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Abstract: 

This paper discusses how specification of probabilistic models for multistate duration data generated 
by individual choices should be justified on a priori theoretical grounds. Preferences are assumed 
represented by random utilities, where utilities are viewed as random also to the agent himself. First, 
the paper proposes a characterization of exogenous preferences, (that is, in the special case with no 
state dependence effects). The main assumption asserts that when preferences are exogenous the 
current and future indirect utilities are uncorrelated with current and past choices, given 
unobservables that are perfectly known to the agent. It is demonstrated that under rather weak and 
general regularity conditions this characterization yields an explicit structure of the utility function as a 
so-called Extremal stochastic process. Furthermore, from this utility representation it follows that the 
choice process is a Markov Chain (in continuous- or discrete time), with a particular functional form 
of the transition probabilities, as explicit functions of the parameters of the utility function and choice 
set. Subsequently, we show how the model can be extended to allow for structural state dependence 
effects, and how such state dependence effects can be identified. Moreover, it is discussed how a 
version of Chamberlain’s conditional estimation method applies in the presence of fixed effects. 
Finally, we discuss two examples of applications.  
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Sammendrag 

Denne artikkelen diskuterer hvordan spesifikasjon av probabilistiske modeller for fler-tilstands 

varighetsdata generert fra individuelle valg kan begrunnes. Preferansene til aktørene antas 

representerte ved en stokastisk nyttefunksjon som antas stokastisk også for aktøren. Artikkelen starter 

med å foreslå en karakterisering av eksogene preferanser, dvs. si spesialtilfellet uten strukturell 

tilstandsavhengighet. Denne karakteriseringen sier at når preferansene er eksogene, så vil den indirekte 

nytten ved et gitt tidspunkt ikke være korrelert med nåværende og tidligere valg, gitt de uobserverbare 

variablene som er kjent for aktøren. Det vises at denne antakelsen, i tillegg til svake regularitets-

betingelser, impliserer en nyttefunksjon som er en såkalt Extremal stokastisk prosess. Videre medfører 

dette resultatet at valgmodellen er en Markov kjede (i kontinuerlig- eller diskret tid), med overgangs-

sannsynligheter som har en bestemt funksjonsform, som eksplisitt funksjon av parametrene i nytte-

funksjonen. Deretter diskuteres det hvordan modellrammen kan utvides til å ta hensyn til strukturell 

tilstandsavhengighet. Det diskuteres også hvordan en versjon av Chamberlains betingede estimerings-

metode kan anvendes når en har fixed effects. Til slutt diskuteres to eksempler på anvendelser. 
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1. Introduction 
The issue of functional form in behavioral relations in the social sciences is a problematic one.  In 

contrast to physics where the theory of the phenomenon under study often yields a complete 

characterization of the corresponding quantitative structural relations, the theories in social sciences 

are typically qualitative and imply little guidance as regards explicit mathematical functional form.  

 This paper discusses how to justify functional form relations of duration models. More 

precisely, we consider how hazard functions and transition probabilities generated by individual 

choice behavior in continuous-or discrete time should be modeled.1 We assume a probabilistic 

formulation in which preferences are represented by utilities that not only are perceived as random to 

the researcher, but are also viewed as random to the individual agent. Psychologists have found that 

preferences often appear to be random to the agent himself, cf. Thurstone (1927) and Tversky (1969). 

The explanation is that the agent may express some uncertainty in their evaluation of alternatives and 

consequently assess different values to the same, or seemingly equivalent alternative, at different 

points in time. This includes updating of preferences due to information that arrives at random points 

in time (as perceived by the agent).2  

 In general, preferences may be serially correlated due to habit persistence, structural state 

dependence and unobserved heterogeneity. Unobserved heterogeneity stems from unobservables that 

may be perfectly known, or partly uncertain, to the agent. See Heckman (1981a) for a lucid discussion 

within a multivariate probit framework. In several analyses it is of interest to separate the genuine 

effect on preferences (or choice constraints) due to choice experience on one hand (structural state 

dependence), from the effect from unobserved heterogeneity and habit persistence on the other. It is 

known that this identification problem cannot be settled by statistical methods alone. Additional a 

priori theoretical restrictions are needed, see for example Heckman, (1981a,b, 1991), Jaggia and 

Trivedi (1994) and Magnac (2000). The theory proposed in this paper implies an explicit functional 

form characterization of the model that brings us a step further towards resolving the identification of 

state dependence effects. 

 We first provide a characterization of the individual’s preferences and the implied choice 

model in the special case with no state dependence, conditional on the information of the agent. That 

is, we propose a characterization of the utility representation and the corresponding choice model, 

                                                      
1 For an overview of duration model with particular reference to economics, see van den Berg (2001). 
2 This type of uncertainty is thus different from the lottery setting with uncertain outcomes, because although the utilities may 
vary from moment to moment in a manner that is not fully predictable to the agent, the decision process consists of selecting 
the alternative with the largest momentary utility, and, at the moment of choice, the utilities are known to the agent. 
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conditional on unobservables that are perfectly known to the agent. Sometimes it may be reasonable to 

represent unobservables by fixed or random effects. It follows from the setting described above that 

since preferences may contain elements that are random to the agent himself the conditional utility 

representation given the agents (current) information may be random (to the agent). Moreover, even in 

the case with no state dependence there may be habit persistence implying that the conditional 

preferences are serially correlated (given the information of the agent). Subsequently, we extend the 

characterization to the case that allows for structural state dependence. Let the “reference case” be 

defined as the special case with no state dependence. In this case we propose an intuitive definition of 

what one should understand by random preferences being exogenous. Specifically, this definition 

asserts that in the reference case, the indirect utility (conditional on unobservables known by the 

agent) at any current or future point in time is independent of current and previously chosen 

alternatives (states). The underlying intuition is that since the utility function represents the value of 

the respective states, once maximum utility has been achieved, it should (in the reference case) be 

irrelevant for level of maximum utility which of the states that yields the maximum. This assumption 

seems almost inescapable: In fact, if this were not so, not all relevant aspects of the states would be 

captured by the utility function since knowledge about the actual choice and the choice history would 

represent relevant information about the level of the utility of the current choice. However, this 

contradicts the notion of utility as an “ideal” index which by definition is meant to capture the value of 

all relevant aspects of the states. 

 Under suitable regularity assumptions, it follows from this definition of exogenous random 

preferences that the utility, ( )jU t  of state j at time t, viewed as a stochastic process in time (and 

conditional on unobservables known to the agent), becomes a so called Extremal process (possibly 

with deterministic drift). The Extremal process is analogous to the Brownian motion. Whereas the 

updating algorithm for the Brownian motion has the property that the realization in the current period 

is obtained as the sum of the realization at the previous period plus an independent increment, the 

realization of the Extremal process in the current period equals the maximum of the previous 

realization (possibly depreciated) and an independent “increment”. Current utilities may depend on the 

utilities in the previous period due to habit persistence. The corresponding conditional choice process 

(given the unobservables known to the agent) turns out to be a Markov chain with a particular 

functional form of the transition probabilities (hazard functions) in terms of parameters of the 

underlying utility function.  

Evidently, the assumption of the reference case is often too restrictive. We therefore discuss 

how the framework may be extended to allow for structural state dependence. In this case the Markov 

property will no longer hold. As mentioned above, this extended modeling framework allows us to 
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separate structural state dependence effects from habit persistence provided we know the distribution 

of unobservables than are known to the agent. 

 Dagsvik (2002) has provided an alternative axiomatization of behavioral duration models. 

Specifically, he proposed an intertemporal version of IIA and demonstrated that it implies extremal 

utility processes. In contrast to Dagsvik (2002), this paper allows the utilities to be interdependent 

across alternatives, with multivariate extreme value distribution. Also the regularity conditions 

assumed by Dagsvik (2002) are considerably stronger that the ones postulated in this paper. It follows 

that the results of Dagsvik (2002) are special cases of the results of this paper. 

 Whereas the results referred to above are obtained under the assumptions of choice sets being 

constant over time, we also consider the case where choice sets may be non-decreasing over time. A 

general treatment of time varying choice sets is, however, rather complicated, and the analysis of this 

case is left for another occasion. However, in practice it may not be evident how interesting it is in 

applications to allow for time varying choice sets since one may always approximate the case where 

some alternatives disappear by weighting down the utilities of the respective alternatives so that they 

become very unattractive and consequently will almost never be chosen although they formally belong 

to the choice set. 

In many applications it is of interest to allow for alternative-specific fixed or random effects. 

Recall that the model structure is derived conditional on unobservables that may sometimes be 

represented by random- or fixed effects, and it is therefore of particular interest to allow for such 

effects in our framework. We discuss identification in this case and we indicate how one can derive 

conditional maximum likelihood estimation procedures in these cases, similarly to Chamberlain 

(1980).  

Another interesting challenge is the potential extension of the framework developed in this 

paper to models for discrete dynamic programming, similar to Rust (1987). A full treatment of the 

case with uncertainty and stochastic dynamic programming is, however, beyond the scope of the 

present paper and will be discussed elsewhere.  

The paper is organized as follows: In section 2 we propose a characterization of the utility 

function as a random function of time (utility process) and we derive their implications for the 

stochastic structure of the utility process. In section 3 we derive implications for the corresponding 

probabilistic choice model for the case with non-decreasing choice sets. In section 5 we discuss how 

one can allow for structural state dependence and in section 6 we deal with identification. In section 7 

we discuss how to apply the modeling framework to analyze labor supply and sectoral mobility in a 

static and a life cycle setting, respectively.  
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2. Characterization of preferences  
We shall now assert assumptions with the purpose of obtaining a theoretical justification of the 

quantitative structure of the model. Let S be the universal set of alternative, that is, the maximal set of 

available alternatives, and let it be represented by the index set {1, 2, …, m}. The actual choice set B 

may be equal to S or be a proper subset of S. In this section we assume that the actual choice sets do 

not vary over time. Let ( )jU t  denote the agent’s utility of being in state j (alternative j) at time (or age 

t), ,j S∈  utility function is assumed to be a random function. In the context of life cycle analysis it 

may be thought of as a reduced form value function representing current and future uncertain 

prospects. Let ( )J t denote the chosen alternative (state) from S at time t, ( )jZ t  a vector of exogenous 

and observable alternative-specific attributes, and ( )j tξ  an exogenous random variable that captures 

the effect of unobservables on the utility of alternative j at time t  that are perfectly known by the 

agent. Moreover, let ( ) { ( ), }h t J s s t= <  and ( ) { ( ), , 1,2,..., }.jU t U s s t j m= < = That is, h(t) represents 

the choice history prior to t and ( )U t  represents all the agent’s utilities prior to time t. Analogous to 

Heckman (1981a), a fairly general utility representation of preferences may be written as 

 

(2.1)  ( ) ( ( ), ( ), ( )) ( ( ), ( )),j j j j jU t v Z t t h t g U t tξ η= +   

 

where ( )v ⋅  and ( )jg ⋅  are suitable deterministic functions. Whereas ( )j tξ is known to the agent, the 

variable ( )j tη  is random to the agent, in the sense of Thurstone (1927). Since utility is random, the 

function { ( ), 0}J t t >  will be a random process. Thurstone’s argument for allowing tastes to be random 

to the agent himself was that agents are viewed as having difficulties with assessing a precise and 

definitive value of the respective alternatives. Evidence from laboratory experiments as well as 

everyday observations indicate that, (i) the agents may have taste for variation, (ii) they may find it 

hard to assess the value of the alternatives because they may be unsure about their tastes and their 

perceptions may be influenced by fluctuating moods and whims, (iii) they may have limited 

information about the alternatives and may receive unanticipated information over time.  

Let 1 2{ ( ), 0} {( ( ), ( ),..., ( )), 0}mU t t U t U t U t t≥ ≡ ≥  denote the utility function (vector of utilities) 

of the agent.  
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 Assumption 1 (definition of exogenous random preferences) 

 Conditional on the agent’s information, the value process, {max ( ), },k kU t sτ τ≥ ≥  restricted 

to the time interval [ , ],s t  is independent of the choice history prior to s, { ( ), },J sτ τ ≤  for any 

0 .s t< ≤  

 

 Note that the assertion in Assumption 1 is only supposed to hold conditional on the agent’s 

information. It asserts that the indirect utility at time t is independent of current and past choices. 

Recall first that in the standard deterministic duality theory the indirect utility is fully determined by 

income, prices and possible constraints. Thus, knowledge of which alternative is the most preferred 

does not represent additional information of relevance for the determination of the indirect utility 

function. Consider the stochastic setting. For simplicity, consider the special case of choice behavior at 

one point in time. As in the deterministic case, the indirect utility max ( )k kU t  is completely 

determined by preferences and choice constraints (prices, income and choice set). Thus, when 

preferences are exogenous, and consequently unaffected by previous choice experience, knowledge 

about J(t) will not represent information that is relevant for assessing the value of the level of 

max ( ).k kU t  If max ( )k kU t  were correlated with the choice J(t) it would mean that not all information 

that is relevant for the agent’s indirect utility is captured by the utilities, which means that the utility 

function would be ill defined. To further facilitate interpretation consider a large number of 

independent replications of a choice experiment. “Independent” means here that the respective random 

terms are drawn independently across experiments. In different replications the choices and the 

indirect utilities may be different due to different draws of the random terms. However, if the indirect 

utility and the choice were correlated it would mean that the c.d.f. of the indirect utility, given that 

state 1 (say) was chosen would be different from the corresponding c.d.f. given that state 2 (say) was 

chosen. This appears inconsistent with the fact that the agent’s perception about the value of each 

alternative is fully represented by the utility function.  

 

 Assumption 2  

 At each given point in time t, and conditional on the agent’s information, the utility process 

has the following properties:   

(i)  ( ) ( ) ( ),U t v t tε= +  

( )v t is a deterministic vector and ( )tε is a random vector that is independent of ( ).v t  Moreover, ( )v t  

can attain any value in ,mR  

(ii)           1{ ( ), 0}U t t ≥  is independent of the processes 2 3{( ( ), ( ),..., ( )), 0}mU t U t U t t ≥   
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and 

(iii)          { ( ), 0}U t t ≥  is continuous in probability. 

 

 Note that the separability condition in (i) is rather weak. For example, the GEV (Generalized 

Extreme Value) model fulfils this condition. Dagsvik (1994) has demonstrated that within the class of 

random utility models the GEV model implies no (essential) restrictions on the choice probabilities. 

Note that the assertion that ( )tη  is independent of ( )v t  does not necessarily imply that the stochastic 

process { ( ), 0}t tε ≥  is independent of the deterministic process { ( ), 0}.v t t ≥  For example, even if 

( )tε and ( )v t are independent, ( )tε  may depend on ( )v s for some s < t. Using the notation of eq. (2.1) 

we note that ( ) ( ( ), ( )).j j jt g U t tε η=   Condition (ii) does not seem to be an essential restriction due to 

the fact that at most utility differences can be identified (in a distributional sense), see Strauss (1979, 

Corollary 1, p. 40). This condition is necessary for achieving central theoretical results. However, 

some results obtained in this paper will continue to hold even if assertion (iii) is dropped, as we shall 

discuss below. Condition (iii) is a regularity property and the concept “continuity in probability” 

means that the probability that | ( ) ( ) | ,j jU s U t δ− >  for any 0,δ >  tends towards zero as s tends 

towards t. In our context continuity in probability is a rather weak condition, and it does not imply that 

the sample paths of the process { ( ), 0}jU t t ≥  are necessarily continuous. For example, a stochastic 

process with jumps may still be continuous in probability. The continuity-in-probability condition only 

implies that the jumps of the process cannot occur “too frequently”.  

 Although the additive separability conditions (i) of Assumption 2 is a typical one that is often 

routinely invoked, it is nevertheless ad hoc from a theoretical perspective. It can however, be given a 

theoretical interpretation and justification, which we shall now address. 

 

 Assumption 2′ (Product rule) 

 Let ( , ) ( ( ) ( )).t j kP j k P U t U t= >  At any point in time t, and conditional on the agent’s 

information, the Product rule  

   ( , ) ( , ) ( , ) ( , ) ( , ) ( , ),t t t t t tP j k P k r P r j P j r P r k P k j=  

holds, for any distinct , , .j k r S∈  

 

 The intuition behind the product rule goes as follows: Suppose that an individual is making 

choice from the set { , , }.j k r  Provided the choices are independent, the left hand side is the probability 

of the intransitive  chain ,j k r j    whereas the right hand side is the probability of the intransitive 
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chain ,j r k j    where   means “preferred to”. This assertion is called the Product rule. The 

Product rule can thus be interpreted as asserting that an intransitive chain in one direction is not more 

probable than an intransitive chain in another direction. One can demonstrate that the Product rule 

holds if and only if  

   
exp( ( ))

( , ) ,
exp( ( )) exp( ( ))

j
t

j k

v t
P j k

v t v t
=

+
 

for distinct , ,j k S∈  where { ( )}jv t  are deterministic terms that are unique up to an additive constant,  

see Luce and Suppes (1965, p. 350). It is well known that the binary choice probabilities can be 

rationalized by the additively separable random utility model ( ) ( ) ( ),j j jU t v t tε= +  where the random 

error terms ( ),j tε  ,j S∈  are independent with c.d.f. exp( exp( )).x− −  This result proves that under the 

Product rule the utility function admits an additively separable structure. Moreover, for binary choices 

there is no loss of generality by letting the random error terms be independent. Thus, the Product rule 

has a nice theoretical interpretation (in that departure from transitivity is random) and it implies that  

one can represent preferences by additive random utilities.3 Before we introduce the next assumption 

we need an additional definition. By stationary environment we mean that the observed covariates that 

influence the utility processes are constant over time. 

 

Assumption 3 

 In a stationary environment the utility vector process converges to a stationary process as 

time increases. 

 

 This is an intuitively plausible assumption. The reason why we require time to be large is that 

there may be possible “upstarting” effects, which may gradually fade away.  

 The axioms above have important implication which we shall discuss below.  

 

 Theorem 1 

 Assumptions 1 to 3 hold if and only if the updating equation for the utility processes 

}0),({ ≥ttU j  is given by 

(2.1)                        ( ) ( )( )( ) max ( ) , ,j j jU t U s t s W s tθ= − −  

                                                      
3 In principle, the Product rule can also be tested non-parametrically. In the present setting such testing is however not 
straight forward in the case of habit persistence and unobservables. 
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for 0 ,s t≤ <  where ( )1 2( , ) ( , ), ( , ),..., ( , )mW s t W s t W s t W s t≡  is independent of 

( )1 2( ) ( ), ( ),..., ( )mU s U s U s U s≡  and has standard multivariate type III extreme value c.d.f. given by 

(2.2)

( ) ( )1 1 2 2( , ) exp exp( ( ) ),exp( ( ) ),...,exp( ( ) ) exp( ( ) )
t

m m

s

P W s t x H w x w x w x t dτ τ τ τ θ τ
 

≤ = − − − − − − 
 
  

where θ  is a positive constant, ( ), 1,2,..., ,jw t j m=  are deterministic terms, 

(2.3) ( ) ( )1 2 3( ) exp , ,..., mH y y H y y y= +  , 

H is a positive decreasing function on 1mR −
+ with the properties; (0,0,...,0) 0H = , 

( )2 3lim , ,..., ,mH y y y = ∞  when yj tends towards ,∞  for any j > 2 and for any real z, 

(2.4) ( ) ( )2 3 2 3, ,..., , ,...,m mH zy zy zx zH y y y=  , 

and ( )2 3, ,..., mH y y y  satisfies conditions that ensures that exp(- 2 3( , ,..., )mH y y y ) is a well defined 

multivariate c.d.f. Moreover, { ( ), }jU t t ≥ is a strictly stationary Markovian process. 

 Conversely, (2.1), (2.2) and (2.4) imply that Assumption 1 holds, (even if (2.3) does not hold). 

 

 The proof of Theorem 1 is given in Appendix A. Note that Theorem 1 states that the structure 

in (2.1), the distribution function of ( , ),W s t as well as the independence property ( , ) ( ', ')W s t W s t⊥ , 

when ( , ) ( ', ') ,s t s t∩ = ∅ are implied by Assumptions 1 to 3. This is indeed remarkable and far from 

intuitive. 

 The term θ  may be interpreted as a preference discount factor. This parameter plays a crucial 

role in the developments below because it is a key determinant of habit persistence, to be discussed 

further below. We note that a particular multivariate type III extreme value distribution function plays 

a major role here.4 This distribution is well known within the theory of discrete choice and it implies 

the so-called GEV model (Generalized Extreme Value), see McFadden (1978). As regards conditions 

that ensure that exp(- 2 3( , ,..., )mH y y y ) is a multivariate c.d.f. we also refer to McFadden (1978). By 

standard multivariate type III extreme value distribution we mean that the corresponding marginal 

distributions are equal to exp( exp( )).x− −  

 The next result follows readily from Theorem 1.  

                                                      
4 McFadden (1978) calls this distribution the Generalized Extreme Value distribution. 
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 Corollary 1 

 Assume that time is discrete. Then under the assumption of Theorem 1 the utility functions 

have the structure, 

(2.5)            ( )( )( ) max 1 , ( ) ( )j j j jU t U t w t tθ η= − − +  

where 1 2( ) ( ( ), ( ),..., ( )),mt t t tη η η η= t = 1, 2, …, are independent and independent of the deterministic 

terms, { ( )}jw t , and has standard multivariate type III extreme value distributed given by 

(2.6)  ( ) ( )( )1 2( ) exp exp( ),exp( ),...,exp( ) ,mP t x H x x xη ≤ = − − − −  

where the function H satisfies (2.3) and (2.4) and necessary conditions for the right side of (2.6) to be 

a multivariate c.d.f., with one- dimensional univariate marginal distributions equal to 5  

(2.7)                   ( ) ( )( )( ) exp expjP t x xη ≤ = − − . 

 

 The proof of Corollary 1 is given in the appendix. 

  A stochastic process with the property (2.2), and with 0,θ = is called an extremal process in 

probability theory, see for example Resnick (1987). We shall call the process that satisfies (2.2) with  

0θ ≥ , a modified extremal process. Thus, the modification consists in allowing for preference 

depreciation represented by θ. Usually, in the absence of state dependence effects, the deterministic 

terms { ( )}jw t  depend on time through time-dependent covariates. When θ is large there would be no 

dependence on the past and in this case, so that in this case ( ) ( ) ( ).j j jU t w t tη= +  If we drop Axiom 3 

then we may also allow θ  to be equal to zero. Note also that in the stationary case ( )jw t does not 

depend on t. 

 The extremal processes belong to a more general class of stochastic processes called max-

stable processes. Max-stable processes have the property that they allow one to apply the maximum 

operation without “leaving the class”. That is, the maximum of independent max-stable processes is 

also a max-stable process. This is analogous to the class of Gaussian processes, which is closed under 

aggregation. The class of modified extremal processes is also closed under the maximum operation. 

The modified extremal process is, possibly apart from deterministic depreciation, a pure jump 

stochastic process. In our context this means that the “current” utility has the role of an “anchoring” 

level such that unless the values of new stimuli exceed the anchoring level, utility will not be updated. 

The deterministic depreciation means that the “anchoring” effect at a given point in time gradually 

                                                      
5 There seems to be some confusion in the statistical literature as regards notation. What some authors call type III extreme 
value distributions, others call type I. Here we have adopted the convention of Resnick (1987). 
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fades away as time passes. This interpretation is consistent with results from psychological research 

where it is typically found that individuals do respond to stimuli only if they are sufficiently strong. In 

fact, representations similar to (2.1) or (2.5) have a long history in psychology and measurement 

theory and stem from empirical evidence indicating that individuals seem not to react to stimuli unless 

their intensity exceeds some sensory threshold. This notion of sensory threshold was introduced by the 

philosopher Herbart (1824), see Gescheider (1997). In the present case this means that habit 

persistence can be interpreted as a setting where the agent does not pay attention to some “stimuli”, 

unless the stimuli exceed some threshold determined by previous utility evaluations. Thus, with this 

interpretation, if ( ) ( ) ( 1) ,j j jw t t U tη θ+ ≤ − −  the agent will not react to the new stimulus and, 

accordingly, will not update her or his preferences (apart from depreciation). This interpretation is 

similar to Fechner's (1860/1966) notion of “just noticeable differences” (jnd). The moments of time 

updating occurs may not necessarily relate to actual events, but could be due to sudden glimpses of 

“insight” at which epochs it is realized that utility re-evaluations are needed because the value enjoyed 

from the respective states is not the same as it used to be. Re-evaluations may of course also happen 

due to unanticipated information that arrives. The special case with θ = 0, corresponds to the situation 

in which the agent has “perfect” memory and fixed tastes in the sense that previous preference 

evaluations and tastes are retained perfectly fixed in the agents mind. Unless some of the systematic 

utility components changes, there will be no change of state in this case. The case with positive θ  

corresponds to the case with “imperfect” memory in the sense that previous utility evaluations are 

depreciated and, as a result, the current arriving stimulus will be taken into account provided  

( ) ( ) ( 1) .j j jw t t U tη θ+ > − −  

Although this and similar interpretations are interesting, they are by no means crucial for the 

theoretical justification of our approach. It is sufficient for the rationale of our approach to rely on the 

intuition of Assumption 1. 

 Note that it follows from Theorem 1 and Corollary 1 that the utilities at any point in time are 

multivariate extreme value distributed. To realize this, consider for simplicity the discrete time case in 

which 

(2.8)  ( )0( ) max ( ) ( ) ( ) ,tU t w tτ τ η τ τ θ≤ ≤= + − −  

which by Corollary 1 implies that the c.d.f. of U(t) has the form  

(2.9)  ( ) ( )( )

0

( ) exp exp( ( ) ) ,
t

tP U t x e H w xτ θ

τ
τ− −

=

 ≤ = − − 
 
  

where 1 2( ) ( ( ), ( ),..., ( )),mw w w wτ τ τ τ=  1 2( , ,..., )mx x x x=  and  

    ( )1 1 2 2(exp( ( ) ))) exp( ( ) ),exp( ( ) ),...,exp( ( ) ) .m mH w x H w x w x w xτ τ τ τ− = − − −  
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Clearly, the expression in (2.9) is also a multivariate extreme value distribution as is easily verified. 

The corresponding choice probabilities for being in a state at any given point in time follows by using 

the familiar formula for GEV choice probabilities, see McFadden (1978). 

3. Implications for the choice probabilities in continuous time  

3.1. Time-invariant choice sets  

We shall now explore the implications from the theory above for the structure of the choice 

probabilities in the case where the choice set does not change over time, and where potential 

unobservable known to the agent are given. For my R+∈ we define ( ),BH y  obtained from ( ),H y  by 

setting 0jy =  when .j B∉  (cf. McFadden, 1978). 

  

 Theorem 2 

 Under the assumptions of Theorem 1 it follows that { }( ), 0J t t >  is a Markov chain. The 

corresponding transition-and state probabilities, { ( , )}ijQ s t  and { ( )},jP t  can be expressed as 

(3.1)   ( ) ( ) ( ) ( )
, ( ) ( ) ,

( )
j j

ij
k

k B

V t V s
Q s t P J t j J s i

V t
∈

−
= = = =


 

for , 1,2,..., , , ,s j j m i j j B< = ≠ ∈  

(3.2)    ( ) ( )
\{ }

, 1 ,ii ik
k B i

Q s t Q s t
∈

= −   

and 

(3.3)                                             ( ) ( )
( ) ( ) ,

( )
j

j
k

k B

V t
P t P J t j

V t
∈

= = =


 

where 

(3.4)  ( )
0

( ) exp( ( ) ) exp( ( ) )) exp( ( )) ,
t

B
j j j j jV t EU t t w H w d cθ τ θτ τ τ= + = + +  

and where jc is a positive parameter that captures the value of being in state j at time zero 

and B
jH denotes the partial derivative with respect to component j .  

 

 The proof of Theorem 2 follows from Dagsvik (1988), see Appendix A for details. Resnick 

and Roy (1990) has extended the result of Theorem 2 to the case where the joint p.d.f. of 
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2 3( ) ( ( ), ( ),..., ( )),mU t U t U t U t=  at each given point in time t, does not necessarily exist. This means that 

the function H(y) is not necessarily jointly differentiable. 

 Recall that the terms { ( ), 0},jw t t ≥  which are treated as deterministic in this section, may 

depend on variables that are known to the agent by unobserved to the researcher. As mentioned above, 

the parameter θ  is closely linked to the serial dependence of the utility processes, see Dagsvik (2002). 

One can show that 

(3.5)                            ( )
( )

max ( ),max ( ) ,
( )

k
k B

k B k k B k
k

k B

V s
Corr U s U t

V t
ζ ∈

∈ ∈

∈

 
 =  
 
 




 

where the function [ ]( ), 0,1∈x xζ , is given by Tiago de Oliveira (1973), and equals 

(3.6)                                          
x

2
0

6 log z
( ) dz

1 z
xζ = −

π − . 

It can be shown that ( )xζ  is continuous and strictly increasing on [0,1] with (0) 0=ζ  and (1) 1=ζ . 

Alternatively, one can also show that (Resnick and Roy, 1990), 

(3.7)  ( )
( )

exp( max ( )),exp( max ( )) .
( )

k
k B

k B k k B k
k

k B

V s
Corr U s U t

V t
∈

∈ ∈

∈

− − =



 

As measures of dependence the expressions in (3.5) and (3.7) are equivalent since they differ only by a 

strictly increasing transformation. From (3.4) it follows that when ( ) / ( ) 0,k kk B k B
V s V t

∈ ∈
→   then   

Hence, the corresponding autocorrelation in (3.5) and (3.7) tend towards zero in this case, such that in 

the limit there is no serial correlation in tastes. It follows readily from Theorem 2 that in this case 

( , ) ( )ij jQ s t P t=  where  

(3.8)  
( )

( )
exp( ( )) exp( ( ))

( ) .
exp( ( )) exp( ( ))

B
j j

j B
k k

k B

w t H w t
P t

w t H w t
∈

=


 

The expression in (3.8) is the familiar formula for the choice probabilities of the GEV family, see 

McFadden (1978). In the other extreme case when 0,θ → then ( ) / ( ) 1k kk B k B
V s V t

∈ ∈
<   for ,s t<  

and finite for t, but as t tends towards infinity this ratio tends towards 1, which corresponds to perfect 

serial dependence in tastes. 

 From Theorem 2 we see that an important implication of (modified) extremal utility processes 

is that that the choice process { ( ), 0}J t t >  is a Markov chain in continuous time (this holds in the 

general case with non-stationarity). Thus, in the “reference” case with no state dependence effects 

Axiom 2 provides a theoretical motivation for assuming the Markov property. In addition, 
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Assumptions 1 to 3 imply a particular structure of the transition- and state probabilities, as expressed 

in (3.1) to (3.4).  

 The next result follows immediately from Theorem 1. 

 

 Corollary 2 

 Suppose that S contains at least three alternatives. When the choice set contains more than 

two alternatives it follows from Theorem 1 that the choice probability given a transition equals 

(3.9)                  
( )

( )
\{ } \{ }

( ) exp( ( )) exp( ( ))
( )

( ) exp( ( )) exp( ( ))

B
j j j

ij B
k k k

k B i k B i

V t w t H w t
t

V t w t H w t
π

∈ ∈

′
= =

′ 
. 

 

 We recognize the formula in (3.9) as a GEV choice model, that is, the choice probability that 

follows from maximizing a utility function of the form ( ) ( ),j jw t tη+  subject to the choice set \ { },B i  

where  1 2( ( ), ( ),...)t tη η  are multivariate extreme value distributed.  

 From Corollary 2 it follows moreover that for 

 

 Corollary 3 

 Suppose that S contains at least three alternatives. Under the assumptions of Theorem 1 the 

transition probabilities { ( , )}ijQ s t of the Markov chain { }( ), 0J t t > have the property that 

( , ) ( , ),ij rjQ s t Q s t= when , , .i r i j r j≠ ≠ ≠  

 

 The result in Corollary 3 is rather intriguing: It asserts that under the absence of state 

dependence, the transitions to a new state are stochastically independent of the state of origin. Thus, 

this property is in fact a characterization of the reference case of no state dependence. 

 Next we shall consider the corresponding transition intensities. Recall that the two state case 

the hazard rates of a continuous time Markov chain are defined (usually) as                         

          
( , )

( ) lim ij
ij

s t

Q s t
q t

t s→
=

−
,  

for .i j≠  

 

 Corollary 4 

 Let ( )iT s  be the duration of stay in state i, given that state i was entered at time s. Under the 

conditions of Theorem 1 the transition intensities of the Markov chain { }( ), 0J t t >  are given by 
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(3.10)   
( )( ) exp( ( )) exp( ( ))

( ) ,
( ) ( )

B
j j j

ij
k k

k B k B

V t w t H w t
q t

V t V t
∈ ∈

′
= =
 

 

for ,i j≠ ,j B∈  and 

(3.11)   
\{ }

( ) ( ).ii ik
k B i

q t q t
∈

=   

Furthermore, 

(3.12)   ( )( ) exp ( ) .
s y

i ii

s

P T s y q dτ τ
+ 

> = −  
 
  

 

 The intensity ( )iiq t  is the hazard function (hazard rate) at time t. The formula in (3.12) for the 

duration c.d.f. can be simplified a bit. For notational simplicity, write 

    ( ) ( ).k
k B

V t V t
∈

=  

With this notation we can express the hazard function as 

(3.13)    
( ) ( )

( ) .
( )

i
ii

V t V t
q t

V t

′ ′−
=  

When the expression in (3.13) is inserted into (3.12) we obtain that 

   ( ) ( )( )
( ) exp .

( ) ( )

s y
i

i

s

VV s
P T s y d

V s y V

τ τ
τ

+ ′
 > =
 +  
  

Example 3.1 

In this example we consider a choice setting with 3 alternatives, i.e., S = {1,2,3}. The error terms of 

the utilities of alternatives 2 and 3 are allowed to be correlated. To this end we assume that the joint 

c.d.f. of the error terms of the increment of utility function, 1 2 3( ), ( ), ( )),t t tη η η(   is given by 

  31 2 //

1 1 2 2 3 3( , , ) exp( ( ) ),xx xP x x x e e eη η η − ρ− − ρ ρ≤ ≤ ≤ = − − +  

where (0,1].ρ ∈  This specification implies that  

    2
2 3( , ) 1 ,corr = −ε ε ρ  

and 

                        31 2 //( ) ( ) .xx xH x e e e ρρ ρ= + +  

Hence, it follows that 

  1 1 1

0

( ) exp( ( ) ) ,
t

V t w cθ= τ + τ +   1 1( ) exp( ( ) ),V t w t tθ′ = +  



 18

  ( ) 1

2 3

0

( ) exp( ( ) / exp( ( ) / exp( ( ) / ) ,
t

j j jV t e w w w d c
ρρ ρ ρ−θτ= τ + τ τ τ +  

and 

  ( ) 1

2 3exp( ( ) / exp( ( ) / exp( ( ) / ),( ) t

jjV e w t w t w tt
ρρ ρ ρ−θ′ +=  

 

for j = 2, 3. The corresponding transition intensities now follow by inserting the expressions above in 

(3.10). Similarly, the distribution of the holding times in the respective states follows from (3.11). 

 

Corollary 5 

 In the special case where the utility processes are independent Theorem 2 implies that 

   ( )
0

( ) exp ( ) .
t

j j jV t w d cτ τθ τ= + +  

Furthermore, if B contains at least three alternatives, the choice probabilities, given transition out of 

the state occupied reduces to 

(3.14) ( )
\{ }

exp( ( ))
( ) ( ) | ( ) , ( ) ( )

exp( ( ))
j

ij
k

k B i

w t
t P J t j J t i J t J t

w t
π

∈

≡ = − = ≠ − =


. 

  

 We note that the conditional transition probability in Corollary 5, satisfies the IIA property, 

see Luce (1959). From Corollary 5 the following result follows immediately: 

 

 Corollary 6 

 Under the conditions of Corollary 5 the transition intensities of the Markov chain { }( ), 0J t t >  

are given by 

(3.15)   
( )
( )( )

0

exp ( )
( )

exp ( )

j

ij t
t

k k
k B

w t
q t

w t d e cθτ τ θ τ −

∈

=
 

− − + 
 

 
, 

for ,i j≠  and for i j= , 

(3.16)   
\{ }

( ) ( )ii ik
k B i

q t q t
∈

=  . 

 The corresponding transition probabilities and the unconditional choice probabilities are 

given by 
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(3.17)   

0

( , ) ,

exp( ( ) ( ) )

exp( ( ) ( ) )
ij

k B

t

j

s
t

t
k k

Q s t

w t d

w t d e cθ

τ τ θ τ

τ τ θ τ
∈

−

=
− −

 
− − + 

 





 

for ,i j≠  and  

(3.18)   0

0

( )

exp( ( ) ( ) )

.

exp( ( ) ( ) )
j

k B

t
t

j j

t
t

k k

P t

w t d e c

w t d e c

θ

θ

τ τ θ τ

τ τ θ τ
∈

−

−

=
− − +

 
− − + 

 





 

  

 In Appendix B we have outlined how the transition probabilities and intensities look like in 

the case where the deterministic functions { ( )}jw t  are step functions that only changes at discrete time 

periods. In the case with independent utility processes across alternatives and with time independent 

systematic utility components { ( )},jw t  and 0,jc =  for all j, the result of Corollary 6 reduces to 

(3.19)   
( )

( )
1

exp
( )

exp

j

j j m

k
k

w
P t P

w
=

= =


 

and 

(3.20)   ( ) ( )( )1 exp
,

1 exp( )ij j

t s
Q s t P

t

θ
θ

− − −
= ⋅

− −
 

for s t< , ,i j≠  and 

(3.21)   
( )( ) ( )

( )
( )( )
( )

exp exp 1 exp
( , )

1 exp 1 expii i

t s t t s
Q s t P

t t

θ θ θ
θ θ

− − − − − − −
= + ⋅

− − − −
. 

The autocorrelation function in this case reduces to 

(3.22)   ( ) ( )( )
( )

1 exp
( ), ( ) 1

1 expj j

t s
Corr U s U t

t

θ
ζ

θ
 − − −

= −  − − 
. 

The corresponding transition intensities are given by 

(3.23) ( )( )
1 exp

j
i

P
q t

t

θ
θ

=
− −

. 

From (3.19) to (3.23) we see that the transition probabilities and intensities become stationary when tθ 

is large. However, when tθ is small this is not so. In fact, the transition probabilities and intensities 
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increase by the factor 1 (1 exp( ))tθ− −  when tθ  is small. The interpretation is that when the agent is 

very “young” the choice history is very short and therefore the effect of habit persistence is weak. As 

the agent grows older this “upstarting” effect disappears gradually, and becomes negligible when 

exp( )tθ−  is close to zero. This is also seen from the autocorrelation function in (3.22). When tθ  is 

large, the autocorrelation function is, apart from a strictly increasing transformation, equal to 

exp( )tθ− . However, when tθ  is “small” the autocorrelation is influenced by the term 

1 (1 exp( ))tθ− −  in such a way that it becomes weaker when t decreases. Consider the special case 

when θ  is close to zero. Then (3.20) and (3.21) are approximately equal to 

    ( , )ij j

t s
Q s t P

t

−= ⋅ , 

for ,i j≠  and 

                                                   ( , ) .ii i

s t s
Q s t P

t t

−= + ⋅  

In this case the autocorrelation function becomes,             

                            ( ) ( )
max ( ), max ( ) 1k k k k

t ss
Corr U s U t

t t
ζ ζ

 −  = = −  
   

. 

Thus, when time is large there are no transitions in this case. However, when t is “small” the 

autocorrelation will be less than 1 which means that in the beginning the effect of habit persistence is 

reduced because the choice history is short. 

 In the special case where ( )jw t  does not depend on t and t is large the transition probabilities 

and intensities reduce to  

(3.24)        ( ) ( )( )( ), 1 expij jQ s t P t s θ= − − −  

for s t< , i j≠ , and 

(3.25)        ( ) ( )( ) ( )( )( ), exp 1 expii iQ s t t s P t sθ θ= − − + − − − . 

The corresponding transition intensities, for ,i j≠  are given by 

(3.26) ( ) =ij jq t Pθ . 

 The depreciation effect represented by the parameter θ can in fact be given an interesting 

interpretation, which we shall now explain. In fact, one can interpret the depreciation mechanism as a 

stochastic device where the habit persistence effect is represented by means of a particular Poisson 

process. The intuition is that, at independent random points Zk in time, 1,2,...k = , (random to the 

observer), the agent forgets, or stops, caring about previous evaluations and only takes into account 
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and new stimuli. That is, if for some k, 1k kZ t Z− < < , the agent will, at time t, only take into account 

previous preference evaluations within the interval ( ]1, .kZ t−  The intensity of this process is θ, which 

means that the probability that for some k, ( , )kZ t t dt∈ +  equals θdt. If the agent does care, he will 

keep the previous value without depreciation. Consider now (3.24). Since no explanatory variable 

change over time, the agent will never change to a new alternative unless he stops taking the past into 

account. Specifically, to change state from time s to time t the agent must stop taking into account 

previous evaluations of the alternatives at some time in the interval ( , ).s t  Since the interval between 

two events in a Poisson process is exponentially distributed with θ  as parameter, the probability that 

this will happen is 1 exp( ( ) ).t s θ− − −  The conditional probability that the agent shall choose 

alternative j, given that he stops caring about the past, equals Pj, since the corresponding utilities that 

govern this choice are ( ),j j jU w tη= +  where ( ), 1, 2,...,j t j mη = , are independent extreme value 

distributed as in (2.7). Hence, by multiplying Pj  by the probability that the agent will begin to neglect 

the past some time within ( , ),s t  (3.24) is obtained. Similarly, if the agent occupies state i at time s he 

will continue to be in state i at time t if the agent cares about past preference evaluations (which has 

probability equal to exp( ( )),t sθ− −  or if the agent does not care about past evaluations (with 

probability )))(exp(1 st −−− θ  but chooses state i with probability Pi. Hence, (3.25) follows. Eq. 

(3.26) asserts that the intensity of a transition from i to j can happen when the agent stops taking the 

past into account in ( ),t t dt+ , which happens with probability θdt. Given that he forgets about the 

past he will go to state j with probability Pj. Hence, we obtain that the probability of going from state i 

to j in ( ), +t t dt  equals θdtPj. 

 Let us compare the structure of the preferences and their implications obtained above with a 

formulation based on a multiperiod Probit framework. For simplicity we shall only consider the binary 

case. To this end assume that 

(3.27)   ( )( ) 1 ( ) ( )j j j jU t U t w t tρ η= − + +  

where ( ), 1,2, 1,2,...j t j tη = = , are i.i. normally distributed random variables with variance equal to 

1/2. The structure in (3.27) is analogous to the extremal process given in (2.5). In particular, both 

representations have the Markov property. It follows easily that 

(3.28)  ( ) ( ) ( )( )
2

2 1 2 12( 1)

1
( ) ( )

1
k

t
k t

P U t U t w t k w t k
ρ ρ

ρ +
≤

 −  > = Φ − − −   −   
 . 

Not surprisingly, the structure in (3.28) is similar to the one obtained in Corollary 6 for the binary 

case. The corresponding transition probabilities cannot, however, be expressed on closed form. The 
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multiperiod probit setting with utility as in (3.27) has been discussed by Heckman (1981a, section 

3.10). 

 Although the specification in (3.27) and the choice probability in (3.28) are analogous to (2.5) 

and (3.18) the implications for the choice process over time are qualitatively different. Whereas the 

extremal process representation of the utility processes that follows from Assumptions 1 to 3 yields a 

Markovian choice process, the first order autoregressive Gaussian process representation in (3.27) 

does not imply a Markovian choice process. However, the most important weakness of the multiperiod 

Probit model is the lack of choice theoretic rationale for the model structure (in the reference case). 

 

4. Non-decreasing choice sets 

Here, we shall consider the situation with time varying choice sets. In general, this case is 

more complicated and we shall limit our treatment to the case in which the utility processes are  

independent across alternatives and where the choice sets, { ( ), 0}B t t >  are non-decreasing, which  

means that ( ) ( ),B s B t⊆ whenever  s < t. We have the following result. 

 

 Theorem 3 

 Assume that ( ) ( ),B s B t⊆ whenever s < t and that the alternative-specific utility processes 

are independent across alternatives.  Then the choice process { ( ), 0}J t t >  is a  

Markov chain with transition- and state probabilities given by  

      ( ) ( )
( )

( ) ( ( )) ( )
, ( ) ( ) ,

( )
j j j

ij
k

k B t

V t B s V s
Q s t P J t j J s i

V t

δ

∈

−
= = = =


 

for , 1,2,..., , , ( ), ( ),s j j m i j i B s j B t< = ≠ ∈ ∈  

                     ( ) ( )
( )\{ }

, 1 ,ii ik
k B t i

Q s t Q s t
∈

= −  . 

and 

            ( )
( )

( )
( ) ( ) ,

( )
j

j
k

k B t

V t
P t P J t j

V t
∈

= = =


 

where ( ) 1,k Bδ = if k belongs to the set B and zero otherwise, and 

            
0

( ) exp( ( ) ) .
t

j j jV t w d cτ θτ τ= + +  

  

 Theorem 3 is proved in Appendix A. From Theorem 3 the next result is immediate; 
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 Corollary 7 

 If ( ) \ ( ),j B t B s∈  then  

(4.1)                            ( )( ) ( ) ( ( ) ).P J t j J s P J t j= = =  

 

The result of Corollary 7 asserts that the choice of “new” alternatives, that is, alternatives 

that are available at the current time epoch but were not available previously, is independent of  

previous choices.  

 Dagsvik (2002) postulated (4.1) as an axiom that should hold in the absence of structural  

state dependence, and he called it an Intertemporal version of the Independence from Irrelevant  

Alternatives, property (IIIA). He also proved that when the utilities { ( ), 0},jU t t ≥  j =1, 2,…, are  

independent max-stable processes then (4.1) implies that the utilities are Extremal processes.  

Consequently, Corollary 7 follows in this case.  

 Unfortunately, the case with general time varying choice sets is rather complicated, and will  

be discussed elsewhere.  

5. Structural state dependence 
In the analysis of panel data it is often noted that individuals who have experienced an event in the 

past are more likely to experience the event in the future than are individuals who have not 

experienced the event. Recall that there are two explanations of this: One explanation is that as a 

consequence of experiencing the event preferences and choice restrictions are altered. If so, otherwise 

identical individuals who did experience the event would behave differently in the future than 

individuals who did not experience the event. In this case choice experience has a genuine behavioral 

effect that give rise to so-called true state dependence. Another explanation is that preference and 

choice constraints differ across individuals in an unmeasured way. This implies that previous and 

future choices will be correlated, since choices represent information about temporally persistent 

unobservables that affect choices. Thus, this case yields so-called spurious state dependence,  

(Heckman, 1981a,b). As Heckman has emphasized in several papers, one cannot without a priori 

theoretical restrictions separate spurious from true state dependence. In other words, this identification 

problem cannot be settled by statistical methods alone (see for example Heckman, 1991).  

 In this case the structural part of the utility function becomes endogenous and it is far from 

evident how the corresponding choice probabilities should be specified in this case.  
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 Suppose initially that no state dependence were present such that preferences were exogenous 

and Assumption 1 to 3 hold. Then the utility representation in (2.5) holds. Now suppose that 

preferences may be affected by choice behavior. This means that either the systematic terms { ( )}jw t  

or the distribution of the random error terms { ( )},j tη  or both, are influence by choice behavior. Let 

( ) { ( ), }h t J s s t= <  denote the choice history prior to time t and let ( , ( ))jw t h t  and ( ( ))h tθ  denote the 

structural term of utility of alternative j and habit persistence parameter, respectively, modified by the 

choice history. 

 

 Assumption 4 

 Under structural state dependence the utility function is updated according to  

                ( , ( )) max( ( 1, ( 1)) ( ( )), ( , ( )) ( ))j j j jU t h t U t h t h t w t h t tθ η= − − − +  

where the vectors ( ), 1,2,...,t tη = are independent of the choice history, and with distributional 

properties as in Theorem 1. 

 

 Assumption 4 asserts that when the effect of previous choice experience is properly accounted 

for, in the sense that possible behavioral effects on the parameters of the utility function have been 

incorporated, then there is no interdependence between the current and future indirect utility and 

previous choices. The motivation for this is analogous to the justification of Assumption 1. Indeed, if 

this were not true it would signify that not all the relevant information about the value of the 

alternatives has been accounted for in the utility index. In other words, in this case the indirect utility 

would be ill defined since it fails to capture all information relevant for the agent's choice behavior. 

 The next result is an implication of Assumption 4. 

  

 Theorem 4 

 Assume that Assumptions 1 to 4 hold. Then the discrete time version of the transition 

probabilities hold with { ( ), }jw s s t< replaced by the corresponding experience dependent terms, 

{ ( , ( )), }.jw s h s s t<  

 

 The proof of Theorem 4 is given in Appendix A. 

The result of Theorem 4 means that one can introduce previous choice variables into the transition 

probabilities or transition intensities as if they were exogenous. However, the nice formula for the 

probability of being in a particular state will no longer hold. 



 25

6. Identification and conditional estimation  
In this section we shall discuss identification. In particular, we shall consider identification in three 

separate cases, namely the case with fixed effects, random effects and the case with neither random 

nor fixed effects. For simplicity, we assume throughout this section that the choice sets are constant 

over time and that the utility processes are independent over alternatives. In general, it may not be 

possible to represent the unobservables (known to the agent) by random or fixed effects because they 

may not be constant over time. The more general case with non-constant unobservables will not be 

discussed here.  

 

6.1. Identification in the absence of unobservables that are perfectly known 
to the agent. 
 

In this subsection we shall discuss identification in the basic case where there are no unobservables 

that are perfectly known by the agent. In particular, we shall show that given the transition intensities 

the respective partial derivatives of the H function can be recovered. For simplicity, the next result is 

given only for the case with exogenous preferences (no state dependence), although it is possible to 

extend the result to accommodate state dependence. 

 

 Corollary 8 

 Let A be any proper subset of the choice set B. Under the assumptions of Theorem 2 it follows, 

for \ , ,i B A j A∈ ∈  that 

(6.1)  ( )
\

log ( ) ( ) ( ) ,
t t

B
k ik jk

k B k A k B Ad d

H w e d c t q x q x dxθττ τ θ κ
∈ ∈ ∈

   + + = + +   
  

     

and 

(6.2)     ( )
\

log exp( ( )) ( ) log ( ) ( ) ( ) ,
t

B
j j ij ik jk

k A k B Ad

H w t w t t q t q x q x dxθ κ
∈ ∈

 + + = + + + 
 
   

where 0d ≥  and κ  are arbitrary constants. 

 

 The proof of Corollary 8 is given in appendix A. 

 Corollary 8 shows that (exp( ( )))exp( ( ) )B
j jH w t w t tθ+  is non-parametrically identified up to 

an arbitrary multiplicative constant, .κ  This constant is irrelevant because it cancels in the choice 

model. In particular (6.2) implies that 
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(6.3)  1 1 1
\

( ) log ( ) ( ) ( ) .
t

i ik k
k A k B Ad

w t t q t q x q x dxθ κ
∈ ∈

 + = + + + 
 
   

From the transition intensities we have that 

(6.4)  ( ) 1 1log exp( ( )) ( ) ( ) log ( ) log ( )B
j j ij iH w t w t w t q t q t+ − = −  

for ,1.i j≠  The relation in (6.4) are analogous to the corresponding identifying relations between the 

utility structure and the choice probabilities in the GEV model. Under suitable restrictions the 

structural terms { ( )}jw t  can be identified. Consequently, (6.3) implies that θ is identified. 

 Consider the particular case with only two alternatives and with utility processes that are 

independent across alternatives. In this case (6.3) reduces to 

(6.5)   ( )1 21 12 21( ) log ( ) ( ) ( )
t

d

w t t q t q x q x dxθ κ+ = + + +  

and 

(6.6)   ( )2 12 12 21( ) log ( ) ( ) ( )
t

d

w t t q t q x q x dxθ κ+ = + + + . 

In contrast to the case with more than two alternatives, there are only two transition intensities in the 

binary case. Thus for any pair of intensity functions 12 21( ), ( )q t q t  we can find a pair 1( )w t  and 2 ( )w t  

determined by (6.5) and (6.6). In other words, this implies that any Markov chain with two states has 

an independent Extremal process utility representation. We summarize this property in the corollary 

below. 

 

 Corollary 9 

 A Markov chain in continuous time with two states always admits an independent Extremal 

utility process representation. 

 

6.2. Identification with additive fixed effects and state 
dependence 
 
We assume in this section that the random error terms of the utility functions are independent across 

alternatives and that the respective structural terms contain fixed- or random effects. Consider first the 

case with fixed effects and assume that  

(6.7)   ( , ( )) ( , ( )),j j jw t h t w t h tμ= +   

where jμ  and ( , ( )),jw t h t  j = 1,2,…, are, respectively, fixed effects and deterministic functions of 

individual characteristics and alternative-specific attributes that are assumed known apart from a set of 
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parameters to be estimated. In general, the structural terms { ( , ( ))}jw t h t  may depend on choice 

experience through h(t). We normalize by letting 1 0.μ =  From Corollary 6 it now follows 

immediately that  

(6.8)    1
1 1

1

( , ( )) ( , ( ))
log ( , ( )) ( , ( )) ( , ( )) ( , ( )),

( , ( )) ( , ( ))
ij i

j j
i ij

q t h t q s h s
w t h t w t h t w s h s w s h s

q t h t q s h s

 
= − + −  

 
     

for ,1,i j≠  and 1.j ≠  Eq. (6.8) demonstrates that when covariates change over time one is able to 

identify   

   1 1( , ( )) ( , ( )) ( , ( )) ( , ( )).j jw s h s w s h s w t h t w t h t− + −     

If, for example, ( , ( )) ( , ( ))j jw t h t Z t h t β=  where { ( , ( ))}jZ t h t  are K-dimensional attribute vectors that 

also may be individual-specific, and possibly modified by choice experience. This implies that  

(6.9)  1 1 1 1
1

( ) ( ) ( ) ( ) ( ( ) ( ) ( ) ( )) .
K

j j k jk jk k k
k

w s w s w t w t Z s Z s Z t Z t β
=

− + − = − + −     

Thus, with standard conditions on the matrix 1 1{ ( ) ( ) ( ) ( )},k jk jk kZ s Z s Z t Z t− + −  it follows that the 

parameter vector β  is identified. 

 

6.3. Conditional likelihood estimation with fixed and random effects 

Assume now that there is no state dependence. Thus (6.7) reduces to ( ) ( ),j j jw t w tμ= +   where jμ  is a 

fixed or random effect. Consider for simplicity the case with discrete time and let ( )ijq t  be the one 

step transition probabilities from time t-1 to t. Chamberlain (1980) and Lee (2002) have demonstrated 

that one can form a particular conditional likelihood function in multinomial logit models where the 

fixed effects are eliminated. The duration model we have analyzed in this paper has a similar property. 

Specifically, it follows that 

(6.10)      1 1

1 1 1 1 1 1

( 1) ( ) 1
.

( 1) ( ) ( 1) ( ) 1 exp( ( 1) ( 1) ( ) ( ))
j j

j j j j j j

q t q t

q t q t q t q t w t w t w t w t

−
=

− + − + − − − + −   
 

The expression in (6.10) is the conditional likelihood of transitions from state 1 at time t-2 to state j at 

time t-1 and further back to state 1 at time t, given that transitions occur either from state i to state j, or 

vice versa. Thus, similarly to Chamberlain’s conditional likelihood method and the results above 

imply the potential of developing a similar conditional likelihood method for estimating the structure 

of { ( )}jw t  in a similar way as Honoré and Kyriazidou (2000). Unfortunately, in the presence of state 

dependence one cannot apply this method. 

 Consider next the analogous case with random effects. Let 
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(6.11)    
exp( ( , ( )))

( , ( ) | ) ,
( , ( ) | )

j j
ij t

w t h t
q t h t

V t h t e θ

μ
μ

μ −

+
=


 

where 1 2( , ,...}μ μ μ=  and 

   
0

( , ( ) | ) exp( ( , ( )) ) .
t

k k k
k

V t h t w h d cμ μ τ τ τθ τ
 

= + + + 
 

    

From (6.11) it follows that the unconditional transition probability of going from state i at time t-2 to 

state j at time t-1 and back to state i at time t, ,i j≠  is equal to 

  ( ) (2 1)

exp( )
( 1| ) ( | ) exp( ( 1) ( )) ,

( 1| ) ( | )
i j

ij ji j i t
E q t q t w t w t E

V t V t e θ

μ μ
μ μ

μ μ − −

+ 
− = − +  − 

   

which implies that 

(6.12)  
( )

( ) ( ) 1 1

1 1

1 1 1 1

1

1 exp( ( 1) ( 1) ( ) ( ))

( 1| ) ( | )
.

( 1| ) ( | ) ( 1| ) ( | ) j j

j j

j j j j
w t w t w t w t

E q t q t

E q t q t E q t q t

μ μ
μ μ μ μ + − − − + −

−
=

− + −    
 

Similarly to the case with fixed effects, the expression in (6.12) is the conditional likelihood of 

transitions between state 1 and state j, given that transitions occur  between state 1 to state j, or vice 

versa. Thus, also in the case with random effect it is possible to apply a conditional likelihood method 

for the estimation of { ( )}jw t that does not depend on the postulated distribution of the random effects. 

This is clearly a great advantage since it is hard to justify a priori the class of distributions of the 

random effects. 

 

7. Further Examples 

In this section we shall briefly discuss how the stochastic framework developed in this paper might be 

applied in concrete cases.  

 

7.1. Labor Supply and Sectoral mobility in a static setting  

In this example the issue is to analyze panel data on sectoral mobility when one allows for habit 

persistence. The agent is assumed to have the choice between different sectors in the labor market. 

Each sector has fixed (sector-specific) hours of work and wage. Let tjz  denote the wage at time period 

t (discrete time) of sector j. There are no transaction costs and the agent chooses to be in the state that 

maximizes utility. Assume that the utility of working in sector j at t, with disposable income C and 

workload h, has the structure ( , ) ( ),t j ju C h tγ ε+ +  where { ( )}j tε are random error terms, ( , )tu C h  is a 

deterministic term that captures the representative utility of disposable income C and hours of work h, 
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and jγ is a deterministic term that captures the representative utility of the tasks to be performed in 

occupation j, ceteris paribus. For sector j hours of work is fixed and equal to .jh  Given sector j, the 

budget constraint is given by ( , ),tj jf z h IC =  where I is non-labor income and f is the function that 

transforms gross income tj jz h I+ to disposable income. Let 

(7.1)    ( ) ( ( , ), ) .j t tj j j j jw t u f z h I h γ= +  

Thus, in the absence of taste persistence we interpret ( ) ( )j jw t tη+  is the conditional indirect utility 

function at time t, given alternative j. The term ( )jw t is the period-specific representative utility of 

occupation j at time t. The term jγ  could be specified as a function of non-pecuniary and sector-

specific attributes. It could also be treated as fixed or random effect. If we allow for habit persistence 

and invoke Assumptions 1 to 3 it follows from Corollary 1 that the utility function is given by 

(7.2)   ( ) max( ( 1) , ( ) ( )),j j j jU t U t w t tθ η= − − +  

where the vector 1 2( ) ( ( ), ( ),...)t t tη η η=  is serially independent and multivariate extreme value 

distributed. The probabilities for going from one occupation to another one, and the probability of 

working in a particular occupation are now given by the formulas in Theorem 2 or Corollary 6 in the 

case with independent utilities. If jγ is a fixed or random effect one could in fact estimate the model 

by the method suggested in sections 6.1 and 6.2. 

 

7.2. Labor supply and sectoral mobility in a life cycle setting  
 
In this section we shall discuss the modeling of labor supply and sectoral choice and mobility in a life 

cycle context, where we in addition allow for habit persistence. The approach is analogous to 

Heckman and McCurdy (1980). As in the previous example we assume that time is discrete. However, 

the corresponding continuous time version can be treated similarly. In this section we assume that the 

agent is bounded rational in the sense that she or he is uncertain about the future tastes, interests and 

wages and is only able to make predictions about the level of these variables but may revise plans at 

each epoch due to unanticipated information. Let tC denote consumption in period t and tjz  and tjh  the 

wage and hours of work in sector j in period t. Furthermore, let tA be the wealth at the end of period 

1,t − and r the interest rate. Length of life is T. Conditional on occupation j in period t the agent faces 

the budget constraint 

(7.3)    ( )1 1 .
t

t tj tj t t
j B

A h z r A C+
∈

= + + −  
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Let 1 2( , ,..., ).t t t tmh h h=h  Assume that the life time utility is additive separable with period-specific 

utility given by 

(7.4)   ( )1 1 2 2( , ) ( )t t t t t t t tk tk tk
u C u C u hξ γ ξ= + h  

where 1 2{ , , }t t tkξ ξ γ  are positive random taste shifters and 1tu  and 2tu are respectively strictly 

increasing and decreasing, concave differentiable functions. The taste shifters are assumed to be 

realizations of random variables. At time t, current and future taste-shifters 1 2{ , , , }k T tτ τ τξ ξ γ τ≥ ≥  are 

known by the agent, but at the next point in time t+1, the agent draws new current and future taste-

shifters 1 2{ , , , 1}.k T tτ τ τξ ξ γ τ≥ ≥ +  How these taste-shifters are distributed and serially correlated will 

be discussed in a moment. Thus, similarly to the previous setup in this paper, the agent is assumed to 

be uncertain about his preference evaluations and may shift her or his tastes over time in a manner that 

is not fully foreseeable to her or him. As regards future interest rates, wages and prices the agent 

behave in each period as if they were known with perfect certainty but may adjust these at the next 

moment in time. The structure in (7.4) implies that at each moment in time, the occupations are perfect 

substitutes in the sense that by suitably adjusting the respective workloads the jobs will be equally 

attractive, provided the wages are equal across occupations. The agent’s optimization problem in 

period t is to maximize 

    ( ) ( )1 1,t t t t tu C V Aβ + ++ h  

subject to (7.3), given tA , where ( )t tV A  is the value function given the agent’s information at period 

t. To facilitate optimization it is convenient to reformulate the problem as follows: Let tj tj tjx h γ=  and 

tj tj tjz z= γ . With this notation the optimization problem consists in maximizing 

(7.5)   ( )1 1 2 2 1 1( )
t

t t t t tj t t t
j B

u C u x V Aξ ξ β + +
∈

 
+ +  

 
   

subject to 

                       ( )1 1
t

t tj tj t t
j B

A x z r A C+
∈

= + + −  . 

Since the modified workloads, represented by { },tjx  enter symmetrically in (7.5), it follows that the 

agent will prefer to work at most in one sector, namely in the sector with the highest value of the 

modified wage rates { }.tjz  In other words, the index J of the chosen sector is determined by 

                    if max
t

t tj tk
k B

J j z z
∈

= =  . 

Furthermore, consumption, hours of work and wealth are determined such that 
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           ( )1 1t t t tu C ξ λ′ =  

and  

    ( )2 2 ,t tJ t t tJu x zξ λ′− ≥   

where tλ is the marginal utility of wealth as of period (year) t. In particular, the agent will not work in 

period t if 

    1
2 2(0) max

t
t t t tJ tk

k B
u z zλ ξ−

∈
′− > =  . 

The marginal utility of wealth is determined by the Euler condition 

(7.6)        ( ) , 11 ,t t t trλ β λ += +  

where we recall that the interest rate tr  is the interest rate as of period t and is assumed by the agent to 

be equal to all future interest rates, and , ,t qλ  q > t, is the marginal utility of wealth as of period q, 

(with )t ttλ λ=  given the taste shifters 1 2{ , , , }.k tτ τ τξ ξ γ τ ≥  From (7.3) it then follows that 

(7.7)                                              (1 ) .T t T t
t tT trλ λ β − −= +  

Specifically, the term tTλ  will be assumed to have the structure tT T tλ λ κ= , where Tλ  is an individual 

fixed effect whereas tκ  is a random variable. Recall that in the special case with perfect foresight 

there are no random variations in tastes as perceived by the agent. This case is captured by letting 

1.tκ =  Define ( ) log ,j tjV t z=  for j > 0, and 0 2 2( ) log( (0) / ).t t tV t u ξ λ′= −  We see that the agent’s 

behavior at any point in time is completely determined by maximizing the function ( ).jV t  Assume 

furthermore that tjz  has the structure ,tj tjj j tjz z α ζ=  and ,tj j tjγ γ δ=  where tjz  is a function of observed 

variables representing the level of human capital, jα  is an individual and sector-specific effect, jγ  is a 

sector specific constant and tjδ and tjζ  are random terms. It follows that we can write 

(7.8)   ( ) log( ) log log log( ),j tj j j tj tjV t z α γ δ ζ= + + +  

for 0,j >  and 

(7.9)  0 2 2( ) log( (0)) log ( ) log(1 ) ( ) log( ) log( / ).t T t t tV t u T t r T tλ β ξ κ′= − + − − + − − +   

Recall that the terms { }tj tjδ ζ  and 2{ / }t tξ κ  vary over time in a manner that is stochastic to the 

individual agent due to the fact that she or he is allowed to revise current and future tastes. Now 

assume that Assumptions 1 to 3 hold. Then it follows from Corollary 1 that the random terms { }tj tjδ ζ  

and 2{ / }t tξ κ  can be expressed as log( ) ( ) /tj tj j tδ ζ η σ=  and 2 0log( / ) ( ) / ,t t tξ κ η σ=  where σ  is a 

suitable constant and 0 1( ) ( ( ), ( ),...)t t tη η η=  is standard multivariate type III extreme value distributed 
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at each moment in time, and is also serially independent. The parameter σ  is a dispersion parameter 

that serves to normalize such that ( )j tη has standard type III extreme value distribution. Hence it 

follows from (7.8) and (7.9) that 

(7.10)   ( ) max( ( 1) , ( )).j j jU t U t V tθ σ= − −  

As a result, the choice process, conditional on the fixed effects { }jα  and ,Tλ is a Markov process with 

corresponding transition probabilities and probabilities of being in the respective states given by 

Theorem 2 with ( ) ( ) ( ),j j jV t w t tσ η= +  where 

(7.11)        ( )( ) log log( ),j tj j jw t zσ σ α γ= +  

for 0,j >  and  

(7.10)  0 2( ) log( (0)) log ( ) log(1 ) ( ) log( ).t T tw t u T t r T tσ σ λ σ σ β′= − + − − + − −  

Recall that the term 0,θ ≥  is a parameter that represents the degree of habit persistence.  

 This example, as well as the previous one, demonstrates how one can fruitfully apply the 

theory developed in this paper to provide theoretically justified functional form and distributional 

properties of random components in structural models. 

8. Conclusion 
In this paper we have discussed the issue of functional form of multistate duration models generated 

by discrete choice over time, with particular reference to random tastes and habit persistence. We have 

proposed a particular characterization of exogenous random preferences conditional on the 

information available to the agent. We have demonstrated that this implies preferences that can be 

represented by modified extremal utility processes. From this result a number of important results 

follow: First, the choice model under the absence of state dependence and conditional on information 

available to the agent, is a Markov chain in continuous time. Second, the transition intensities (hazard 

functions) and probabilities of being in a particular state of this Markov chain model have a tractable 

structure as functions of the parameters of the utility function. We have furthermore considered 

extensions that allow for structural state dependence and we have discussed identification and 

estimation in the presence of fixed and random effects. Finally, we have discussed the application of 

the framework for modeling occupational mobility in both a static and a life cycle setting without and 

with uncertainty. The implication of this modeling framework is that provided the researcher knows 

the distribution of unobservables that are known to the individual agent, one can separate true state 

dependence effects from habit persistence and unobserved heterogeneity. As we have discussed in this 
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paper, this is particularly true when the unobservables (known to the individual agent), can be 

represented as fixed or random effects. 
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Appendix A 

To prove Theorem 1 we need the following lemmas. 

 

 Lemma 1 

 Let 1 2( , ,..., )mF x x x  be a type III multivariate extreme value c.d.f. defined on .mR  Then  

1 2log ( , ,..., )mF x x x−  is a convex function. 

 

Proof of Lemma 1: 

From Theorem 5.11´ in Resnick (1987, p. 272) it follows that one can write 

 
1

1 2

0

log ( , ,..., ) max ( ( ) )jx
m j m jF x x x f s e ds

−
≤− =  , 

where ( ), 1,2,.., ,jf s j m=  are nonnegative integrable functions such that  

  
1

0

( ) 1.jf s ds =  

Since ( ) jx
jf s e− is convex as a function of jx it follows that max ( ( ) )jx

j m jf s e−
≤ is a convex function in 

1 2( , ,..., )mx x x  for each s. Since sums of convex functions are convex a suitable limit argument yields 

that the integral of max ( ( ) )jx
j m jf s e−
≤ with respect to s is convex. 

           Q.E.D. 

 Lemma 2 

 Under Assumtions 1 and 2 the distribution of ( ) ( ) ( )t U t v tε = −  is a multivariate extreme 

value distribution type III which is independent of time. 

 

Proof of Lemma 2: 

From Assumption 2 it follows that at each given point in time t, ( )tε is independent of ( ),v t  where   

can vary freely on the real line. It will be convenient to normalize such that ( ) 0.5772jE tε =  (Euler’s 

constant). Under Assumptions 1 and 2 it follows from Lindberg et al. (1995) that the joint distribution 

of ( )tε has the form 1 2(exp( ( , ,..., ))),myy yH e e eψ −− −−  where ψ a positive and strictly increasing 

mapping on [0,1] with (0) 0ψ = and (1) 1,ψ =   and 1 2( , ,..., )mH x x x  is a positive increasing and linear 

homogenous function defined on [0, ) ,m∞ and may depend on time. In addition, H must satisfy 

suitable regularity conditions that ensures that 1 2(exp( ( , ,..., )))myy yH e e eψ −− −−   is a multivariate c.d.f. 
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(McFadden, 1978). Since by Assumption 2, 1( )tε is independent of ( )j tε for \{1}j S∈ , the joint 

distribution of 1( ( ), ( ))jt tε ε  must be a product of type III extreme value distributions, which implies 

that  

 1(max( ( ), ( )) ) exp( ) (exp( ( ,1,1,.., ,1,.,1)))y y y y
jP t t y e e H e eε ε ψ− − − −≤ = − − = −    

 (exp( (1,1,...,1))).ye Hψ −= −   

The last equation implies that ( ) ,ax xψ = for [0,1],x∈ where a is an arbitrary positive constant.  

Hence, we have proved that the c.d.f of ( )tε is a type III multivariate extreme value distribution at 

each given point in time.         

           Q.E.D. 

 

Let A be any subset of S. Define ( ) max ( ).A k A kU t U t∈=   

 

 Lemma 3 

 Assume that Axioms 1 and 2 hold. Then the joint distribution of ( ( ), ( )),A AU s U t  for s < t, is a 

bivariate extreme value distribution (type III). 

 

Proof of Lemma 3:  

Let the function 1 2( , )AG u u  be defined on [0, ) [0, )∞ × ∞ by 

(A.1)   ( )exp( ( , )) ( ) , ( ) ,x y
A A AG e e P U s x U t y− −− = ≤ ≤  

for .A S⊂  For notational convenience we normalize such that 1(1,0) (1,0) 1.AG G= =  This 

normalization is possible and does not imply any loss of generality since, by Assumption 2, the 

structural part of the utility function is independent of the random part.  Let z be an arbitrary real 

number. Let now \{1}A S⊂  and note that the process  1{( ( ), ( ) ), 0}AU t U t z t+ ≥  also satisfies 

Assumptions 1 to 3, provided the process 1{( ( ), ( )), 0}AU t U t t ≥  satisfies Assumptions 1 to 3. Lemma 2 

implies that ( )AU t  is type III extreme value distributed. Since the utility processes associated with 

state 1 and j are independent, we obtain that 

(A.2)  

( ) ( )( )
( )( )

( )
( ) ( )

1 1 1

1 1

1 1

1 1

( ) ( ),max ( ), ( ) ( , ),max ( ), ( )

( ) ( ) ( , ),max ( ), ( )

( ) , ( ) , ( ) ( , ), ( )

( ) , ( ) ( ) ( , ), ( )

exp (

A A A

A A

A A

A A

z
A

P U s z U s U s U s z x x dx U t U t z y

P U s z U s x x dx U t U t z y

P U s x z U t y z U s x x dx U t y

P U s x z U t y z P U s x x dx U t y

G e

+ < + ∈ + + ≤

= + < ∈ + + ≤

= ≤ − ≤ − ∈ + ≤

= ≤ − ≤ − ∈ + ≤

= −( )1 1 1, ) ( , ) ( , )) ,x z y x y x x ye G e e e G e e dx− − − − − − −− ∂
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where k∂ denotes the partial derivative with respect to the k-th component. Similarly 

    ( ) ( )( ) ( )( )1 1 1max ( ), ( ) ,max ( ), ( ) exp ( , ) ,x y z x z y
A A AP U s U s z x U t U t z y G e e G e e− − − −+ ≤ + ≤ = − − , 

which implies that 

(A.3)  
( ) ( )( )

( )( ) ( )( )
1 1

1 1 1 1

max ( ), ( ) ( , ),max ( ), ( )

exp ( , ) , ( , ) , .

A A

x y z x z y x y z z x z y x
A A

P U s U s z x x dx U t U t z y

G e e G e e G e e e G e e e dx− − − − − − − − −

+ ∈ + + ≤

= − − ∂ + ∂
 

Assumption 1 implies that 

(A.4)     
( ) ( ) ( )( )

( ) ( ) ( )( ) ( )
1 1

1 1 1

max ( ), ( ) , ,max ( ), ( ) , ( ) 1

max ( ), ( ) , ,max ( ), ( ) ( ) ( ) .

A A B

A A A

P U s U s z x x dx U t U t z y J s

P U s U s z x x dx U t U t z y P U s U s z

+ ∈ + + ≤ =

= + ∈ + + ≤ > +
 

When (A.1) and (A.3) are inserted into (A.4) we obtain 

           
( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( )
1 1 1

1 1 1 1 1

exp , , ,

( ( ) ( ) ) exp , , , ,

x y z x z y x y
A

x y z x z y x y z z x z y
A A A

G e e G e e G e e

P U s U s z G e e G e e G e e e G e e

− − − − − −

− − − − − − − −

− − ∂

= > + ⋅ − − ∂ + ∂
 

which is equivalent to 

(A.5)  ( ) ( )1 1 1 1 1, ( ( ) ( ) ) , ( ( ) ( ) ).x y z z x z y
A A AG e e P U s U s z e G e e P U s U s z− − − −∂ < + = ∂ > +  

Furthermore, since 1( )U s and ( )AU s  are independent, 1(1,0) (1,0) 1,AG G= =  ( ,0) (1,0),z z
A AG e e G= it 

follows that 

(A.6) 1
1 1

( ,0) (1,0)
( ( ) ( ) ) .

(1,0) ( ,0) (1,0) (1,0) 1

z z z
A A

A z z z
A A

G e G e e
P U s U s z

G G e G G e e
< + = = =

+ + +
 

When (A.6) is inserted into (A.5) it follows that  

(A.7)   ( ) ( )1 1 1, , .x y z x z y
AG e e G e e− − − −∂ = ∂  

By integrating (A.7) with respect to x we obtain 

(A.8)                                ( ) ( )1 , , ( )x y z z x z y
A AG e e e G e e K y− − − − −= + , 

for some function ( )AK y that does not depend on x nor z. Since  1 1(0, ) (0,1)y yG e G e− −=  and 

(0, ) (0, ) (0,1) ,z z y y y
A A Ae G e G e G e− − − −= =  it follows from (A.8), with z = 0, that  

(A.9)   1( ) ( (0,1) (0,1)) .y
A AK y G G e−= −  

From (A.8) and (A.9) we therefore get that  

(A.10)  ( ) ( )1 1, , ( (0,1) (0,1)) .z z x z y x y y
A Ae G e e G e e G G e− − − − − −= + −  

Eq. (A.10) is valid for any real z and since the right hand side of (A.10) does not depend on z we get 

(A.11)   ( ) ( ), , ,z z x z y x y
A Ae G e e G e e− − − − −=  

for all real z. Similarly, it follows from (A.10) and (A.11) that 
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       1 1( , ) ( (0,1) (0,1)) ( , )z z x z y y z z x z y
A Ae G e e G G e e G e e− − − − − − −= − +  

  1 1( ( ,0) ( ,0)) ( , ) ( , )y
A AG G e G x y G x y−= ∞ − ∞ + = , 

which proves that (A.11) also holds for A = {1}. But this means that the bivariate c.d.f. defined in 

(A.1) is a bivariate type III extreme value distribution for any ,A S∈ and therefore the proof of Lemma 

3 is complete. 

  Q.E.D. 

Proof of Theorem 1: 

For ,A S⊂  let ( ) ( ,1)z
A Az G eϕ =  where AG  is defined in (A.1). For \{1}A S⊂  define 

1( ) ( ) ( ).A Az z zψ ϕ ϕ= +  From these definitions it follows that for any ,A S⊂     

(A.12)    ( , ) ( ,1) ( )x y y y x y
A A AG e e e G e e y xϕ− − − − −= = −  

and 

(A.13)    1 ( , ) ( )x x y y
A Ae G e e e y xϕ− − − − ′∂ = −  and  2 ( , ) ( ( ) ( )).y x y y

A A Ae G e e e y x y xϕ ϕ− − − − ′∂ = − − −  

Moreover, for \ {1}A S∈  and {1, },B A=  

(A.14) ( ) 1max ( ) exp( (0, ) (0, )) exp( ( )).y y y
k B k A AP U t y G e G e e ψ− − −
∈ ≤ = − − = − −∞   

Let 

   ( ( ) , ( ) ) ( ),ij B B AC P J s i J t j ψ= = = −∞  

for , .i j B∈  From (A.12) to (A.14) and Assumption 1 we get that 

 1 exp( ( )) ( ) ( ( ) 1, ( ) , ( ) ( , ))y y
A B B BC e e y o y P J s J t A U t y y yψ− −− −∞ Δ + Δ = = ∈ ∈ + Δ  

  1 1( ( ) , ( ) ( , ), ( ) , ( ) ( , ))A A

R

P U s x U s x x dx U t y U t y y y= ≤ ∈ + ≤ ∈ + Δ  

  1 1 1 1 2exp( ( , ) ( , )) ( , ) ( , )x y x y x y x y x y
A A

R

y G e e G e e G e e G e e e dx− − − − − − − − − −= Δ ∂ − − ∂ ∂  

  2
1exp( ( )) ( )( ( ) ( )) .y y

A A A

R

y e y x e y x y x y x dxψ ϕ ϕ ϕ− − ′ ′= Δ − − − − − −  

By dividing the last equation by ye y− Δ  and letting 0,yΔ →  we obtain that 

(A.15)     1 1exp( ( )) exp( ( )) ( )( ( ) ( )) .y y y
A A A A

R

C e e e y x y x y x y x dxψ ψ ϕ ϕ ϕ− − − ′ ′− −∞ = − − − − − −  

Note furthermore that since ( ) ,Aψ ∞ = ∞ one can write 

(A.16)      exp( ( )) exp( ( )) ( ) .y y y
A A Ae e e z z dzψ ψ ψ

∞
− − −

−∞

′− −∞ = −  

By change-of-variable; z y x= −  in the integral in (A.15), (A.15) and (A.16) yield 
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(A.17)     1 1exp( ( )) ( ) exp( ( )) ( )( ( ) ( )) .y y
A A AC e z z dz e z z z z dzψ ψ ψ ϕ ϕ ϕ

∞ ∞
− −

−∞ −∞

′ ′ ′− = − −   

Note next that by Lemma 1, 1( ),zϕ  ( )A zϕ  and ( )A zψ  are increasing and convex functions, which 

implies that ( )A zψ ′  is non-decreasing. Define c = −∞  if ( ) 0A zψ ′ >  for all real z, otherwise define 

max{ : ( ) 0}.Ac z zψ ′= =  It thus follows that Aψ is strictly increasing and invertible for z > c. Let 

{ : ( ), 0}.Aw w z zψΩ = = >  Let h  be the inverse function of ,Aψ  defined on .Ω  By the change of 

variable, ( ),w h z=  (A.17), with ,yeλ −=  becomes 

(A.18)  1 1exp( ) exp( ) ( ( ))( ( ( )) ( ( ))) ,
( ( ))A A A

A

dw
C w dw w h w h w h w

h w
λ λ ϕ ϕ ϕ

ψΩ Ω

′ ′− = − −
′   

which must hold for every positive .λ  By the uniqueness property of the Laplace transform 

(A.18) implies that 

   1
1

( ( ))( ( ( )) ( ( )))

( ( ))
A A

A
A

h w h w h w
C

h w

ϕ ϕ ϕ
ψ

′ ′−=
′

, 

for ,w∈Ω  which is equivalent to  

(A.19)    1 1( ) ( )( ( ) ( )).A A A AC z z z zψ ϕ ϕ ϕ′ ′ ′= −  

for .z c>  Similarly, it follows by symmetry that 

(A.20)    1 1 1( ) ( )( ( ) ( )),A A AC z z z zψ ϕ ϕ ϕ′ ′ ′= −  

for .z c>  By subtracting (A.20) from (A.19) and dividing by 2( )zψ  we obtain 

(A.21)          1 1 1 1
2 2

( ) ( ) ( ) ( ) ( )( )
.

( ) ( )
A A A A A

A A

z z z z z C C

z z

ϕ ψ ϕ ψ ψ
ψ ψ

′ ′ ′− −=  

When we integrate both sides of (A.21) we get that 

    1 1 1
1

( )
,

( ) ( )
A A

A A

z C C
d

z z

ϕ
ψ ψ

−= +  

for ,z c>  where 1d is an arbitrary constant. This is equivalent to 

(A.22)     1 1 1 1( ) ( ).A A Az C C d zϕ ψ= − +  

Similarly, it follows by symmetry that 

(A.23)    1 1( ) ( ),A A A A Az C C d zϕ ψ= − +   

where Ad is an arbitrary constant. When the equation in (A.22) is inserted for 1( )zϕ into eq. (A.19) it 

follows that 

(A.24)    1

1

( ) ( ) .A
A A

C
z z

d
ϕ ϕ′− =  

Similarly, when the equation in (A.23) is inserted for ( )A zϕ into eq. (A.20) it follows that   
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(A.25)     1
1 1( ) ( ) .A

A

C
z z

d
ϕ ϕ′− =  

Eq. (A.24) and (A.25) are first order differential equations that have solutions of the form 

(A.26)    ( ) ,z
j j jz eϕ α β= +  

for j = 1 and j = A, respectively, and z > c, where jα  and jβ are suitable constants. Since ( ) 0j zϕ′ =  

for z c≤ and ( )j zϕ is continuous it follows from (A.26) that we can write 

(A.27)    ( ) exp(max( , )),j j jz c zϕ α β= +  

for any real .z  Using (A.12) we obtain, as a consequence of (A.27), that 

(A.28)  ( , ) exp(max( , )) exp( min( , )),x y y y y
j j j j jG e e e e c y x e x y cα β α β− − − − −= + − = + − −  

for j = 1, A. The equation in (A.28) implies that the utility process  { ( ), 0}jU t t ≥ , ,j B∈ is equivalent 

to the utility process generated by 

(A.29)   ( ) max( ( ) , ( , )),j j jU t U s c W s t= +  

for 1, ,j A=  \ {1},A S⊂ where ( , )jW s t  is type III extreme value distributed and independent of 

( ).jU s  Since A can be a singleton, we conclude that (A.29) must hold for any .j S∈   

 We next prove that ( ) ,c s t θ= − −  where θ is a positive constant. To emphasize that c depends 

on s and t we write henceforth c = c(s, t). Under Assumption 3 it must be true that ( , ) ( ).c s t c t s= −  

From (A.29) it follows for s < r < t, that 

  ( ) max( ( ) ( , ), ( , ))j j jU t U r c r t W r t= +  and ( ) max( ( ) ( , ), ( , ))j j jU r U s c s r W s r= + , 

which, together with (A.31) imply that 

(A.30) ( ) max( ( ) ( , ) ( , ), ( , ) ( , ), ( , )) max( ( ) ( , ), ( , )).j j j j j jU t U s c s r c r t W s r c r t W r t U s c s t W s t= + + + = +  

Furthermore, (A,29) and (A.30) imply that ( ) ( ) ( ),c t s c r s c t r− = − + −  which must hold for any s < r 

< t. Let x r s= −  and .y t r= −  The latter equation is equivalent to 

(A.31)    ( ) ( ) ( ),c x y c x c y+ = +  

which must hold for all positive x and y. The equation in (A.31) is a functional equation of the Cauchy 

type and the only possible solution is ( ) ,c x xθ= −  where θ is a constant, see for example Theorem 3.2 

in Falmagne (1985, p. 82). The constant θ must be positive because otherwise { ( ), 0}jU t t ≥  cannot be 

stationary, as is easily verified. Moreover, Tiago de Oliveira (1973) has demonstrated that the 

representation (2.1) in fact is a strictly stationary (Markovian) stochastic process in continuous time.  

 Finally, we shall prove that the corresponding vector equation ( ) max( ( ) , ( , ))U t U s c W s t= +  

holds, with the vector ( , )W s t  independent of U(s). Without essential loss of generality and for the 
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sake of simplicity we shall only give the proof for the bivariate case, that is, for the case where 

2 3( ) ( ( ), ( ))U s U s U s=  and 2 3( , ) ( ( , ), ( , )).W s t W s t W s t=  Recall that we have proved that ( )jU s is 

independent of ( , )jW s t  for any j, but it remains to prove that 2 ( , )W s t  is independent of 3 ( ),U s  and 

3 ( , )W s t  is independent of 2 ( ).U t  Recall that we have demonstrated that ( )AU s and ( , )AW s t  are 

independent and type III extreme value distributed for any .A S⊂  Let ( ) ( ) ( )j j jt U t v tε = −  and 

( , ) ( , ) ( , ),j j js t W s t w s tξ = −  where ( )j sε  and ( , )j s tξ  are standard type III extreme value distributed 

variables, and ( )jv t  and ( , )jw s t  are deterministic terms. It follows from (A.29) that 

( , ) log(exp( ( )) exp( ( ) ( ) )).j j jw s t v t v s t s θ= − − −  By Lemma 2 we can write 

(A.32)        2 3 23( ( ) , ( ) ) exp( ( , ))x yP t x t y H e eε ε − −≤ ≤ = −  

where the function 23 ( , )H u v  is defined on [0, ) [0, )∞ × ∞ and is positive, linear homogeneous and 

increasing, and is independent of time. Because of (A.29) we have, with A = {2,3}, that 

(A.33)    2 2 3 3 2 2 3 3max( ( ) ( ) ( ) , ( ) ( ) ( ) , ( , ) ( , ), ( , ) ( , ))s v s t s s v s t s s t w s t s t w s tε θ ε θ ξ ξ+ − − + − − + +  

  2 2 3 3max( ( ) ( ), ( ) ( )).t v t t v tε ε= + +  

Consider the special case with ( ) ( ) ,j j jv s v t v= =  implying that 

( , ) log(1 exp( ( ) )) .j j jw s t v t s vθ κ= + − − − ≡ +  Then, in this case (A.33) implies that 

(A.34) 2 2 3 3 2 2 3 3( ( ) ( ) , ( ) ( ) ) ( ( , ) , ( , ) )P s y t s v s y t s v P s t y v s t y vε θ ε θ ξ κ ξ κ≤ + − − ≤ + − − ≤ − − ≤ − −  

 2 2 3 3( ( ) , ( ) ).P t y v t y vε ε= ≤ − ≤ −  

If we combine (A.32) with (A.34) we obtain, by using the linear homogeneity property of 23 ,H that 

          3 32 2 ( )( )
2 2 3 3 23 23( ( , ) , ( , ) ) exp( ( , ) ( , ))v y v y t sv y v y t sP s t y v s t y v H e e H e e θθξ κ ξ κ − − − −− − − −≤ − − ≤ − − = − +  

  3 32 2( )
23 23exp( ( , ) ( , ))v y v yv y v yt sH e e e H e eθ− −− −− −= − +  

  3 32 2
23 23exp( ( , )) exp( ( , )).v y v yv y v ye H e e H e eκκκ − + −− + −= − = −  

Since , 2,3,jv j =  can vary freely the latter equation is equivalent to 

(A.35)  32
2 2 3 3 23( ( , ) , ( , ) ) exp( ( , )),yyP s t y s t y H e eξ ξ −−≤ ≤ = −  

where , 2,3,jy j =  are any real numbers. Hence we have proved that the c.d.f. of 2 3( ( , ), ( , ))s t s tξ ξ is 

independent of time and of the structural terms ( , ), 2,3.jw s t j =  Furthermore, since ( )AU s and 

( , )AW s t  are independent we have that 

         ( ( ) , ( , ) ) ( ( ) ) ( ( , ) )A A A AP U s x W s t y P U s x P W s t y≤ ≤ = ≤ ≤  

         2 2 3 3 2 2 3 3( ( ) ( ), ( ) ( )) ( ( , ) ( , ), ( , ) ( , )).P s x v s s x v s P s t y w s t s t y w s tε ε ξ ξ= ≤ − ≤ − ≤ − ≤ −  
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Note that the terms ( )jv s and ( , ), 2,3,jw s t j =  can vary freely on the real line. Thus the last equation is 

equivalent to  

(A.36)  2 2 3 3 2 2 3 3( ( ) , ( ) , ( , ) , ( , ) )P s x s x s t y s t yε ε ξ ξ≤ ≤ ≤ ≤  

  2 2 3 3 2 2 3 3( ( ) , ( ) ) ( ( , ) , ( , ) ).P s x s x P s t y s t yε ε ξ ξ= ≤ ≤ ≤ ≤  

Eq. (A.36) implies that 2 3( ( ), ( ))s sε ε  and 2 3( ( , ), ( , ))s t s tξ ξ are independent, which implies that 

2 3( ( ), ( ))U s U s  and 2 3( ( , ), ( , ))W s t W s t are independent. This completes the proof. 

           Q.E.D. 

 

Proof of Theorem 2: 

We shall demonstrate Theorem 2 follows from Dagsvik (1988). Let ( )tG x  be defined as in Dagsvik 

(1988), namely by ( ) log ( ( ) ) log ( (0, ) ).tG x P U t x P W t x= − ≤ = − ≤  Then it follows that  

    
0

( )
( ) | .t

j
xj

G x
V t

x =

∂= −
∂

 

Furthermore, note that  

    ( ) (0).k t
k B

V t G
∈

=  

Now the result of Theorem 2 follows from Theorem 3, p. 34, of Dagsvik (1988). 

                    Q.E.D. 

 

 Lemma 4 

 Let { ( ), 0}Z t t ≥  be a standard extremal process defined as follows:  

(i) (0) ,Z = −∞  

(ii) ( ) max( ( ), ( , )),Z t Z s Y s t= for s < t, where ( , )Y s t is a random variable that is independent of ( ),Z s  

(iii) ( , )Y s t  and ( ', ')Y s t are independent whenever ( , ) ( ', ') ,s t s t∩ = ∅  

(vi)  ( ( , ) ) exp( ( ) ),uP Y s t u t s e−≤ = − −  for real u.  

If ( ), ,jU t j S∈  are independent modified extremal utility processes (as defined in Theorem 1) we have 

that 

(A.37)  ( ) ( ( )) ,j j jU t Z V t tθ= −  

where ,{ ( ), 0},jZ t t j S≥ ∈  are independent standard extremal processes and 

(A.38)  
0

( ) exp( ( ) ) ,
t

j j jV t w d cτ θτ τ= + +  
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where 0θ ≥ is a constant and { ( )}jw τ  are deterministic terms. 

 

Proof of Lemma 4: 

Consider the three-dimensional distributions of { ( ), 0}.Z t t ≥ It follows from the definition above in the 

statement of the lemma that for real ,jx j = 1, 2, 3, and 1 2 3 ,t t t< < that 

 1 2 3 2 3 3min( , , ) min( , )
1 1 2 2 3 3 1 2 1 3 2( ( ) , ( ) , ( ) ) exp( ( ) ( ) ).x x x x x xP Z t x Z t x Z t x t e t t e t t e− − −≤ ≤ ≤ = − − − − −  

Furthermore, it follows from the definition of H in (2.2) that when the utility processes are 

independent that 

   1 2 1 2( , ,..., ) ,m mH y y y y y y= + + ⋅ ⋅ ⋅ +  

so that  

 ( ( , ) ) exp exp( ( ) ) exp( ( ( ) ( ))).
t

u u
j j j j

s

P W s t t u e w d e V t V sθ τ τθ τ− − 
+ ≤ = − + = − − 

 
  

Let ˆ ( ) ( ) .j jU t U t tθ= +  The corresponding updating relation is given by 

   ˆ ˆ( ) max( ( ), ( , ) ).j j jU t U s W s t tθ= +  

Moreover, (A.37) is equivalent to ˆ ( ) ( ( )).j j jU t Z V t=  Hence, we obtain that 

   1 1 2 2 3 3( ( ) , ( ) , ( ) )j j jP U t x U t x U t x≤ ≤ ≤  

       1 1 1 1 2 2 2 1 1 2 2 2 3 3 3
ˆ ˆ ˆ( ( ) ,max( ( ), ( , ) ) ,max( ( ), ( , ) , ( , ) )) )j j j j j jP U t x U t W t t t x U t W t t t W t t t xθ θ θ≤ + ≤ + + ≤  

            1 2 3 2 3 3min( , , ) min( , )
1 2 1 3 2exp( ( ) ( ( ) ( )) ( ( ) ( )) ).x x x x x x

j j j j jV t e V t V t e V t V t e− − −= − − − − −  

It is easy to verify that the last expression is same as  

  1 1 2 2 3 3( ( ( )) , ( ( )) , ( ( )) ).j j j j j jP Z V t x Z V t x Z V t x≤ ≤ ≤  

For the higher dimensional distributions the computation is entirely analogous. This completes the 

proof. 

                      Q.E.D. 

 

Proof of Theorem 3: 

For any choice set B, let ( ) 1jI B =  if ,j B∈  and zero otherwise. Define independent utility processes, 

{ ( ), 0},jU t t∗ ≥ by 

(A.39)         ( ) ( ( )) ,j j jU t Z V t tθ∗ ∗= −  
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where { ( ), 0},jZ t t ≥ j =1, 2, …., m, are independent standard extremal processes, and 

( ) ( ) ( ( )).j j jV t V t I B t∗ =  Evidently, ( )jV t∗ is a non-decreasing function in t when the choice set process 

is non-decreasing. Consequently, Lemma 4 implies that the utility processes defined in (A.39) are 

modified extremal processes. Thus, the results of Theorem 2 and Corollary 2 go through with 

( )jV t replaced by ( ).jV t∗  Hence, the result of Theorem 3 follows. 

            Q.E.D. 

 

Proof of Theorem 4: 

Let ( , ( ))jU t h t  be defined as in Assumption 4. Let 1 2( , ( )) ( ( , ( )), ( , ( )))U t h t U t h t U t h t=  and 

1 2( , ( )) ( ( , ( )), ( , ( ))).w t h t w t h t w t h t=  For notational simplicity, define 

(A.40) ( ) ( )( ) ( )( )( )1 1 2 2exp exp , ( ) exp , ( ) for , 1,2,
, ( )

0 otherwise.

j j
t

w t h t y w t h t y y x j
M y x h t

θ − − − − ≥ + == 


 

Due to the form of the extreme value distribution it follows that the conditional distribution of  

U(t, h(t)) given ( 1, ( 1))U t h t− −  and given the choice history can be expressed as 

 

(A.41)  ( ) ( )( , ( )) ( 1, ( 1)) , ( )tP U t h t y U t h t x M y x h t≤ − − = =  for  , 1,2j jy x jθ≥ + = ,  

 

and zero otherwise. Let ( ), 1,2,...,j τ τ =  be a sequence of choices and define 1 2( ) ( ( ), ( ))u t u t u t=  and

        ( ){ }( )( ) (1), (2),..., ( ) : ( ) max ( ), .j k kt u u u t u u tτ τ τ τΩ = = ∀ ≤  

We have 

(A.42)  ( ) ( )*

1( )

( ) ( ), 1,2,..., ( ) ( 1), ( )
t

t

P J j t d M u u hτ
τ

τ τ τ τ τ τ
=Ω

= = = −∏  

where (0) ( , )u = −∞ −∞ , and                   

  { }*( ) ( ) ( ), 1 .h J s j s sτ τ= = ∀ ≤ −  

Let Mt(y|x) be given by (A.40) when ( ), ( )w t h t  is replaced by ( )w t . Define 

(A.43)  ( ) ( )*

1( )

( 1), ( ), ( ) ( 1) .
t

t

L h t w s s t dM u uτ
τ

τ τ
=Ω

+ ≤ ≡ −∏  

Clearly, (A.43) is the likelihood function under pure taste persistence. We know from Theorem 2 that 

the likelihood function in (A.43) has a structure that implies a Markovian choice process under pure 

taste persistence. But when ( )(1), (2),..., ( ) ( )U U U t t∈Ω , then the choice history, including the choice at 
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time t, equals *( 1)h t +  and consequently the functions, ( ), ( ) , 1,2,..., ,w s h s s t=  remain fixed when the 

integrand in (A.43) is integrated out over Ω (t). Therefore, we must have that 

(A.44)      ( ) ( )*( ) ( ), 1,2,..., ( 1), ( , ( )), .P J j t L h t w s h s s tτ τ τ ∗= = = + ≤  

Eq. (A.44) implies that state dependence can be conveniently accounted for by replacing { }( )w s  by 

corresponding "experience-modified" functions { ( , ( ))}.w s h s∗  Furthermore, conditional on these 

experience-modified functions the choice process is a Markov chain with transition probabilities that 

have the same structure as in Theorem 2 with { }( ),w s s t≤  replaced by { ( , ( )), }.w s h s s t∗ ≤   

  Q.E.D. 

 

Proof of Corollary 8: 

From (3.10) it follows that 

(A.45)   

( )

\

0

( )
( ) ( )

( )

log ( ) log exp( ( )) ,

t t k
k B

ik jk
k A k B A kd d

k B

t
B

k k
k B k B

V x dx
q x q x dx

V x

V t e H w d cθτκ τ τ κ

∈

∈ ∈
∈

∈ ∈

′
 + = 
 

  = + = + +  
   


   

 

 

which proves (6.1). Also from (3.10) we have that                                           

        log ( ) log ( ) log ( ) .j ij k
k B

V t q t V t
∈

 ′ = +  
 
  

When the above equation is combined with (A.46) we get that 

 ( )
\

log exp( ( )) ( ) log ( ) ( ) ( )
t

B
j j ij ik jk

k A k B Ad

H w t w t t q t q x q x dxθ
∈ ∈

 + + = + + 
 
  , 

which proves (6.2) 

  Q.E.D. 

Appendix B 
In this appendix we outline how the transition probabilities and intensities look like when the 

functions wj(t) are step functions that only may change at given time units, such as weeks or months. 

In this case we obtain that 
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(B.1) 

( )( ) ( ) ( )( )
( ) ( )

1

1

exp ( ) exp ( ) exp ( )

1
exp ( ) ( ) .

t rt t
r r

j j j
r s r ss r

t

j
r s

w t d w r t e d w r t e e

e
w r t r

θτ θ θ θ

θ

τ τ θ τ θ τ θ θ

θ
θ

− −

= =−

−

=

− − = − = − −

−
= − −

  


 

As a result of (B.1) it follows from Theorem 2 that the transition and state probabilities can be written 

as 

(B.2)         ( )
( )( )

( )( )
1

0 1

exp ( )
,

exp ( ) ( exp( (0)))

t

j
r s

ij t
t

k k k
k r

w t
Q s t

w t d c w e θ

τ τ θ

τ τ θ τ

=

−

= =

− −
=

 − − + + 
 



  

 

for 0 , , 0,1,s t i j i j< ≤ = ≠ , and  

(B.3)          
( )( )

( )( )
1

1

0 1

exp ( ) ( exp( (0)))
( ) ,

exp ( ) ( exp( (0)))

t
t

j j j
r

j t
t

k k k
k r

w t d c w e
P t

w t d c w e

θ

θ

τ τ θ τ

τ τ θ τ

−

=

−

= =

− − + +
=

 − − + + 
 



 





 

where 

    .
1

j
j

c
c

e θ

θ
−=

−
  

The corresponding transition intensities follow from (3.15) and (B.1) and are given by 

(B.4) ( )
( )( )

1

0 1

exp( ( ))
.

exp ( ) ( exp( (0)))

j
ij t

t
k k k

k r

w t
q t

w t d c w e θ

θ

τ τ θ τ −

= =

=
 − − + + 
 

  

 

From (B.2), (B.3) and (B.4) it is evident that jc may be absorbed in exp( (0)),jw  and we can therefore 

normalize by setting 0.jc =  
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