean. Since m

is the only unknown parameter, lðmjyÞ / f mð yÞ, i.e., lðmjyÞ , N �x;s2
0=n

� �
. Hence,

ElðmÞ ¼ �x;VlðmÞ ¼ s2
0=n. From (1) and (2) we readily see that mean and variance

consistency hold. On the other hand, Le , N �x;s2
0=m

� �
, and Le is not variance consistent as

m ! 1, illustrating the well-known fact that Le in general underestimates the prediction

uncertainty, by assuming that u ¼ û without taking into consideration the uncertainty in

the mle û. We also note that the symmetric predictive interval equals the usual

frequentistic prediction interval for Z.

Example 2. Same model as in Example 1, except that the variance s 2 in the normal

distribution is now unknown. Then the four predictive likelihoods give different results.

Let ŝ2 be the mle, and let tv denote the t-distribution with v degrees of freedom. Define

T ¼
Z 2 �x

ŝ

ffiffiffiffiffiffiffiffiffiffiffiffi
1

m
þ

1

n

r :
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Then Lp is such that T , tn. With R ¼ ðR1;R2Þ where R1 ¼ ðn �X þ mZÞ=ðn þ mÞ and

R2 ¼
Pn

i¼1ðXi 2 R1Þ
2 þ mðZ 2 R1Þ

2, Lc is such that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn 2 3Þ=n

p
�T , tn23. The

canonical predictive likelihood LI does not directly lead to a t-distribution. However, LI

based on the transformed ðY;
ffiffiffiffi
m

p
ZÞ is such that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn 2 2Þ=n

p
�T , tn22. The estimative Le

is such that Z , Nð�x; ŝ2=mÞ. For all four predictive likelihoods, EpðZÞ ¼ �x. The predictive

variances, on the other hand, are all different. We have that the variance of the prediction

error, using the sample mean to predict z, equals VuðZ 2 �XÞ ¼ ð1=m þ 1=nÞs2. Hence,

s2
e ¼ ð1=m þ 1=nÞŝ2 is the estimated variance of the prediction error. With the obvious

notation we have Vp
pðZÞ ¼ ðn=n 2 2Þs2

e , Vc
pðZÞ ¼ ðn=n 2 5Þs2

e , V I
pðZÞ ¼ ðn=n 2 4Þs2

e ,

while Ve
pðZÞ ¼ ŝ2=m ¼ s2

e 2 ð1=nÞŝ2. The likelihood for m is such that
ffiffiffiffiffiffiffiffiffiffiffi
n 2 2

p
ðm2 �xÞ=

ŝ , tn22. Hence, ElðmÞ ¼ �x and VlðmÞ ¼ ŝ2=ðn 2 4Þ. All predictive likelihoods are mean

consistent. Also, VpðZÞ
P
!s2=m ¼ VuðZÞ as n !1 for all four predictive likelihoods.

Hence, they are all variance consistent in n. Variance consistency in m holds if

VpðZÞ! ŝ2=ðn 2 4Þ as m !1. Now, s2
e ! ŝ2=n as m !1, and as m ! 1, Vp

pðZÞ! ŝ2=

ðn 2 2Þ; Vc
pðZÞ! ŝ2=ðn 2 5Þ, VI

pðZÞ! ŝ2=ðn 2 4Þ and Ve
pðZÞ! 0. Hence, according to

this choice of marginal likelihood for m, LI is variance consistent, while Lp and Lc are

approximately variance consistent. Lc slightly overestimates and Lp slightly under-

estimates the prediction uncertainty when using l(mjy) as benchmark.

5. Predictive Likelihood in Model-based Survey Sampling

In this section three cases are considered: the first case is a model typically used in

business surveys, the second case deals with election surveys and the third case deals with

mixtures covering two-stage sampling and missing data with MCAR nonresponse.

5.1. Ratio Model

Let us start with a typical model in business surveys, the ratio model. It is usually stratified,

but for simplicity we consider the pure ratio model. It means that we have an auxiliary

variable x available for all units in the population. It is typically a measure of size of the unit,

like the number of employees or annual sales of the business. Then the model is given by:

Yi ¼ bxi þ 1i for i ¼ 1; : : : ;N and the 1i’s are independent Nð0;s2vðxiÞÞ

Here, v(x) is a known function like vðxÞ ¼ xg; 0 # g # 2. The usual assumption is g ¼ 1.

The optimal predictor among all linear model-unbiased predictors for the total is

given by

t̂0 ¼
X
i[s

yi þ b̂0

X
i�s

xi

where

b̂0 ¼

X
i[s

xiyi=vðxiÞX
i[s

x2
i =vðxiÞ

Hence, the predictor for the unobserved part of the total equals ẑ0 ¼ b̂0

P
i�s xi.
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Let vð�sÞ ¼
P

i�s vðxiÞ, xð�sÞ ¼
P

i�s xi, and ws ¼
P

i[s x2
i =vðxiÞ. The profile predictive

likelihood is such that

Z 2 b̂0

X
i�s

xi

ŝ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vð�sÞ þ w21

s ½xð�sÞ�2
q , tn 2 distribution

We note that the predictive mean is equal to ẑ0, the optimal predictor. The predictive

variance is given by

VpðZÞ ¼
n

n 2 2
ŝ2 vð�sÞ þ w21

s ½xð�sÞ�2
� �

The variance of the prediction error ðZ 2 ẑ0Þ is equal to s2 vð�sÞ þ w21
s ½xð�sÞ�2

� �
. Hence, the

predictive variance is essentially the estimated variance of the prediction error.

Letting R be the mle of (b,s 2) based on (Yd, Z), we find that the conditional predictive

likelihood Lc is such that

ffiffiffiffiffiffiffiffiffiffiffi
n 2 3

n

r
�

Z 2 b̂0

X
i�s

xi

ŝ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vð�sÞ þ w21

s ½xð�sÞ�2
q has a tn23 2 distribution

Let tk(a/2) be the upper a/2- quantile of the tk-distribution. The (1 2 a) predictive

intervals Ip, Ic based on Lp and Lc are given by

Ip : ẑ0 ^ tnða=2Þŝ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vð�sÞ þ w21

s ½xð�sÞ�2
q

Ic : ẑ0 ^ tn23ða=2Þŝ

ffiffiffiffiffiffiffiffiffiffiffi
n

n 2 3

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vð�sÞ þ w21

s ½xð�sÞ�2
q

while the frequentistic interval with coverage (1 2 a) equals

If : ẑ0 ^ tn21ða=2Þ

ffiffiffiffiffiffiffiffiffiffiffi
n

n 2 1

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vð�sÞ þ w21

s ½xð�sÞ�2
q

It follows that Lp generates prediction intervals with coverage slightly less than the

nominal level, while Lc leads to slightly wider intervals than the frequentistic one. Some

cases are presented in Table 1. One should note that the usual unconditional confidence

level is a measure of the method and, from a likelihood perspective, is not in principle a

relevant feature of the actual computed prediction interval. From the likelihood

perspective it is necessary to look at the conditional coverage given the data and the

guarantee of conditional coverage, as considered in Aitchison and Dunsmore (1975). For a

discussion of these features on predictive intervals refer to Bjørnstad (1990, 1996).

Table 1. Confidence levels of predictive intervals based on Lp(Lc)

(1 2 a) \ n 5 10 20 50

0.90 0.854 (0.986) 0.880 (0.940) 0.890 (0.918) 0.896 (0.907)
0.95 0.917 (0.996) 0.936 (0.975) 0.944 (0.962) 0.948 (0.955)
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5.2. Election Surveys

The problem is to estimate the proportion p in a population that will vote for a certain party

A in an upcoming election. We know the proportion q that voted for A in the last election.

For each individual in the population we define the following binary variables:

yi ¼
1 if the i’th person will vote for A

0 otherwise

(

xi ¼
1 if the i’th person voted for A in the last election

0 otherwise

(

We assume the following model: The yi’s are realized values of random variables Yi’s and

Y1, : : : ,YN are independent with “transition” probabilities

PðYi ¼ 1jxi ¼ 1Þ ¼ p11 and PðYi ¼ 1jxi ¼ 0Þ ¼ p01

A sample s of size n is selected and the y- and x- values in s are observed. Estimation

of p is equivalent to prediction of z ¼
P

i�s yi. Let �s1 ¼ {i � s : xi ¼ 1} and

�s0 ¼ {i � s : xi ¼ 0}. Then Z ¼ Z1 þ Z0, where

Z1 ¼
i[�s1

X
Yi ¼

i�s

X
xiYi and Z0 ¼

i[�s0

X
Yi ¼

i�s

X
ð1 2 xiÞYi

Let m ¼ N 2 n ¼ m1 þ m0, where m1 ¼ j�s1j and m0 ¼ j�s0j. We see that Z1, Z0 are

independent, binomially distributed with parameters (m1, p11) and (m0, p01) respectively.

Let B1 ¼
P

i[s xiYi and B0 ¼
P

i[sð1 2 xiÞYi, and let n1 ¼
P

i[s xi and n0 ¼
P

i[sð1 2 xiÞ.

Then the mle are p̂11 ¼ B1=n1 and p̂01 ¼ B0=n0.

Since the distribution of Z is not on a closed form we derive a joint predictive likelihood

for (Z1, Z0) based on fu( yd, z1, z0). Based on this joint predictive likelihood we can obtain

the predictive mean and variance for Z. We apply the sufficiency-based conditional Lc.

It turns out that

Lcðz1; z0jydÞ ¼ Lcðz1jydÞLcðz0jydÞ

with

LcðzijydÞ ¼

mi

zi

 !
ni

bi

 !

mi þ ni

zi þ bi

 ! �
ni þ 1

mi þ ni þ 1
; 0 # zi # mi; i ¼ 1; 0

This means that Z1, Z0 are predictively independent and negative hypergeometric. It

follows that EpðZÞ ¼ EpðZ1Þ þ EpðZ0Þ, and VpðZÞ ¼ VpðZ1Þ þ VpðZ0Þ where

EpðZiÞ ¼ mi

bi þ 1

ni þ 2
and VpðZiÞ ¼ mi

ni þ mi þ 2

ni þ 3
�

bi þ 1

ni þ 2
� 1 2

bi þ 1

ni þ 2

� �

We see that Z=m
P
!lp11 þ ð1 2 lÞp01 ¼ m; as m !1;m1=m ! l.
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We shall now consider the asymptotic properties of Ep(Z) and Vp(Z). We note that these

are the predictive mean and variance of Z based on the convolution

L*
cðzjydÞ ¼

Xz

k¼0

Lcðz1 ¼ kjydÞLcðz0 ¼ z 2 kjydÞ

L*
c is the convolution of two negative hypergeometric distributions and can be computed

exact only numerically.

From (1) and (2) the asymptotic consistency requirements are:

Variance consistency

V1 : VpðZÞ
P
!VuðZÞ as n1; n0 !1

V2 : VpðZ=mÞ ¼ VpðZÞ=m2 ! Vlðlp11 þ ð1 2 lÞp01Þ as m1;m0 !1; l ¼ lim ðm1=mÞ

Expectation consistency

E1 : EpðZÞ
P
!EuðZÞ as n1; n0 !1

E2 : EpðZ=mÞ! Elðlp11 þ ð1 2 lÞp01Þ as m1;m0 !1

In this case there are unique marginal likelihoods for p11 and p01, since the likelihood

function is given by

likð p11; p01jydÞ ¼ pb1

11ð1 2 p11Þ
n12b1 pb0

01ð1 2 p01Þ
n02b0 ¼ l1ð p11jydÞl0ð p01jydÞ

and lið pi1jydÞ , Betaðbi þ 1; ni 2 bi þ 1Þ for i ¼ 1; 0. Hence,

ElðmÞ ¼ lElð p11Þ þ ð1 2 lÞElð p01Þ

VlðmÞ ¼ l2Vlð p11Þ þ ð1 2 lÞ2Vlð p01Þ

where Elð pi1Þ ¼ ðbi þ 1Þ=ðni þ 2Þ and Vlð pi1Þ ¼ ðbi þ 1Þðni 2 bi þ 1Þ={ðni þ 2Þ2

ðni þ 3Þ}.

We readily see that V1,V2 and E1,E2 are fulfilled. So the derived predictive likelihood

L*
c for Z is variance and expectation consistent. In this connection we note that the mle

based predictor of Z, Ẑmle ¼ m1p̂11 þ m0p̂01, is not exactly mean consistent, even though

it is the uniformly best unbiased linear predictor, i.e., minimizes the variance of the

prediction error, as shown by Thomsen (1981).

We now study a prediction interval based on Lcðz1; z0jydÞ, i.e., L*
cðzjydÞ. L*

c is

approximately normal when (n1,m1), (n0,m0) and (b1,b0) are large. Computations suggest

the normal approximation is valid already when N ¼ 50, n ¼ 20 and b1 þ b0 ¼ 10. Let

u(a/2) be the upper a/2-quantile in the N(0,1) – distribution. An approximate (1 2 a)

predictive interval based on L*
c is now:

IcðYsÞ : EpðZÞ^ uða=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
VpðZÞ

p
Here, the notation Ys stands for the y-observations in the sample s. The interval Ic should

work fairly well, since the actual distribution of Z is approximately normal for large

m1, m0. The confidence level of Ic conditional on selected sample s, Pu(Z [ Pc(Ys)),

can be estimated for various cases by simulation of the population model.

Consider 1 2 a ¼ 0:95, and let q be the proportion who voted for A in the last election.
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For each case of (n, n1, N, q), 12 combinations of p11 and p01 are considered: p01 ¼

0:01; 0:10; 0:30 and p11 ¼ 0:5; 0:7; 0:8; 0:9. The confidence levels Cc are estimated by

simulating, for each case, 10,000 observations of (Ys, Z1, Z0). The smallest and largest

confidence levels over these 12 combinations are given in Table 2.

In the most typical real-life cases, i.e., cases (III), when q ¼ 0:5, there are no systematic

trends in Cc as functions of ( p11, p01). The same holds true when q ¼ 0:1 and

p01 ¼ 0:1; 0:3. The values of Cc for all these cases lie in the range 0.947–0.955. When

q ¼ 0:1 and p01 ¼ 0:01, Cc increases slightly as p11 increases.

For cases (I) and (II), Cc vary, not unexpectedly, quite a bit more. For given p01 there is

either an increasing trend as p11 increases or there is no systematic trend. For cases (II), the

high values occur for the most extreme parameter configuration, p11 ¼ 0:9, p01 ¼ 0:01.

In short we can say: For large samples it seems that Ic is an approximate (1 2 a)

confidence interval, and for small and moderate sample sizes Ic is mainly conservative,

i.e., the confidence level is larger than (1 2 a).

5.3. Prediction of Double Mixtures

We now consider prediction of variables of the following form:

Z ¼ Z1 þ Z2 ¼
XAm

i¼1

X
0

i þ
XBn

i¼1

X
00

i

Here, Am may be a random variable and nondecreasing in m and Am ! 1 in probability as

m ! 1. Bn is assumed nondecreasing in n, Bn ! 1 in probability as n ! 1, and is either

a function of Y or a constant. This case is designed to cover cases where the “sample” size

for the unobserved Z depends also on n, for example when we have nonresponse. Another

example of this type of situation with typically large Am, Bn is two-stage survey sampling

with unknown cluster sizes considered by Bjørnstad and Ytterstad (2008).

To simplify the exposition we restrict attention to the case where Ys;Am;Bn;X
0

i;X
00

j

are independent. All X
0

i;X
00

j are assumed independent with the same distribution. Let

m ¼ mðuÞ ¼ Eu X
0

i

� �
¼ Eu X

00

j

� 	
and s2 ¼ s2ðuÞ ¼ Varu X

0

i

� �
¼ Varu X

00

j

� 	
.

Let now Lðz1; z2jydÞ be a predictive likelihood for (z1, z2) from which we derive L(zjy),

L(z1jyd) and L(z2jyd). The predictive covariance, covp(Z1, Z2) is then the covariance

in Lðz1; z2jydÞ. Clearly, EpðZÞ ¼ EpðZ1Þ þ EpðZ2Þ and VpðZÞ ¼ VpðZ1Þ þ VpðZ2Þþ

2 cov pðZ1; Z2Þ. Even when Z1, Z2 are independent we typically have cov pðZ1; Z2Þ – 0,

since prediction of Z1, Z2 both depend on the same yd.

Table 2. Confidence levels for 12 combinations of the parameters

n N q n1 Confidence level

(I) 10 100 0.5 3, 7 0.939–0.999
10 100 0.1 1, 3 0.933–1

(II) 100 1,000 0.5 40, 60 0.943–0.967
100 1,000 0.1 5, 15 0.947–0.998

(III) 1,000 104, 106 0.5 400, 600 0.947–0.955
1,000 104, 106 0.1 75, 125 0.947–0.964
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Example 3. A typical case is when we have a sample s of size n from a finite population

of size N in order to estimate the population total, and we also have nonresponse such that

the actual data is from the response sample sr with size nr. Let Am ¼ m ¼ N 2 n, while the

X
00

j ’s are the missing values such that Bn ¼ n 2 nr. Consider the simple case of MCAR

nonresponse and X1; : : : ;Xnr
;X

0

1; : : : ;X
0

m;X
00

1; : : : ;X
00

n2nr
independent with common

distribution N m;s2
0

� �
, where s2

0 is known. Let �x be the observed sample mean in sr. Then

Lðz1; z2jydÞ is bivariate normal with means ððN 2 nÞ�x; ðn 2 nrÞ�xÞ and variance-covariance

matrix V given by

V ¼ s2
0

ðN 2 nÞðN 2 n þ nrÞ=nr ðN 2 nÞðn 2 nrÞ=nr

ðN 2 nÞðn 2 nrÞ=nr ðn 2 nrÞn=nr

 !

Consider the case where A ¼ Am is stochastic and suppose fu(z1ja) is easily found while

fu(z1) is not. We then propose a joint predictive likelihood for (Z1, Z2, A) of the form

Lðz1; z2; ajydÞ ¼ Laðz1; z2jydÞLðajydÞ ð3Þ

where Laðz1; z2jydÞ is based on f uð yd; z1; z2jaÞ. From (3) we obtain the marginal joint

predictive likelihood Lðz1; z2jydÞ. Let EpðZijaÞ and VpðZijaÞ be the mean and variance of Zi

from Laðz1; z2jydÞ. Since Laðz1; z2jydÞ and L(ajyd) are regular probability distributions we

have that

EpðZiÞ ¼ Ep{EpðZijAÞ}

VpðZiÞ ¼ Ep{VpðZijAÞ} þ Vp{EpðZijAÞ}

and cov pðZ1; Z2Þ ¼ Ep{ cov pðZ1; Z2jAÞ} þ cov p{EpðZ1jAÞ;EpðZ2jAÞ}.

Typically Laðz2jydÞ ¼ Lðz2jydÞ and then cov pðZ1; Z2Þ ¼ Ep{ cov pðZ1; Z2jAÞ}.

We observe that Z1=Am!
P

m
m and Z2=Bn!

P

n
m. When n ! 1, u is known in the limit.

Hence, prediction of Z2/Bn should be done with perfection, i.e., EpðZ2=BnÞ
P
!m and

VpðZ2=BnÞ
P
!m. The predictive likelihood of Z1 þ B21

n Z2 in the limit should then be

f u z1 þ B21
n z2

� �
. Hence, Z1 and Z2/Bn are predictively independent in the limit. When

m ! 1, prediction of Z1/Am is equivalent in the limit to estimating m. Let �Z1 ¼ Z1=Am.

Using the same approach as in (3), Lð�z1; ajydÞ ¼ Lað�z1jydÞLðajydÞ where

Lað�z1jydÞ ¼ aLðz1 ¼ a�z1jydÞ. It follows that Epð �Z1Þ and Vpð �Z1Þ can be obtained by double

expectation rules as for Z1. We can then say L(z1jyd) is variance consistent if

VpðZ1Þ !
P

n!1
VuðZ1Þ and Vpð �Z1Þm!1

! VlðmÞ. Similarly, L(z1jyd) is mean consistent if

EpðZ1Þ !
P

n!1
EuðZ1Þ and Epð �Z1Þm!1

! ElðmÞ.

The above considerations lead to the following consistency definitions.

Definition 3. Lðz1; z2jydÞ is variance consistent if the following conditions hold:

ðiÞ As n !1 : VpðZ2Þ=B2
n

P
!0; VpðZ1Þ

P
!VuðZ1Þ and cov pðZ1; Z2Þ=Bn

P
!0.

ðiiÞ As m !1 : VpðZ1=AmÞ! VlðmÞ and cov pðZ1=Am; Z2Þ! BnVlðmÞ.

Definition 4. Lðz1; z2jydÞ is mean consistent if the following conditions hold:

ðiiiÞ As n !1 : EpðZ2Þ=Bn
P
!m; EpðZ1Þ

P
!EuðZ1Þ.

ðivÞ As m !1 : EpðZ1=AmÞ! ElðmÞ.
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It is readily seen that Lc in Example 3 is mean and variance consistent.

The final example deals with a pure prediction problem.

Example 4. We want to predict the total number of fatalities from car accidents in

a certain area for the next m time periods. The data y are observed values of

Y ¼ ðKi;XiÞ; i ¼ 1; : : : ; n where Ki is the number of accidents in time period i, and Xi is

the number of fatalities from di accidents in period i. It is assumed that all Ki, Xj are

independent, and Xi , Po(dim), Ki , Po(l) and di is known. It is assumed that l q di.

Then Am is the total number of accidents in the next m time periods, with Am 2 1 assumed

to be Poisson distributed with mean ml. X
0

i is the number of fatalities in the ith accident

and Poisson distributed with mean m. During the data period there are accidents with

missing data X
00

j on the number of fatalities. We assume MCAR such that ~X
00

j , PoðmÞ. Bn is

then the total number of accidents in the data period with missingness on fatalities, such

that Bn ¼ Kn 2 Dn with Kn ¼
Pn

i¼1Ki and Dn ¼
Pn

i¼1di, the total number of accidents

in the data period.

Let Sn ¼
Pn

i¼1Xi. Then the maximum likelihood estimates are m̂¼ Sn=Dn, l̂¼ Kn=n.

Here, the parametric likelihood lik(m,ljy) factorizes, so that the marginal likelihood for m

is unique and is given by a gamma-distribution with ElðmÞ ¼ m̂þ D21
n ,

VlðmÞ ¼ ðsn þ 1Þ=ðDnÞ
2. It follows that a predictive likelihood is variance consistent if

as n !1 :

VpðZ2Þ=ðKn 2 DnÞ
2 P
!0; VpðZ1Þ

P
!mðmlþ 1Þ þ mlm2 and covpðZ1; Z2Þ=ðKn 2 DnÞ

P
!0

as m !1 :

VpðZ1=AmÞ! ðsn þ 1Þ=ðDnÞ
2 and cov pðZ1=Am; Z2Þ! ðKn 2 DnÞðsn þ 1Þ=ðDnÞ

2

Mean consistency requires:

as n !1 : EpðZ2Þ=ðKn 2 DnÞ
P
!m; EpðZ1Þ

P
!mðmlþ 1Þ

as m !1 : EpðZ1=AmÞ! m̂þ D21
n

We derive L from (3) using Lc for each term. Then Lc(ajy) is such that A 2 1 is NB(k þ 1,

m/(m þ n)) implying that EpðAÞ ¼ 1 þ mðl̂þ 1=nÞ and VpðAÞ ¼ ðl̂þ 1=nÞmðm þ nÞ=n.

In order to describe La(z1,z2jy) we need to briefly describe the negative multinomial

distribution NM(n;p1,: : :pk),
P

pi # 1. W ¼ ðW1; : : : ;WkÞ , NMðn; p1; : : : ; pkÞ if

f ðwÞ ¼

X
wi þ n 2 1

� 	
!Q

wi!ðn 2 1Þ!
pw1

1 · · ·pwk

k pn
kþ1; pkþ1 ¼ 1 2

Xk

i¼1
pi

Each Wi is NBðn; pi=ð pi þ pkþ1ÞÞ, cov ðWi;WjÞ ¼ npipj=p2
kþ1 and

P
Wi , NB

n;
Pk

i¼1pi

� 	
. We find that La;cðZ1; Z2jyÞ is NMðs þ 1; p1; p2Þ where s ¼

Pn
i¼1xi,

p1 ¼ a=ðKn þ aÞ; p2 ¼ ðKn 2 DnÞ=ðKn þ aÞ. One can now easily find Ep(Z) and Vp(Z),

and it is readily shown that the predictive likelihood is mean and variance consistent.
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