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1 Introduction

What causes a firm to exit? The standard answer from economists is low profitability. According to
Marshall, “production is likely to come to a sharp stop ... [when] ... the price falls so low that it
does not pay for the out of pocket expenses” (Marshall (1966), p. 349). While the Marshallian exit
rule is myopic, modern economic theory assumes that the exit decision is based on both present and
expected future revenues and costs. Moreover, firms have rational expectations. In its most refined
version, the exit rule of a firm is derived from stochastic dynamic programming (SDP): The firm will
stay operative as long as the expected present value of continuing production exceeds the value of
closing down. This exit rule is derived under the assumption that the firm always chooses optimal
actions, given the available information at each point in time.

The present paper develops an econometric model for firm exit, using SDP as a starting point.
The model is estimated, and then applied to assess the degree to which new environmental taxes —
through shifts in the profitability of firms — may cause more exits.

In Das (1992), an econometric implementation of a discrete choice SDP model of firm behavior is
presented. Das considers the problem of whether to operate, hold idle, or close down production units
in the cement industry. By following the specifications in the pioneering article by Rust (1987) on
bus engine replacement, Das derives explicit choice probabilities as functions of primitive parameters.
However, solution methods for discrete choice SDP problems with continuous state variables require
approximating the problems with finite ones, which leads to high-dimensional state spaces. Although
some attempts have recently been made to break this “curse of dimensionality” by means of random-
ization methods (see Rust (1997)), computational complexity remains a fundamental obstacle to the
practical usefulness of SDP in econometrics. While SDP provides a general framework for interpret-
ing and analyzing intertemporal decision problems, implementation of SDP models often require too
severe limitations on the number of variables that can be included in the analysis. Moreover, the
econometrician often has to assume representative agents with homogenous information sets.

Due to the obstacles in applying SDP, the literature offers alternative approaches. A well-known
approach is that of Stock and Wise (1990), who analyze the retirement decisions of older employees.
Stock and Wise suggest a sub-optimal decision criterion that is meant to approximate the decision rule
of SDP. Within our setting, the Stock and Wise rule implies that a firm finds, at ¢, the time to exit
that maximizes expected profits, given the current information of the firm. The firm then “commits”
to this time of exiting, say, t + €.

There is a fundamental problem with the Stock and Wise approach: A firm may obtain new

information between ¢ and ¢ + e} that affects the desirability of exiting. While a firm is free to adjust



the time to exit as long as it remains active, it gives up the possibility to wait for new information
when it exits. This lost option (exit is an absorbing state) has an opportunity cost that should be
included as part of the cost of exiting. Hence, the value of continuing production can be written as a
sum of two terms: (i) the present value of exiting at ¢ + e}, and () the option value — the value of
keeping the exit option alive.!

While the sum of (i) and () equals the value of continuing production according to SDP, the
Stock and Wise approach captures () only. In our econometric model, we extend the Stock and Wise
approach by approximating the value of the exit option by a simple function of the state variables. This
approach is in line with Pesaran and Smith (1995), who propose to integrate dynamic optimization
theory and empirical analysis by approximating Lagrange multipliers (derived from the stochastic
maximum principle) by simple functions of their determinants.

In order to analyze the dynamic programming problem, we need a model for firm profitability.
Firstly, we split profits into a revenue component and four cost components: capital, labor, energy
and material costs. Secondly, each component is factorized into price and quantity (physical amount).
Conditional on prices, log-output and log-factor use are assumed to evolve according to a VAR process.
The VAR model implies a particular “history dependence”: the firm’s choice of factor inputs depends
on current prices as well as lagged inputs and output. We show that the VAR model can be interpreted
as an approximation to a reduced form relation derived from a structural model with exogenous prices
and adjustment costs.

An important computational advantage of our approach is to allow for a high dimensional state
vector. We also incorporate systematic heterogeneity between firms by including a firm-specific pro-
ductivity parameter. The firm-specific productivity parameter is known to the firm, but not to the

2 This causes a self-selection problem: both the firm’s profit realizations and exit

econometrician.
decisions depend on a common latent variable.?
The econometric model is estimated by pseudo likelihood methods, using panel data from the

Norwegian Manufacturing Statistics for three sectors. In general, the data are explained well by

LWe use the term “option value” similarly as in the finance literature, where a call option denotes a right, but not an
obligation, to buy an asset at some future time. On the other hand, Stock and Wise (misleadingly) use the term “option
value” to denote (i). See also Dixit and Pindyck (1994), who decompose the value of a firm’s investment opportunity
into the net present value and the option value.

2For a more advanced approach of modelling firm heterogeneity, see Pakes and Ericson (1998), who apply (in a
different setting) two models of heterogeneity: one with passive Bayesian learning in which firms are endowed (at birth)
with an unknown value of a productivity parameter (observed profit realizations contain information on the value of the
parameter), and one with active exploration in which the firm knows the current value of the productivity parameter,
but the value of the parameter depends on stochastic outcomes of the firm’s investments.

30lley and Pakes (1996) analyze a similar selection problem  the relationship between unobserved productivity and
the shutdown decision — in order to estimate the parameters of a production function for the US telecommunications
equipment industry.



the model. The applicability of the model is then illustrated by assessing to what extent quotas on
carbondioxide (CO3) emissions cause increased exits.

Our main results are (i) the model improves goodness-of-fit significantly compared with a model
with a purely myopic exit rule (no option value); (i) there is, however, no conclusive evidence that joint
(pseudo likelihood) estimation of the state process and the exit probabilities significantly improves
predictions of exit compared with separate estimation (in one of the three sectors, McFadden’s p?
increased by 50 per cent with joint estimation, whereas p? remained virtually unchanged in the two
other sectors); (i) the individual random effect (the productivity parameter) has an impact on firm-
specific exit probabilities primarily through profitability, not through the option value; (iv) in two
sectors, we find strong evidence of a firm-specific common trend, i.e. a stochastic trend not caused
by trends in industry-wide prices; and (v) with a quota price of USD 25 per tonne of CO3 — a rough
estimate of the price of CO2 quotas following from the Kyoto agreement — aggregate exit probabilities
increase only slightly.

The rest of the paper is organized as follows: In Section 2, the firm profitability model is presented.
The exit decision problem of the firm is motivated and modeled in Section 3. Section 4 contains
empirical applications: we first present the results of the estimation and then use the estimated model
to examine the impact on firm exit following from imposing quotas on COs emissions. Section 5
concludes the paper. The pseudo likelihood function and a detailed outline of the estimation algorithm

are presented in Appendix A.

2 Firm profitability

In this section, we present the stochastic process which generates the profitability of the firms.* Let
7t denote profit of firm 7 in year t. We assume that 7 can be decomposed into five revenue and cost
components, which we collect in the vector yi = (yiQ,y}:K,y}: 1Yz yiay)s where y,’fQ denotes total
revenue and Yz, yi;, yip, and y!;, denote capital, labor, energy, and material costs, respectively.
The components of y! are measured in real prices, using the consumer price index as a common
deflator.

Profit can be written as

71'2 = L/y§7 (1)

1The term “firm” is used in the sense of plant or establishment.




with ¢ = (1,—1,—1, -1, —1)". Furthermore

ny = PtQXzQ (2)

vi; = PyX,; j=K,LEM,

where P, is the industry-wide real price of output, XtiQ is output from firm 4, P; is the industry-wide

real price of factor input j, and Xtij is the corresponding factor use of firm 7. Let

z; = (InX/g,..,InX/y (3)

Pt = (lnPtQ,...,lnPtM)'.
We assume that (2, p;’)’ is a vector autoregressive process, with p; being an exogenous random walk:

vy = p+Pri_y +Tp+To' +¢f (4)

Dt = P11+,

where 4 is a 5 x 1 intercept vector, ® and I' are 5 x 5 matrices of autoregressive coefficients, v* is a
scalar random effect — known by the firm but not by the econometrician, Y is a 5 x 1 factor loading

matrix®, and €} and 7, are Gaussian white noise vectors:

el ~ TIN(0,%) (5)

ne ~ IN(0,Q).

Since the covariance matrix ) can be estimated directly from time-series data on prices, henceforth
Q@ will be considered as a known parameter.

To complete the statistical specification of (4), we need to specify the joint distribution of v* and
x;i’, where s; is the initial observation year of firm i. Because firms are self-selected into the sample
(through survival), this distribution depends on both the entry and the exit process. However, it is
shown in Appendix A, Proposition 1, that the joint distribution of v* and x; affects the estimation
only through its contribution to the distribution of v* given all the time-series data xii, e xiTi, where
T; is the last year firm ¢ is observed. Under very general conditions, when T; — s; is moderate or large,
this distribution will be approximately normal and independent of the cross-sectional distribution of

v' given z% (see Lehmann (1983), Ch. 7). This suggests that the multivariate normal distribution

may be a useful approximation:

v'lag, ~ IN(Y (25, — B{z{}),1), (6)

5See, for example, Anderson (1984), Ch. 14, for an introduction to factor analysis.




where 1 is a 5 x 1 vector of regression coefficients and F{ xi} is the unconditional expectation, which
can be estimated directly from the cross-section of initial observations. Since v* enters (4) through
the term Yv?, the standardization of the variance in (6) entails no loss of generality. Similarly, the
restriction E{v'} = 0 is necessary to identify the intercept p.

The assumption that real output and input prices follow a random walk is obviously an over-
simplification. These variables show trending behavior, but the trends are not linear, or even monotone.
For example, in all industries considered there are downward trends in real wages from 1976 to the
early 1980s, followed by upward trends. These patterns suggest stochastic trends. Thus, a simple I(1)
model may provide a reasonable approximation.

To motivate the equations (4), it may be useful to try to relate them to a more structural model.

Assume that firms have CES-technology:
kv

ZQ = Z (A;thj)u (V7 H) € (07 1)7

je{K,L,E,M}
where Aj- is the productivity of factor j in firm ¢. If we allow for firm-specific productivity differences,

but restrict these to be time-invariant and (Hicks-) neutral (affecting all inputs in the same way):
A;- =¢;V,

profit maximization conditional on given prices leads to the factor demand functions (on log-form)

i 1 pC; 1 1 K .
T T 1*Hlnl{+1*v+1f/<alnPtQ+V,11nPtj+1,H1nV
V—K v ‘

+7y(ﬁ_1)1n > eXp(V_lln(Ptj/cj)) , j=K,L E, M,

JE{K,L,E,M}

and the supply function (on log-form)

; K k(v —K) ;
o = 1 —In P, —————In V"
TQ /{nHJr ko tQJr(l—l/)(/{—l)n *

% I R N <V” - ln(Ptj/c)>

je{K,L,E,M}

These first-order (equilibrium) conditions are moderately non-linear in p;, and can be linearized
to give
~1 .~ - =
Bray + Bopr + 1+ To* = 0 (7)
for suitably chosen 5 x 5 matrices Bl and BQ, 5 x 1 vectors 11 and T, and with v* = InV?. If the

adjustment toward equilibrium is driven by a first-order error correction:



S~ ~1 -~ i
Az = aByxy_y + Bope—1 + 1+ To') + &, (8)

we obtain, through reparametrization, a model of the form (4).° The interpretation is that, while (7)
defines the underlying equilibrium relations, firms being out of equilibrium adjust according to the
adjustment mechanism (8) to bring the variables back to equilibrium.

Note that the parameters of the structural model cannot be identified from (4) because the para-
meters in the latter model depend on the adjustment matrix a; e.g. ® = I+ aél ’. However, the model
(4) should not be regarded as a tool for estimating production functions, but as a mean to facilitate
predictions on future profitability. Furthermore, to the extent that changes in prices are correlated
with industry-wide technological change, our model will capture this effect through I'. Thus, one
should be careful in interpreting I.

Model (4) is valid under more general conditions than (8), which states that there are exactly
five cointegration (equilibrium) relations, that is, E;xi_l + E;pt_l. For example, one strand of the
literature on firm dynamics claims, in accordance with Gibrat’s law, that idiosyncratic productivity
growth is independent of firm size.” According to one interpretation of Gibrat’s law, cumulative
innovations arising from R&D investments lead to stochastic trends in the state variables on log-scale
(see e.g. Klette and Griliches (2000)). In our setting, this means that the number of cointegrating

relations (i.e. the rank of ® — I) is less than five. We will return to this issue in Section 4.

3 The exit decision

For any random vector X!, we will use the notation E;{X!} to denote the conditional expectation of

X with respect to the information set I} of firm 7 at time :

i (i i
I = {v',ps,, x5, oo ,pt/\ﬁ,xmﬁ},

where §; is the birth date and Tj is the exit date of firm i.® For any t in which the firm is operating,
I} can be described as knowledge about random variables which have been realized up to year t.
Informally, I} is the subjective information of firm i “at the end” of year t. On the other hand, the
“objective” information set of the econometrician, I?, consists of random variables {po,..,pr} and
{2t} for s; < s <Tj;andi=1,..., N, where s; = 5; V0 and T; = ﬁ AT. That is, the econometrician’s

observation period is [0, T]. In particular, he or she does not observe v'.

6This is an instance of the celebrated representation theorem of Engle and Granger (1987).
"See Sutton (1997) for an overview of this literature.
8We use the standard notation s A t = min(s, t) and s V t = max(s,t).



At the end of year t, the firm decides whether to close down or not. If the firm has a finite planning
horizon [t,t 4+ H], this is a finite horizon optimal stopping problem. In order to analyze this decision
problem, we first, following Stock and Wise (1990), look at a much simpler problem: Assume that the
firm, given that it chooses not to exit, commits to a future exit time. If the firm chooses to continue
production until ¢ + e (e > 0) and then closes down, it obtains the cash flow {m},,.., 7}, .} from
production and, upon exiting, the scrap value Sy .. If Vji(e) is the total value of this exit-strategy,
then

Vi(e) =) + 6°Er{ S}, (9)

where
j(e) = > 6" E{mi 1},
k=1

§ is the discount factor, and E.{S? +e) is the expected scrap value. Note that, in our setting, current
profit 7 is immaterial for the firm’s decision because it is earned regardless of whether or not the firm
exits at the end of year t.

The firm can calculate the net present value IIi(e) conditional on its information set I} using (4)

as a prediction model. In particular, from (1) we get
i(e) = /(Y 8" Eclyiir})- (10)
k=1
Equations (2)-(3) and a well-known property of the log-normal distribution yield

Et{3/§+k,j} = exp (Et{xi-i-k,j + Pig,it + %V@Tt{xi+k,j +Pryt), J=Q,K,L,E/M, (11)

where Var{-} denotes the conditional variance relative to I;. The moments in (11) can be obtained
from Ey{(x} ;" pes’)'} and Var{(x}, ", peyr ')}, which, in turn, can be calculated recursively from
(4) conditional on v¢, ¢ and p;.

Because the scrap value S} is unobserved by the econometrician, we have to make some simplifying
assumptions. First, we assume that S} can be decomposed into assets A! yielding a random rate of
interest ﬁz, and a random residual Qi:

Si=Al+G, (12)
where

Ai+1 = (1 +ﬁ;+1)Ai'

A? could be the value of some asset which can be disposed of upon exit, while ¢ Zg is the net revenue

from all other revenues and costs incurred by exit (e.g. revenues from sale of production equipment,



clean-up costs, compensation to employees). Our basic hypothesis is that temporal variations in gj@

and }3; have a purely transient character. In particular, for all e > 0, and conditional on I},

Ei{¢iyo} =0 (13)
Et{/p\i-i-e} =p-: (14)

If pi 4o and o 4 are conditionally independent for e # k (e,k > 0), equations (13)-(14) yield, with

_ 1
6= 1m0

- Al e>0
8°E S, .} = ¢ ; 15
usiad ={ 4L o o7 (15)
The assumptions leading to (15) are restrictive, but warranted in the absence of direct data on scrap

value.

Following Stock and Wise, we define

Vi =V/i(e)), (16)
where
ef = argmax V/(e). (17)
ec{l,...,H}

Thus, given that the firm at the end of year ¢ commits to a future exit time, V;* is the value of
remaining operative when the firm chooses this exit time so as to maximize expected discounted
profits.?

The decision rule proposed by Stock and Wise seeks to approximate the correct value of remaining
active, which can be derived using SDP. According to their (sub-optimal) rule, the firm will close

down if S} > V;**. However, this is a biased — and typically poor — approximation.'’

In particular,
the criterion ignores the option value: the decision to postpone exit means that the firm has an
opportunity to exit at t + ey, but it is not obliged to do so. This option has a value to the firm, )\i,

given by

i ki & qi ~ kg e;
A = Et{lglgiXHZ‘s Tivk +0°Sipat — Ez‘/{Z‘S Tk + 6% Stte}
=T k=1 k=1
= I/VtZ - V:ti*v

where € is a stopping time relative to the firm’s information set I}. The total value of remaining
operative, W/, can then be written as

Wi = Vi 4 AL
9Note that the infinite horizon case (H = o) can be covered provided Vj(e}) converges as H — oco. For example,
with a 7 percent rate of interest and parameter values equal to any of the estimates reported in Section 4, convergence
is achieved. This is analogous to the method of successive approximations for solving infinite horizon SDP problems;
one then solves a sequence of finite horizon problems until the value function converges (see Rust (1994)).
10For a study of its mathematical accuracy in some relevant situations, see Stern (1997).
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Note that )\i > 0. In a deterministic model, )\i = 0, since the firm obtains no new information as time
passes.

Empirical evidence suggest that non-profitable firms may stay operative for a long time. This
behavior can hardly be explained by the decision rule “close down if S{ > V;**”. However, it could
be rationalized when the option value is taken into account. Evidence on firms’ investment behavior
also supports this view. For example, Dixit and Pindyck (1994), citing Summers (1987), claim that
investment projects typically have an expected yield which is three or four times the cost of capital.

As discussed thoroughly in Dixit and Pindyck (1994), the larger the variability in profit, the higher
the option value. The reason is that the option introduces an asymmetry which causes the expected
gain of a positive shock to be larger than the expected loss of a negative shock. To see this in our
case, first consider a positive shock to profit. A positive shock increases 7%, but also expected future
profit, and hence V;**. On the other hand, a negative shock decreases V,* accordingly. Because the
firm can choose to exit at the end of ¢, future losses can be avoided. If positive and negative shocks
occur with equal probability, an increase in the variability of profit increases the difference between
the upside potential and the downside risk, and thus increases the option value.

Following the general approach of Pesaran and Smith (1995), we propose to approximate the
option value )\i by a function, Xz In general, because the state process is Markovian, )\i depends on
pe, xi, and v'. However, below we will seek to reduce the dimension of the state space over which we
approximate /\i.

The above discussion showed that variability in y! is the source of the option value. Because of
log-normality, the variance in the components of y} is proportional to the expected value of yi. Hence,
variation in the levels of the y! components across i and t also reflects variation in the variance of
profits, and thus in the variance of option values. Let Z} = (Z},, .., Zd)’ denote the first d principal
components of y?, that is, the orthonormal basis for the d-dimensional subspace with most variation

in the yi-data.'! We propose the following linear approximation:

N=X € (18)

where
N = By + 877+ 4, (19)
and ff; is the error of approximation (note that the error term fi has a degenerate distribution condi-

tional on I}). We restrict the principal components to be uncorrelated with 7% (hence d < 4). This

11See Anderson (1984), Ch. 11, for an introduction to principal components analysis.
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is necessary to avoid identification and interpretation problems: to the extent that profitability and
option value are correlated, it is impossible to separate them solely on the basis of data.

The decision rule derived from SDP is: Close down production if and only if
Si> Wi = —(0 + 107 > X, (20)
where TTI* = TIi(e;) and X} is the difference between the error terms in (12) and (18).
Let z} be the indicator that firm ¢ closes down:

i { 1 if i closes down at t
i =

0  if i does not close down at t.
If F}(-) denotes the cumulative distribution function of the error term x: conditional on I}, we get

the following relationship:
P(z = 1|0, @, pe, 2y = 0) = F{ (=), — II}"). (21)

Note that the present value IT:* depends on the random effect v* and the unknown time-series para-
meters 0 = (&, T, %, u, ). To stress this dependence, we will sometimes use the notation IT:*(v?; 9).
Since the probability distribution F} (-) is unknown, we will rely on pseudo likelihood methods
(see Gourieroux and Montfort (1995), Ch. 8.4). In particular, we approximate F} (-) by a logistic
distribution with scale factor 0. The approximate exit probability then has the familiar and convenient

form

1
C 1texp{— (By + B Z] + yvi + olli*(v';6)) }
where 8, = —83/0, 8 = —08%/o, v = —v*/o, a = —1/0, and w = (B, 58,7, ). In the logistic distri-

ﬁw(zz = 1o’ 2t pr, 2zi_, = 0;6) (22)
bution (22), w should be interpreted as a pseudo true vector-parameter: the value of the parameter
that minimizes the Kullback discrepancy between the true distribution P (-) and the postulated class
of distributions ﬁw (). An estimator that converges in probability to the pseudo true w is obtained by
maximizing the pseudo likelihood jointly with respect to 6, 1 (the parameters of the initial distribution
of v') and w, that is, by maximizing the function obtained by replacing P (-) with P,, (-) in the true
likelihood function.'?

The main purpose of statistical inference is to estimate exit probabilities as functions of observed
variables. This means that the random effect v* must be integrated out of (22) with respect to

its conditional distribution, given the data. Because the derivations are tedious, the joint pseudo

likelihood function, as well as a detailed outline of the estimation algorithm, is presented in Appendix

A.

12The pseudo likelihood approach is in line with Pesaran and Smith (1995) — although they do not explicitly interpret
their inference problems in terms of pseudo likelihood and pseudo true values.
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4 Applications

In this section, we first estimate the model and then simulate effects on firm exit following from the
imposition of quotas on emissions of CO2. We rely on raw data from Statistics Norway’s Manufacturing
Statistics, which provide annual observations on gross value of production, intermediates, wage costs,
energy costs, etc. for all Norwegian manufacturing firms. As there is no direct information on capital
costs available, in this study capital costs are estimated from fire-insurance values. We have also
obtained sector-specific input and output price indexes. These price indexes were deflated using the
consumer price index to obtain real-price indexes. The resulting (deflated) indexes were set to 1 in the
first observation year 1976, i.e. pyp = 0. This normalization implies a rescaling of ng (according to the
relation (2)). That is, Xtij is output/factor quantity multiplied by an unknown constant. However,
our model is invariant to this transformation: the only effect is an induced shift in the intercept of
the first equation in (4).

Because use of fossil fuels show a great variance across sectors, we concentrate on fossil fuel-
intensive sectors: Fish oil and fish meat (ISIC 31151), paper and paper products (ISIC 341), and
mineral products (ISIC 369).

4.1 Estimation results

The firms were observed in the period 1976-95. Firms that entered the industry during the observation
period were also included in the sample. Because of the VAR(1) structure, firms were sampled
conditional on being operative in at least two periods. The interest rate was set to 7 per cent, while

a planning horizon of H = 20 was chosen. Recall that
zi = (log-output, log-capital, log-labor, log-energy, log-materials)’

and

yZ = (revenue, capital cost, labor cost, energy cost, material cost)’.

A principal components analysis of the y! data was performed. The number of principal com-
ponents used in the option value approximation (19) was decided according to the following rule:
Start with the first principal component Z;;, and add additional components until the corresponding
B-parameter estimate in (22) is insignificant at the 95 per cent level. In all sectors, this procedure led
to selection of two principal components.

Preliminary estimates of 6§ and w were obtained by a two-stage estimation procedure: First the
parameters 6 of the VAR model were estimated by maximizing the corresponding partial pseudo log-

likelihood, i.e. the likelihood obtained by considering the stopping times T; as deterministic. Then

13



w was estimated based on the logistic function (22), given the 0 estimate from the first stage. This
partial estimation procedure was followed by joint estimation based on the full pseudo likelihood.
Computer programs were written in Gauss to carry out these tasks. The fit of our model is compared
with a model with a myopic (Marshallian) exit rule based on current profit 7 (instead of IT;*) and

with no option value. Below our main results are reported for each of the sectors in turn.
Fish oil and fish meal

The estimates from this sector are based on 47 firms. We first look at the estimated time-series

matrix-parameter P:
36 .10 18 A1 25
08 93 —-.11 .06 —.01
08 .04 .83 06 —.05
-30 .12 .36 .74 .19
20 11 29 —.05 .57

)
I

® has two complex eigenvalues, indicating cyclical variations in the adjustment toward equilibrium.
Furthermore, ® has one eigenvalue which is not significantly different from 1: the estimate is 0.99, with
a standard deviation of 0.01.1% This suggests that there may be four, rather than five, cointegration
vectors in the system (zi’,p;")’ (see the discussion at the end of Section 2).

The estimates of the logistic parameters are shown in Table 1. Recall that (3 is the constant term;
3, and (3, are the coefficients of the first and second principal components of yi; 7 is the coefficient of
the random effect v¥; and « is the coefficient of the net present value II:*. We note that & is negative
and highly significant: high net present value leads to a low exit probability.

The first two principal components are primarily linear combinations of labor and capital. This
finding is replicated in the other two sectors. It is plausible to interpret these principal components
as proxies for firm size. The rationale may be that, for a given level of expected profitability, a firm’s
ability to take advantage of unexpected positive shocks is increasing in the stock of physical and
human capital. As required, the estimated option values are positive for all firms in all observation
years. The random effect v?, however, was not found to have any significant impact on the variation
in option values across firms: 7 ~ 0.

In this, as well as in the other two sectors, we find that the cross-sectional variance in random effects
is relatively small (although Y is significantly different from 0). For example, tr(YT N/ tr(f]) ~ 0.01.
This does not, however, imply that the variation in v* is unimportant in order to explain heterogeneity

among firms: In all sectors, we find evidence of either a unit root or that ideosyncratic shocks have a

131n order to make statistical inferences which are consistent with the pseudo likelihood approach, standard deviations
were calculated using the “sandwich matrix” formula; see e.g. Gourieroux and Montfort (1995), p. 237.
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Parameter | Estimate | St.dev.
Bo -3.80 0.36
B84 -0.35 0.05
0o -0.83 0.35
0% -0.00 0.12
« -4.30 1.31

Table 1: Fish oil and fish meal: Estimated logistic parameters

high degree of persistence. In the presence of a unit root, v* will give rise to a linear trend in ¢, and
thus its impact on firm heterogeneity is magnified over time.

The size of the sector has been dramatically reduced over time: only 7 of the 43 firms operating
in 1977 were active in 1996, and there were only 4 entries between 1976 and 1995. Figure 1a (i.e. the
upper chart of Figure 1) shows observed exit frequencies versus average estimated exit probabilities
among all firms for each year in the period 1977-95. Figure la also depicts, for each year, the average
exit probability of (i) firms that survived throughout the whole observation period (“survivors”),
and (i) firms that exited during the observation period (“exiting firms”). The model appears to
discriminate well between survivors and exiting firms: the average exit probability of survivors is
substantially lower than that of exiting firms.

In order to assess the fit of the model, we have calculated McFadden’s p?, which in this sector
equals 0.21. For comparison, partial estimation led to p? = 0.20, while p? is only 0.01 in the myopic
model. The ability of the model to discriminate between firms is also indicated in Figure 1b (i.e. the
lower chart of Figure 1). This figure depicts the distribution of exit probabilities of exiting and non-
exiting “firm-years” over the whole observation period: a “firm-year” is a firm observed in one year,
and it is classified as “non-exiting” if the firm is operating throughout the next year and “exiting” if
it exits (at the beginning) of the next year.!* As anticipated, the distribution of exiting firm-years
has the heaviest tail. In particular, the average exit probabilities of exiting and non-exiting firm-years

are 17 per cent and 8 per cent, respectively.
Paper and paper products

The sample consists of 119 firms. The estimated time-series matrix-parameter P is

83 .01 .18 —-.04 .03
A2 .73 15 03 —.04
00 .81 -.01 .01
14 .04 11 90 —.18
29 .00 24 -—-.07 D7

1T take one example, suppose a firm is active in 1976 and 1977, but exits (early) in 1978. Its estimated exit

)
I
Ju—y
[=p}

probability for 1976 is assigned to the distribution of non-exiting firm-years, whereas the estimated exit probability for
1977 is assigned to the distribution of exiting firm-years.
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Parameter | Estimate | St.dev.
Bo -7.84 1.18
o -2.22 0.46
0o -4.73 1.72
y -0.08 0.16
« -0.94 0.29

Table 2: Paper and paper products: Estimated logistic parameters

The eigenvalues of & lie in the interval 0.52 to 0.99, with a standard deviation of 0.01 for the highest
eigenvalue. Thus, again we find evidence for four cointegrating vectors. The estimates of the logistic
parameters are shown in Table 2. In particular, all S-parameters are clearly significant. Also « is
significant, although the estimate is much lower than in the previous sector. We found that p? = 0.23
(partial estimation led to p? = 0.22). This is dramatically higher than for the myopic model, where
p? = 0.01.

In this sector, there were 107 firms in 1977, and 46 of them remained active in 1996. In addition,
there were 12 entries during the observation period. Only 3 of these firms were still active in 1996.
Estimated versus observed annual exit probabilities are depicted in Figure 2a. The figure shows a
reduction in the average exit probability of all firms from 1977 to 1995. This seems to be mainly due
to self-selection among the 1977 firms. That is, the most profitable firms have survived.

Figure 2b shows the distribution of exit probabilities for exiting versus non-exiting firm-years.
Again we find a marked difference in the shape of these distributions: the average exit probabilities

in the two distributions are 15 per cent and 5 per cent, respectively.
Mineral products

This sample consists of 246 firms. We obtained the time-series estimates

41 .03 .17 01 .27
03 .64 .17 .08 .06
.00 .02 91 02 .02
—-.06 .08 .13 78 .04
10 .02 .04 —-.01 .80

)
I

The eigenvalues of ® are in the range of 0.35 to 0.96, where the latter estimate has a standard
deviation of 0.02. The estimates of the logistic parameters are shown in Table 3. All G-parameters,
v, and « are clearly significant. The average exit probabilities of exiting and non-exiting firm-years
are 9 per cent and 4 per cent, respectively (see Figure 3b).

In this sector, 91 of the 176 active firms in 1977 survived until 1996. Moreover, there were 70

entries, of which 29 firms were still operating in 1996. On the other hand, Figure 3a shows peaks in
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Parameter | Estimate | St.dev.
Bo -3.29 0.14
B84 -1.07 0.20
0o -2.27 0.49
0% -0.60 0.14
«@ -5.96 1.22

Table 3: Mineral products: Estimated logistic parameters

the exit rates around 1983-84 and, in particular, during 1987-92. These periods are characterized by
low output prices, primarily due to a low demand for mineral products from the construction sector.

Figure 4 shows, for each year, industry-wide adjustment of output and labor input to changes
in prices, i.e. the first and third component of T'p; (see equation (4)). The vertical axis measures
(approximately) percentage changes relative to 1977 in aggregate output and aggregate labor use. As
seen from Figure 4, both components are low in the recessions (when observed exit rates are high).
However, the model does not capture the dramatic increase in exits during 1987-92: there is only a
moderate increase in aggregate estimated exit probabilities compared with previous years. This may
be the main reason for a low p?; p? = 0.11. Moreover, with partial estimates p? = 0.07, whereas in

the myopic model p? = 0.04.

4.2 Policy simulations

Increased concern for the greenhouse effect has led to a number of local and global initiatives to cut
emissions of carbon dioxide (CO3) and other harmful greenhouse gases. In Norway, for example, a
state-appointed committee recently released a report on greenhouse gas quotas for the Norwegian
economy (NOU 2000:1). The committee’s recommendations were partly based on results obtained
from an application of the present model. In this section, we explain how the model can be applied to
examine the impact on firm exit when firms are forced to buy quotas. For each firm, the amount of
acquired quotas corresponds to the emission of greenhouse gases following from combustion of fossil
fuels (emissions are expressed in units of COy).

Economic theory suggests that firms respond to a higher price of fossil fuels (due to the quotas)
through (¢) substitution between energy goods away from fossil fuels, (#) substitution away from
energy, and (i) adjustment of the scale of production. In order to build these effects into our model,
detailed information about e.g. substitution elasticities and scale elasticities is required. Unfortu-
nately, there are few studies on Norwegian manufacturing sectors that provide adequate information
on any of these parameters. Given the limited information, we focus on only one type of response,

namely substitution between different energy goods. In order to study this effect, we need to impose
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more structure on the underlying production process.

Firstly, as in Section 2, the production function must be weakly separable in the major input
categories capital, labor, energy, and materials. Secondly, we assume that the energy aggregate is
homothetic in its inputs fossil fuels and electricity. These assumptions imply that the firm’s choice of
factor inputs can be decomposed into two steps: First choose the (relative) composition of the energy
aggregate, and then choose the optimal level of capital, labor, energy, and materials; see Denny and
Fuss (1977).

Let F} denote the total quantity of fossil fuels, and let f{ denote the quantity of fossil fuels per

unit of energy in firm i:
EF

fZ: 7"
XtE

If we mark costs that include acquisition of quotas with *, the cost of consuming X! under a quota
system is

ik = (vicfi + pp) Xip = Y5,
where v, is the quota price at time ¢, and c is emission of COs2 per unit of fossil fuels, and

i vthZ + B (_ UtCOé erZE)

(23)

Ty = -
YiE

12954
is the price of energy with quotas relative to the price of energy without quotas. In equation (23), we
have used the notation CO} to denote COg emissions from firm i at time t. Note that In7i can be
interpreted as the relative change in the unit cost of energy due to quotas.

We now investigate the relation between 7 and f{. For simplicity, we drop i and ¢ and use the
notation 7(f) to denote 7 as a function of f, and f(-) to denote f as a function of the price of fossil

fuels. Let fO and f' be the level of f before and after the quotas, respectively, and let piﬁ be the price

of fossil fuels. We then have the following first-order approximation:

Ac
1 ~ 1 0 _—
nr n7(f)+ T +pEf/(pF)/\c
ACOy  ACOq
= In7(f°) +ElL,,F 24
nT(f) PF ACOQ"’yE yF ( )

The first term, In 7(f9), denotes the relative change in the unit cost of energy due to the quotas if
there is no substitution within the energy aggregate. The second term, which is non-positive, modifies
this effect by taking into account the effect of re-optimizing the mix of the energy aggregate. The
magnitude of the latter effect is the product of (i) the conditional elasticity of demand for fossil fuels
with respect to its own price (total amount of energy is fixed), (i7) the quota payment relative to
the total costs of energy, and (4ii) the ratio between the quota payment and the cost of fossil fuels

before the quotas. Note that since the optimal f} minimizes vicff + p,5 (the average costs of energy
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with quotas), the price of energy p,p will also increase. But this is a second-order effect under the
assumption of optimization, and is assumed to be negligible.
We now turn to how to model expectations about future 7. Because we have no data on v, we

simply assume that
Et{TiJrk} = Ti, (25)

that is, 7} is a martingale with respect to the information set of the firm at t. Hence, the firm expects
the percentage change in the tax payment per unit of energy and the price of energy, P;r, to be equal.

In the presence of a quota price v; > 0, we define the net present value as
e
i (e) = /'O 6" Edyitn})
k=1

where
*g_{ Twip J=F
ST vy JFE

In this study, we set the price of quotas equal to USD 25 per tonne of CO2 in 1996. This number
corresponds roughly to the quota price in a competitive market containing all signatories of the Kyoto
agreement (averaged over the estimates of nine studies); see Weyant and Hill (1999). Moreover, the
constrained direct demand elasticity for fossil fuels (-0.34) is taken from Pindyck (1979). When firms
are forced to buy carbon quotas, profits fall and hence the firm-specific exit probabilities increase.
Table 4 shows the results for our three sectors for the 1996 exit probabilities. Because firms in these
sectors are small and primarily sell their products in the world market, all prices can be taken to
be exogenous. We study the impact of quotas under two different assumptions: (4) no substitution
between energy inputs, and (i) substitution between energy inputs.

As seen from Table 4, the impact on 1996 exit probabilities of imposing carbon quotas is small.
For fish oil and fish meal, the average exit probability increases from 4.3 per cent to 4.7 per cent, and
equals 4.6 per cent when firms substitute between energy inputs.'®> A closer examination reveals that
the highest increase in firm-specific exit probabilities is around 1 percentage point. For paper and
paper products, as well as mineral products, the rise in average exit probability (following from the
quotas) is as low as 0.1 percentage points. Also in these two sectors, most firms experience a minor

increase in the exit probability, and no increase exceeds 1.5 percentage points.

15 Assume that all annual firm-specific exit probabilities are constant over time (and equal to the 1996 values), and
that quotas are not imposed. After 10 years, we would expect that 72 per cent of the active firms in 1996 are still
operating. With quotas (and no substitution), the corresponding number is 70 per cent.
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Sector No quotas | Quotas — no subst. | Quotas — subst.
Fish oil and fish meal 4.3 4.7 4.6
Paper and paper products | 2.5 2.6 2.5
Mineral products 4.4 4.5 4.4

Table 4: Average annual exit probabilities in 1996 (in per cent) when the price of quotas is USD 25
per tonne of COs in 1996

5 Concluding remarks

The purpose of the present paper has been to apply stochastic dynamic programming in order to
develop an econometric model for firm exit. According to stochastic dynamic programming, the value
of continuing production can be written as a sum of two terms: () the net present value of being
committed to stay operative until a fixed future date (where the time to exit is chosen according to
the Stock and Wise approach), and (i) the value of keeping the exit option alive. Due to obstacles in
applying stochastic dynamic programming, we approximate the option value by a simple function of its
determinants. By combining the exit decision rule derived from stochastic dynamic programming and
a stochastic model for firm profitability, and moreover approximating the value of the exit option, we
derive probability distributions of firm exit. The econometric model is estimated by pseudo likelihood
methods, using panel data from the Norwegian Manufacturing Statistics. In general, the data are
explained well by the model. The applicability of the model is then illustrated by assessing to what
extent quotas on COy emissions increase firm exits in three carbon-intensive manufacturing sectors.
We find that a quota price of USD 25 per tonne CO» (in 1996) raises most firm-specific exit probabilities

only slightly.

A Estimation

We will now turn to estimation of the logistic parameters w = (8, 3, 7, &), the time-series parameters
0= (®,T,%, u,Y) in (4)-(5), and the parameters ¢ in (6). For notational simplicity, assume that all
firms enter the sample at ¢ = 0 (the general case is a straightforward extension).

All probability statements will henceforth be conditional on prices and zf, although this condi-

tioning is mostly suppressed in the notation.

A.1 The pseudo likelihood function

Conditional on z}, the observed data on firm i consist of {(zf,xi);t = 1,...,T;}. T; is the exit time
or, if there is no observed exit, T; = T — the last possible observation year. This means that T; is a

realization of a random variable, say, 7,. We will now establish the pseudo likelihood (conditional on
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the z{’s) as a function of (w, 6, 1).

Define the stopped stochastic process X: = {%,...,z% }, and let X%ﬁ = {2i, .., x%} for a fized
index T;. Furthermore, let f (XlTL) denote the probability density of X%i. Since, for Borel sets By,
[2{ € Bi,...2, € B;,,7; = Tj] and [z} € By,...,x), € Br,,7; = Tj] describe the same event, the
probability density of X7 can be factorized as P(r; = Ty| X1, ) f(X7. ).

Let P, (-;6) be the approximate exit probability distribution defined in (22). Furthermore, let
f(v*| X% (0,1)) be the density of v* conditional on X%, and f(X% ;(0,v)) the marginal density of

o~

X%L_. Then the joint pseudo log-likelihood function I(w, #) becomes

~

N
[(w,0,9) = 1w, 6,9), (26)
=1

where N is the number of firms, and

T;
ﬁ(w,@,z/)) = ln/HPw(zﬂvi,xi,pt,le = O;G)f(vi|X§~i; (G,w))dvi
t=1
+1In f(X7; (6,4)). (27)

The first term on the right-hand side of (27) corresponds to In P,,(7; = T;| X%, ), while the second term
is the log of the marginal density of X%i. Note that if 7, = T', then 27, = 0 and 27, = 1 are both
possible: the observation period may end with exit or non-exit. On the other hand, 7; < T implies
zr, = 1.

We are now in a position where we can prove the claim in Section 2, that is, the initial distribution
of v! (conditional on z)) affects only the maximum (pseudo) likelihood estimates of the other primitives
of the model through f(v*| X% ;(6,1)). Let p,(v') denote some class of positive inital distributions of
v’ indexed by 1. That is, 1) may have a different meaning than in the familiy (6). Furthermore, let
(§(¢)»@(¢)) denote maximum pseudo likelihood estimates for fixed ¥. Then we have the following

result:
Proposition 1 (8(v),5())) depends on the initial distribution py(v') only through f(v'| X4 (6,1)).

Proof. Since In f(X%;(0,v)) = In f(XF [v%60) + In p,(v*) — In f(v*| X5, 5 (0,), we have, for any
fixed 0y and v,

In f(X4;(0,9) = / In f(X7, [v%;0) f(v*| X7, 5 (8o, o) )dv” + / In p,, (v°) f(v°| X1, 5 (B0, ¥o))dv’
- / In £(v' [ X4 (6, ) F(0| X 5 (8o, 1)) v’ (28)

(note that this is the kind of representation which is used in the EM algorithm!®). It is seen that only

168ee ¢.g. Tanner (1993), p. 43.
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the first and third terms on the right-hand side of (28) depend on 6, and only the latter term depends
on v, and then only through f(v"|X%i; 0,9). =

A.2 The estimation algorithm

A natural estimation strategy would be to maximize the pseudo likelihood with respect to the unknown
parameters. However, this is a rather complex problem. First, it is not clear how we should evaluate
the distribution of v*| X4 which appears in (27). Furthermore, P (zvt, 2t py, 2zi_, = 0;6) depends
in a complex way on the parameters 6 through the net present value IT:(v?; §).

To be able to solve the estimation problem, we shall start by obtaining a useful representation of
the density f(X%i; (0,9)). Let

Ri = Yo' +¢l. (29)

The first equation in (4) can then be written

i = p+ Pxy_y +Ip,+ Ry (30)

As originally proposed in Raknerud (1999), define orthogonal residuals

7 1 t 7 _
ﬁi—{ JigRiy X R t=1,.,T,-1 1)

T; ;
% Zv:l R:) t= ,‘TZ

It is easily seen from (5)-(6) and (29)-(31) that

T;—1
F(X5:(0,9) o [ F(RE6) x f(Riy; (6,9))
t=1

where
ﬁf& _ { \/ H—Ll ((%@-1 - %22:1 %) - CI)(IZE - %22:1 xi—l) - F(Pt+1 - % Zizl Pv)) t=1,..,T; -1
%25;1(1”2;*#*@1”2_1 —I'py) t="1T;,
and
i N(0,%) t=1,...T;—1
L NOYY (3 — E{d}), XY+ T7'S) ¢ =T
Hence

T;
F(w,0) =In / T Poilof s pin 2y = 050) £ (0| X 0, )y’
t=1

T;—1

+ > In f(R};60) + In f(RE; (6, 1)) (32)
t=1
Since only ﬁlT depends on v?,
F X5 (0,9)) = F(0'| Ry (0,7)). (33)
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That is, é’T is prediction sufficient for v’ (see Bjgrnstad (1996)); there is no information about v in

Ri for t < T;. From (29) and (31),
R: vt ~ N (T0!, T'S) (34)
and we can establish the following result:
Proposition 2 The distribution of v* given X% s given by
VX ~ N ((T'z—lr +Th (T’z—lég F T (@ — E{xg})) (TSI 1)—1) (35)

Proof. The proposition is an immediate consequence of (6), (33), (34), and Bayes’s theorem. =

We note that for given (6,1)), maximization of (32) with respect to the logistic parameters w is
quite easy. The integral can be evaluated numerically or by Monte Carlo integration. Moreover,
because the variance in v conditional on the time-series data X%i is of the order O(T; '), as seen
from (35), a very accurate approximation to the integral can be obtained by replacing v® with its
conditional mean in (35).

To estimate w, 6, and ¥, we propose a two-step procedure. In the first step, simple preliminary
estimates (G,Aé, 171) are obtained. These are then used as starting values when maximizing (32) jointly
with respect to (w, 0, ).

It is well known that for any stopping time 7; which is adapted to I7,

dln f(wi,wf;l,(eﬂ/f))

E =0, (36)

00
dln f(a:i,..,w;i’;(eﬂ/f))
o

that is, (6, ) maximizes E{In f(X7,; (6,¢))} (see Hall and Heyde (1989), p. 155). Unfortunately (36)

does not hold for 7;, because 7; depends on v?. However, if little information about v’ is revealed by
observing {zi, ..., z%i}, (36) might hold approximately for the stopping time 7;. This motivates the
initial estimator (5, 17)) defined by

N [ olnf(ai ..z (0.0))

1

L 00 -

N Z Oln f(mi)--,ﬂc?j-ﬁ(ayw)) 07
=1 oY

which is found by maximizing Zil < ?:Il In f (éi, 0) +1n f( N%«i; (8, 1/1))) A preliminary estimator
of w, say, @, can then be obtained by logistic regression:

N T
o= argmaxZZlnPw (zZ|E{vZ|XZT, 0,9)}, 28, p, 2 = O;9> . (37)
Y i=1t=1

That is, v* in (32) is replaced by its conditional expectation (evaluated at § = Aé), and the resulting

approximation to Tz(w,g) is maximized with respect to w.
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In the second step, we obtain full maximum pseudo likelihood estimators using (&,5, &) as staring
values. Although the “logistic part” of (32), lnf]_[?‘:"l Po(zivt, 2t py, 20, = 0;0)f(v'| X5 ;5 (0,9))dv’,
is a complicated function of 6, it is smooth. For example, derivatives of IIi*(v%; §) with respect to
can be obtained by applying the chain rule on (10)-(11) with e = e} and then recursively obtaining
derivatives of Ey(z}, , + pesk) and Vary(z}, , + pigr) from (4).17 Although ITj*(v%; 6) is a non-smooth

function of # — because the discrete choice e} depends on § — averaging over v* “smooths out” the

. . .. . al—[i* 49
discontinuities in %.

Our data set confirms that the final estimates, (& ,5, 1//;), are close to the initial estimates, (&,5, 17)),
and that the method converges quite quickly. Visual inspection of the log-likelihood in orthogonal
directions (corresponding to the eigenvectors of the estimated covariance matrix) confirms that we

find global maximizers.
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Actual exit frequencies versus estimated probabilities
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Figure 1: Fish oil and fish meal: Comparison of exit probabilities between exiting and non-exiting
firms.



Actual exit frequencies versus estimated probabilities
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Figure 2: Paper and paper products: Comparison of exit probabilities between exiting and non-exiting
firms.
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Figure 3: Minera products: Comparison of exit probabilities between exiting and non-exiting firms.
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