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Abstract

The development of an Integrated System for Editing and Estimation (ISEE) is an important
part in Statistics Norway’s strategic plans for improvement of statistical production processes
and more efficient use of available data sources. ISEE is organized in applications for different
processing functions, and implemented in a service-oriented IT structure. Two of the applications
are DYNAREV (for editing and imputation) and STRUKTUR (for estimation of population
aggregates). With the two processes of editing and estimation being fully integrated in ISEE,
a producer of statistics is now in a much better position to implement the so-called top-down
approach to editing, because the effect on the estimates of the population totals due to any
changes made to the data can be examined instantly. In this paper we provide an overview of
the various tools for prediction and imputation in ISEE. Some of these are well in place whereas
others are still being developed. Our main focus is on the construction of a statistical register.
We propose and discuss a triple-goal criterion, and assess the alternative imputation methods in
accordance, and finally outline a method that is potentially capable of satisfying these needs.

I. Introduction

The strategic plans of Statistics Norway emphasize more efficient utilization of available data
sources and technical resources. Combining data from administrative sources with data from
statistical surveys is one way to more intensive use of data available, while standardization of
data processing tools will contribute to more efficient production.

The work on integrating data from statistical data collection with available administrative
registers has been an ongoing activity at Statistics Norway. For a recent report on the subject see
Gasemyr, Borke and Andersen (2007).

To make the technical tools more efficient, Statistics Norway has embarked on a project to
develop an Integrated System for Editing and Estimation (ISEE) of procedures for collecting and
processing data (Zhang, Faldmo and Lien, 2007). ISEE is organized in applications for different
processing functions, and implemented in a service-oriented I'T-structure. ISEE comprises for the
time being several applications, two of which are

e DYNAREV: an application for editing of individual data,

e STRUKTUR: an application for estimation of population parameters.
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One central feature of ISEE is the integration of editing and estimation procedures, which
allows the user to instantly examine the effect on the final estimates of any changes made to
the data before decisions are made about the changes. One is thus in a much better position to
implement the so-called top-down approach to editing.

Statistics Norway frequently acquires data available from administrative registers for different
populations. At the same time, sample survey data are being collected for other variables for
the same populations. Provided an administrative register uses the same identification keys as a
survey, the two data sets can be integrated. According to the strategies of Statistics Norway, the
extended statistical potentials provided by such integrated sets should be utilized.

Here we consider an approach to the integration of the two data sources by means of the
construction of a complete population data file. This requires finding individual data that are
missing due to non-responses, as well as for units that are outside of the selected sample. Several
user demand scenarios can be envisaged for such a statistical register, ranging between:

1. A set of estimates and tables for the survey variables are required for domains of the popu-
lation that are planned in advance.

2. Multiple uses of the survey data can be expected over time, such that a general database
quality of the data is desirable.

In scenario 1 the estimation can be carried out using applications like STRUKTUR, and weighting
(including re-weighting for non-response) is the most common technique in statistical production.
The statistical inference here is of a prediction nature. Our tasks are less specified in scenario 2,
and the multi-purpose use of the data seems to call for considerations that are more commonly
associated with imputation. In particular, a unified treatment of the missing data, either by
non-response or sample selection, is in theory possible under some missing-at-random (MAR)
assumption. An important question is then how to combine or balance between the two inferential
concerns in the construction of a statistical register.

The rest of the paper is organized as follows. In Section 2 and 3, we provide a very brief
overview of, respectively, the main existing prediction and imputation approaches for statistical
production. In Section 4 we propose a triple-goal criterion for statistical registers that combines
both types of inferential concerns, and outline a method that has the potential for meeting the
proposed criterion. In Section 5 we describe very briefly a plan towards a production solution.

II. Some prediction methods in statistical production

The most common finite population prediction approach is based on the general linear model (Roy-
all, 1976). Prediction under various non-linear or generalized linear models, and their extensions,
follows the same principle. The overview below is framed in the linear setting.

Denote by U = 1,..., N the target finite population. Let Yy«1 be the associated population
vector of survey variables of interest. Let X be the associated population matrix that contains
the auxiliary variables available from the administrative registers. Let the target parameter T
by given by a linear combination of Y. Let S = 1,,n be a non-informative sample from the
population, and let 7"\ S denote the population outside of the sample. The target parameter can



now be written as 7'(S) + T'(U \ S) which depend on the sample units and the units outside of
the sample, respectively. Given the selected sample, denoted by s = S, the estimation of T is
equivalent to the prediction of T'(U \ s).

Under the general linear model, the best linear unbiased predictor (BLUP) of T is given
by the general prediction theorem (Royall, 1976). The most common models used in statistical
production are the group-mean model, the ratio model and the simple linear regression model, all
of which have been incorporated in STRUKTUR. Typically, one assumes that the target variables
are conditionally independent from different units given the auxiliary variables. More complex
covariance structures can be introduced for clustered populations. This is for instance the case
in small area estimation (Rao, 2003), where the target parameters are defined on a domain (i.e.
sub-population) level.

Prediction of a particular unit outside of sample can be handled as a special case, since the
target parameter in this case can be written as a weighted sum of all the y-variables in the
population, where the coefficient (or weight) is 1 for the unit of interest and 0 otherwise.

Given non-response, the prediction approach requires additional modeling of the missing-data
mechanism. The estimation is simplified provided the MAR assumption, where the probability of
non-response is conditionally independent of the variable of interest given the auxiliary variables.
In such cases the parameter estimator is consistent based on the respondents alone, and a non-
respondent unit in the selected sample can be predicted in the way as a unit outside the sample.

While such a standard prediction approach is often efficient for population totals at aggregated
levels, it is not suitable for the construction of a statistical register. The main problems are:

e The predicted values lack natural variations that can be expected in a real population.
The units with the same auxiliary variables will have the same predicted y-value. This is
particularly disturbing under the simple models such as those mentioned above, where there
may easily be many units that have the same x-values.

e In a statistical register there are typically a large number of variables of interest. To for-
mulate a multivariate regression model that includes all of them is simply infeasible. Even
a marginal, variable-by-variable or group-by-group prediction approach is impractical as a
production mode. Moreover, it will inevitably destroy the co-variances among the variables,
and lead to inconsistency in cross-tabulation.

III. Some common imputation methods in statistical production

A prediction model can also be used to generate imputations for unobserved individual values. For
instance, in random regression imputation, the imputed value is obtained by adding a randomly
generated residual to the predicted y-value. Notice that hot-deck imputation can be viewed as a
special random regression imputation method under the group-mean model. The main problems
with this stochastic imputation approach are:

e The imputed estimator has an extra variance that is entirely due to the random variation in
the imputation, such that it is in principle always possible to find a non-stochastic imputation
method that is more efficient. It is misleading to assume that this loss of efficiency must
come as a price for acquiring natural variations in the imputed data.



e The random nature of the procedure implies that the tables produced based on the im-
puted data file will almost surely be different on repetition. This is a big set-back for the
acceptability and the face-value of official statistics.

The efficiency of the random regression imputation (or hot-deck) can be improved by a multiple
imputation (MI) approach — see e.g. Little and Raghunathan (2007). By generating several
data sets independently and then taking the mean of the resulting imputed totals, the extra
variation due to imputation can be reduced. However, there seems to be a couple of common
misunderstandings regarding the MI approach:

e While the efficiency is improved under the MI approach, the extra variation can only be
removed if the number of multiple imputations goes to infinity. Thus, at least in theory,
the MI approach is still not fully efficient, compared to suitable non-stochastic alternatives.
Similarly, the imputed total remains non-constant on repetition of an MI procedure.

e [t is often argued that only by generating multiple imputations, will it be possible to obtain
acceptable accuracy estimates. However, multiple imputation or not, the failure in correct
variance estimation can only be caused by using a wrong variance estimator. It simply can
not be that correct variance estimation is impossible outside the MI approach.

The predictive mean matching (PMM) is a regression-based imputation method that can
amend the lack of natural variation arising from the standard prediction approach. Given that a
chosen regression model has been fitted, an imputed y-value for a non-respondent unit is taken from
an observed one (i.e. the donor) that has the same predicted value. In case of multiple matches, the
donor is chosen randomly from all the matched ones. Thus, the difference between the PMM and
random regression imputation is more noticeable as the number of auxiliary variables increases,
and the chance of multiple matches is small. In such situations, the PMM is more efficient because
the extra variation due to random generation of residuals is greatly reduced. A main problem is
that the PMM is essentially a marginal, variable-by-variable approach, because the appropriate
donor is found through a particular y-value rather than a more general, overall characterization
of the closeness between two units.

The nearest neighbor imputation (NNI) can be considered as a non-parametric generalization
of the PMM imputation. Given a chosen set of auxiliary variables and a distance metric, the
donor is given by the ‘nearest neighbor’ that minimizes the distance between a non-respondent
unit and any observed unit. Randomization is needed given multiple nearest neighbors. However,
in practice it is always possible to avoid such randomization by introducing additional covariates
that are seemingly un-correlated with the variables of interest. For instance, postal zip code or
even physical distance can be incorporated in the distance metric between units such as farms or
establishments. Notice that, at the other end, the hot-deck can be considered as a special case of
the NNI where the auxiliary variable consists of only the imputation class indicator.

Chen and Shao (2000) established theoretically that the NNI yields consistent estimates of
population totals as well as finite population distributions. The main condition is that the absolute
difference between the conditional expectations of the variable of interest of two units is bounded
by the ‘distance’ between them through some finite constant. The linear regression model is a
special case where this condition is evidently satisfied. Moreover, once a donor has been found,
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all the missing values can be imputed at once. In this way, the NNI is able to preserve the co-
variations among the variables of interest, as well as that between the variables of interest and the
auxiliary variables. Notice that, being a non-parametric method, the NNI is more flexible than a
regression model in terms of the choice of covariates. The main drawback with the NNI is that it
usually leads to less efficient estimators of totals than the regression-based alternatives.

Meanwhile, imputation based on linear regression models is only one of many possible methods
in the class of functional imputation. Other possibilities include higher order regressions, logarith-
mic regression, etc. A flexible solution is a regression that adjusts itself to the function forms. It is
proved (Bishop, 1995) that artificial neural networks (ANN) can be considered as such generalized
regression functions. The imputation function of an ANN, however, can not be found analytically.
The fitting (or training) of the ANN must be carried by some iterative procedures which may be
time consuming. The fitted imputation functions yield actually the estimated conditional expec-
tation of the variables of interest. The ANN can therefore be regarded as a generalized regression
prediction method, and the imputed values are not realistic for categorical variables of interest.
The ANN is usually not fully efficient. We refer to Nordbotten (1999) and Linde and Scavalli
(2004) for experiments of the ANN approach for official statistical production.

IV. A triple-goal simultaneous prediction method

a. An outline

In constructing a statistical register we would like to accomplish all the following three goals:
1. It should yield efficient estimates of population totals of interest.

2. It should contain correct co-variances among the survey variables, as well as between the

survey and auxiliary variables.
3. It should be non-stochastic, such that the statistics can be reproduced on repetition.
The first and second goals are motivated by both prediction and imputation concerns. The last

condition is important for the acceptability and face-value in official statistics.

Table 1: Triple-goal classification of some common imputation methods

Method (A) (B) (C)
Regression Prediction Not Always No Yes
Random Regression Imputation No No, if Multivariate No
Multiple Imputation Not always  No, if Multivariate No
Predictive Mean Matching Not Always No, if Multivariate Yes, in Theory
Artificial Neural Network Usually Not No, if Categorical Yes
Nearest neighbor imputation Usually Not Yes, Non-parametric Yes, in theory

In Table 1 the above reviewed imputation methods are classified with respect to the triple-goal
criterion. The NNI emerges as the only feasible approach in terms of preserving the co-variances
among all the variables. The main disadvantage of the NNI is lack of efficiency. An idea is



therefore to improve the efficiency by imposing restrictions on the imputed totals, which may
be obtained separately from the NNI such as through a regression prediction. In addition, with
appropriate small area estimation techniques, it is possible to introduce restrictions for imputed
population totals at more detailed levels.

The main advantages of the nearest neighbor imputation with restrictions (NNI-WR) are:

e The prediction of population totals is separated from general imputation concerns through
the restrictions. This allows one full freedom in the search of the efficient prediction method.
It solves the problem of variance estimation for the subsequent NNI, because the uncertainty
is simply given by the MSE of prediction for the totals that have been imposed.

e Multivariate imputation is handled by NNI. The imputed data are realistic values. The non-
parametric nature of the underlying assumption suggests robustness of the results, unlike
the explicitly regression-based approaches.

e The NNI can be made non-stochastic, so that the same statistical register is reproduced on
repetition. This is an attractive feature in official statistical production.

We consider the NNI-WR to be a simultaneous prediction method. It is a prediction method
because (i) values are generated for units outside of the selected sample, and (ii) the imputed
totals are efficient for the prediction of population totals. It is simultaneous of nature because the
prediction is not optimal (or best) for each specific unit, but for the assemble of units, now that
attention is given to maintain the right co-variances among the variables.

b. An algorithm

A two-step algorithm for NNI-WR is given as follows.

The jump-start phase Denote by R the set of receivers. Denote by D the set of donors. Let z;
be the variable (or variables) based on which the distance metric (and the NNI) is defined.

I. Set the counter d; = 0 for all ¢ € D.
II. For each 5 € R:

(a) Find the nearest-neighbor (NN) donors. Let m; be the number of NN donors, where
mj Z 1.

(b) For each NN-donor, increase its counter d; by 1/m;.

III. Let Y}% denote the column vector of marginal restrictions for the receivers. Let y; be the
corresponding vector of variables for ¢ € D. Put

d; =dig; and  gi=1+(Yp—-Yg)TA ™y (1)

(2
where Y = > iep diy; and A= Y ieh diyiyl . Tt is easily verified that Yiep diyi = Y5

IV. Let d; = a; + u;, where q; is the largest integer that satisfies a; < d;. Sort the receivers in
the increasing order of m;. For j =1, ..., |R|:



(a) Find the first NN donor ¢ with a; > 1. Impute Y; = vi, and decrease a; by 1.
(b) Do nothing if there is no NN-donor with positive a;.

The fine-tune phase Denote by R’ the remaining set of receivers that have not yet been imputed.

Extend z; to «} so that for each j € R’ there is now a unique ordering among the potential donors

by z; and, possibly, some additional information z;. For instance, z; can be the post zip code, the

identification number of unit, and so on. Notice that z; is not considered informative.

1.

Set k = 1. For each j € R, find the NN donor i and set y; = yi- Let Ay be the distance
between Y9, = Y — Yjerp Y; and Y7, =3 . p y; according to some chosen metric.

Set k =2. For j € R/, let Dj.;.—o contain its two closest NN donors.

(a) For each j € I/, find the NN donor i and set [} = i.

(b) For j =1,...,|R[, set I} =i for i € Dj o that yields a closer imputed total to Y5
(c) Repeat Step 2b until no changes can be made. Calculate Ay between Y}, and Y peo-
Stop if Ay = 0, and use the imputations from Step 2. Otherwise, stop if As > Aq, and
use the the imputations from Step 1. Otherwise, set £ = 3 and let D,.x—3 contain the three
closest NN donors for j € R'.

(a) For each j € R/, find the NN donor i and set I} = .

(b) For j =1,...,|R/|, set I7 =i for i € Djyj—3 that yields the closest Y, ,_5 to Y9,

(c) Repeat Step 3b until no changes can be made. Calculate Az between Y3, and Y7, ,_5.
Stop if A3 = 0, and use the imputations from Step 3. Otherwise, stop if Az > Ay, and

use the the imputations from Step 2. Otherwise, set k = 4 and let D;.;—4 contain the four
closest NN donors for j € R'...

The following observations are worth noting;:

The jump-start phase is designed to speed up the process.

At each iteration of the fine-tune phase the donor is the one among the k nearest neighbors
that best satisfies the restrictions. The consistency of the NNI remains, as long as the
difference between the conditional expectations of a unit and its k-th nearest neighbor is
bounded by the ‘distance’ between them through a finite constant.

Deviation from the marginal restrictions of the imputed totals can be reduced in two ways.
Firstly, one may increase the k at the fine-tune stage to allow for greater combinatorial
flexibility. Secondly, one may reduce the amount of imputations achieved at the jump-start
phase, or even skipping completely over it.



V. Current research activity

Our current research activity has two primary focuses:

e How well does the above algorithm perform in real-life statistical production? Is the com-
putational burden manageable in most survey situations?

e What is the effective way of setting up the marginal restrictions? That is, how to achieve
maximum control over a large number of imputed totals through a minimum amount of
restrictions that are explicitly dealt with in the imputation procedure.

We hope to be able to report on the results on a near future occasion.
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