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1 Introduction

People frequently find themselves in various types of prisoners’ dilemma situations. This pa-
per analyses an infinitely recurring prisoners’ dilemma in which people change their partner
in every period. It explains why a person may choose to cooperate in a prisoners’ dilemma
type situation even when he knows that he will never play against the same person again.
Furthermore, it explains why both cooperators and defectors may exist simultaneously in a
society, and why cooperators sometimes are being taken advantage of.

After two people have played the prisoners’ dilemma there is a possibility for networking.
Then, two cooperators who played against each other exchange information about cooper-
ators that they have met in previous periods. If a cooperator A gets information about
another cooperator B in period ¢ — 1, then A will search for B and try to pre-match with
him in period ¢. If A succeeds in pre-matching B, then A and B will play the prisoners’
dilemma against each other in period ¢t. A defector A will never succeed in such pre-matching
because a cooperator B will only pre-match with A if A can send a signal by greeting from
a cooperator against whom B has played in a previous period. Since a cooperator will never
tell a defector about cooperators, a defector will never be able to send such a signal. In each
period all people in the society who did not succeed in pre-matching are randomly matched
with each other.

By behaving cooperatively people expand their network of cooperative people. The
analysis shows that, given that all cooperators network as described above, the probability
of matching with a cooperator is larger for a cooperator than for a defector. Whether it
is payoff maximizing to cooperate will depend on the share of cooperators in the society.
People choose their optimal strategy via a learning process that is represented by a payoff
monotonic dynamic from the field of evolutionary game theory. The evolutionary analysis
shows that there exist two stable states: one state in which a large share of the people in
the society cooperate, and another state in which nobody cooperates.

The paper presupposes that people in each period want to switch partners. People want

to switch partner because of gains from diversified trade. As Kandori (1992) argues: “.,



the division of labor and specialization are important driving forces of economic progress.
Potential gains are larger in diverse transactions with different specialists than with fixed
partners”.

There have been two different types of models which extend the Folk Theorem to re-
curring prisoners’ dilemma in which people change their partner in every period: Reputation-
models (Kandori 1992; and Okuno-Fujiwara and Postlewaite 1995), and contagious-punishment-
models (Kandori 1992, Ellison 1994, and Harrington 1995). As apposed to the model pre-
sented in this paper, these models derive a cooperative equilibrium in which everybody
cooperates and nobody is being taken advantage of. The reputation-models have a coop-
erative equilibrium in which each person cooperates only if he meets a person who has
reputation as a cooperator. He cooperates because defection will lead to loss of his own
reputation and hence, future opponents to defect against him. The contagious-punishment-
models have a cooperative equilibrium in which each person cooperates as long as he has
only met cooperators in previous periods. Each person cooperates because a single defection

will eventually cause everybody to defect.

2 The Model

Look at a society consisting of n people. n is a large even number. In every period each
person matches with another person in the society with whom he plays the prisoners’s

dilemma, T (¢), given by

defect cooperate

[(e): defect 0,0 l14¢e,—¢

cooperate | —e,1+¢ 1,1

Assume that a share « of the people in the society always cooperate, while a share 1 — «
never cooperate. Section 3 derives, for a given «, the probability for a cooperator and the
probability for a defector to match with a cooperator. Thereafter, Section 4 determines «

endogenously by evolutionary dynamics.



In addition to cooperate in the prisoners’ dilemma, cooperators network in according
to the Networking Strategy stated below. At the end of each period two cooperators who
played against each other exchange information about possible cooperators they met in the
previous period. Then, in the beginning of the next period cooperators try to use this infor-
mation in order to pre-match with another cooperator. All the people who do not succeed
in such pre-matching are randomly matched with each other. The pre-matching at the be-
ginning of each period and the information exchange at the end of each period take place

as follows:

Networking Strategy:

e Information exchange
If you played against cooperator A in period t—1, and if you played against cooperator
B in period t, then you must inform cooperator B that A is also a cooperator at the

end of period t.

e Pre-matching
If you received information about cooperator B from cooperator A in period ¢t — 1,
then you must try to pre-match with cooperator B in the beginning of period t. To
signal to cooperator B that you are also a cooperator, tell cooperator B that you have
heard about him through cooperator A. Furthermore, always agree to pre-match with

someone who can signal that he is a cooperator.

In each period a cooperator can pre-match with another cooperator by being a searcher
or by being searched for. A cooperator A is a searcher and a cooperator B is being searched
for in period ¢, if B played against some cooperator C in period t — 2, and C played against
A in period t — 1. Then A will search for B and try to pre-match with him in the beginning

of period ¢t. A will not necessarily succeed in this pre-matching because B might himself, in



addition to being searched for, be a searcher in period ¢t. A will fail in pre-matching B if B

is himself a searcher. A will, however, succeed in pre-matching B if B is not a searcher.

3 Pre-Matching

Let p; be the probability that a random cooperator matches with another cooperator either
by pre-matching or by random matching in period t. A random cooperator A is searching
for some cooperator B in period t if and only if A matched with some cooperator C' in
period t — 1, and C' matched with B in period t — 2. There is a probability p,_; that a
random cooperator A matched with some cooperator C in period ¢t — 1, and a probability
pr—2 that this cooperator C' matched with some cooperator B in period t —2. Thus, there is a
probability p,_1p;_o that a random cooperator is being a searcher in period t. Similar, there
is a probability p; 1p;_o that a person being searched for is being a searcher. A searcher will
only succeed in pre-matching if he is searching for a person who is not a searcher. Hence,
in period ¢, the probability that a random cooperator succeeds in pre-matching by being a

searcher is given by

2zt =pr-1pi—2 (1 — pr_1pi—2) (1)

This implies that in period ¢ a share 2z; of the cooperators succeed in pre-matching by
searching or by being searched for.

In each period all people who did not succeed in pre-matching are randomly matched
with each other. A defector will never succeed in pre-matching because a cooperator B will
only accept to pre-match with A if A can, as specified by the Networking Strategy, signal to
B that he is also a cooperator. Thus, a share 1 — 2z, of the cooperators and all the defectors
are participating in the random matching. Hence, the probability of matching a cooperator

in the random matching, s;, is given by

a(l—2z) a— 2oz @)
S+ = =
Tal-2z)+(1—a) 1-2az

The probability for a random cooperator to match with another cooperator in period ¢



is given by

Pt = 2275 + (1 — 22’75) St (3)

and the probability for a random defector to match with a cooperator in period t is given

by

gt = St (4)

Equation (2), (3) and (4) imply

o = a+2(1—2a)pi_1pi—2 (1 — p_1pi—2) (5)
;. =
1—2ap; 1pt—2 (1 — pr_1pt—2)
a(l—py)

R ®)

Setting pr = pt—1 = pt—2 = p in (5) and solve for o determines a unique mapping

—p+2p* — 2p*
_ 7
S s g g o M

Let the inverse of « (p) be denoted by p («) . Assume that p; = p; = a. A numerical analysis
in the appendix shows that, for a given «, p; converges to p (). Then, (6) implies that ¢,

converges to

(8)

Figure 1 plots p(a) and ¢ (o). In addition, the probability to play with a cooperator given
that there is no networking strategy, r («), is plotted. This figure shows that cooperators

succeed in increasing their probability of matching with another cooperator by networking.

Proposition 1 Consider an infinitely recurring prisoners’ dilemma T (g) in which people
change their partner in every period. Assume that both cooperators and defectors are present
in the society. If all cooperators follow the Networking Strategy, then the probability of

matching a cooperator is larger for a cooperator than for a defector.
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Figure 1: The probability of matching a cooperator. p (a), r (a), and ¢ (a) are the upper, middle

and lower graph respectively.

4 Evolutionary Dynamics

Refer to a period, in which a share of the people revise their strategy, as a revision period.
Between two revision periods, let the average periodical payoff of a cooperator and a defector
be denoted by 7. () and 7, («) respectively. Assume that a large number of periods take
place between two revision periods such that the payoff in the periods immediately after
a revision period, in which p; and ¢; have not yet converged to p(a) and ¢ («), have a

negligible effect on 7. () and 7. (). Then the payoff matrix, I' (¢) , implies that

me(@) = p(@)—(1-pa)e )
Tne (@) = q(a)(1+¢) (10)
Thus,
Am(a) = 7e(a) —Tpe (@)
= (pl@)—q(@)(1+e)—¢ (11)

People do not at the outset possess all the information needed in order to calculate which



strategy gives them highest payoff. They learn how to revise their strategy through imitating
the successful ones or through reinforcement learning. It has been shown that such learning
processes can be represented by the replicator dynamics (Gale, Binmore and Samuelson
1995; Bjornerstedt and Weibull 1996; Bérgers and Sarin 1997; and Schlag 1998). The
replicator dynamics says: the growth rate of the population share using a certain strategy
equals the difference between the strategy’s current payoff and the current average payoff
in the population (Weibull 1995, p. 73). A payoff monotonic dynamic is a more general
dynamic of which the replicator dynamic is a specific case. A payoff monotone dynamic
says: if a strategy ¢ has higher current payoff than a strategy j, then the growth rate of
the population share using strategy ¢ is larger than the growth rate of the population share
using strategy j (Fudenberg and Levine 1998).

Equation (11) imply that cooperators and deviators have the same payoff if and only if

€
1+¢

p(a)—q(a) = (12)

By plotting p(a) — ¢ (a) Figure 2 illustrates the payoff monotone dynamic of the game
represented by (9) and (10). Note from the figure that there exist an ¢™*(= 0.34) such
that if 0 < e < e™®*, then (12) has two solutions, o’ and &, such that 0 < o/ < o < 1.
Furthermore, p (@) — g (@) > 15z if a € (¢/,a) and p(a) —g(a) < 5z if a € (0,0/) U
(a/,1). Thus, the game has two asymptotically stable states. One state, a = o, in which
a large share of the population cooperate, and another state, « = 0, in which nobody
cooperates. The difference in individual payoff between the asymptotically stable state in
which a share o/’ cooperate and the asymptotically stable state in which nobody cooperate

is given by ¢ (/') (1 + ¢). Hence, the asymptotically stable state o/’ > 0 Pareto dominates

the asymptotically stable state o« = 0 since ¢ (o) > 0 if &” > 0.

Proposition 2 Consider an infinitely recurring prisoners’ dilemma T (g) in which people
change their partner in every period. Assume that all cooperators play the Networking Strat-

egy, and that people learn whether to be a cooperator or a defector in a process which can be
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Figure 2: The payoff monotone dynamic.

represented by a payoff monotonic dynamic. Then, there exist an €™ such that if and only
if 0 < e < €™M the game has two asymptotically stable states: one state o', 0 < o' < 1,
in which a large share of the population cooperate, and another state, a = 0, in which no-
body cooperates. The former state Pareto dominates the latter. Furthermore, the game has
two unstable stationary states o/, 0 < o/ < o', and a = 1. If « € {(0,¢/), (", 1)}, then
more and more cooperators will become defectors, and if o € (o/, "), then more and more

defectors will become cooperators.

The intuition behind the evolutionary dynamic is as follows: For 0 < a < o/ a defector
has higher payoff than a cooperator because the probability of meeting a cooperator is
only slightly higher for cooperators than for defectors. Cooperators eventually learn this
disadvantage of their strategy and become defectors, i.e. & < 0. For ¢/ < a < o” a
cooperator has higher payoff than a defector because the probability of meeting a cooperator
is now substantial higher for cooperators than for defectors. Defectors will eventually learn
this disadvantage of their strategy and become cooperators, i.e. & > 0. For o > o’ a defector
has again higher payoff than a cooperator because the probability of meeting a cooperator

is only slightly higher for cooperators than for defectors. At this point there are so many



cooperators in the society that the Networking Strategy becomes less efficient. A searcher
often fails to pre-match and has to participate in random matching because the person he is
searching for is himself busy searching. Cooperators will eventually learn this disadvantage

of their strategy and become defectors, i.e. & < 0.

5 Conclusion

This paper studied an infinitely recurring prisoners’ dilemma, I (¢) , in which people change
their partner in each period. If cooperators follow the Networking Strategy, and if ¢ is below
a critical value, then this game has two asymptotically stable states: one state in which
nobody cooperates, and one state in which a large share of the population cooperate. In the
cooperative stable state cooperators cooperate in order to increases their future likelihood
to meet cooperators. This gives a cooperator incentives to continue to cooperate even after

he has been taken advantage of.
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Appendix: Numerical Analysis

Numeric analysis applied to (5) assuming that p; = ps = a:

(0] 0,00| 0,10 0,20{ 0,30| 0,40( 0,50| 0,60( 0,70| 0,80 0,90| 1,00
)21 0,00| 0,10 0,20{ 0,30| 0,40( 0,50| 0,60( 0,70| 0,80 0,90| 1,00

)22 0,00{ 0,10( 0,20| 0,30| 0,40/ 0,50( O,60( 0,70| 0,80] 0,90| 1,00

P3 0,00| 0,10| 0,20{ 0,30 0,40( 0,50| 0,60( 0,70| 0,80 0,90| 1,00

Pa 0,00| 0,12f 0,25| 0,38] 0,51| 0,62 0,70 0,77| 0,83] 0,90| 1,00

Ps 0,00 0,12| 0,26| 0,41 0,53 0,64 0,71 0,77 0,83 0,90| 1,00

Pe 0,00 0,12( 0,28| 0,44| 0,557| 066 O,71f 0,77| 0,83] 0,90| 1,00

Pz 0,00 0,12| 0,29| 0,46 0,58 0,66| 0,71 0,77 0,83 0,90| 1,00

DPs 0,00| o,12f o0,30| 0,47| 0,59| 066 O,71f 0,77| 0,83] 0,90| 1,00

Po 0,00{ o,12( o0,30| 0,49| 0,60/ 066( O,71f O,77| 0,83] 0,90 1,00

P || 0,00| 0,12 0,31 0,49 0,60| 0,66 0,71 0,77 0,83] 0,90 1,00

Pu 0,00f o,12f 0,31} 0,50 0,60/ 0,66 O,71f O,77| 0,83] 0,90 1,00

b2 || 0,00| 0,12 0,32 0,51 0,60| 0,66 0,71 0,77 0,83] 0,90 1,00

D13 0,00| o,12f 0,32 0,51 0,60| 066 O,71f 0,77| 0,83] 0,90| 1,00

P4 || 0,00 0,12 0,32 0,51 0,61 0,66 0,71 0,77 0,83] 0,90 1,00

D1s 0,00| o,12f 0,32 0,51 0,61] 0O66( O,71f 0O,77| 0,83] 0,90| 1,00

b || 0,00/ 0,12 0,32 0,51 0,61| 0,66 0,71 0,77 0,83] 0,90 1,00

P17 0,00| o,12f 0,32 0,52| 0,61| 066 O,71f 0,77| 0,83] 0,90| 1,00

pi || 0,00/ 0,12 0,32 0,52 061| 0,66 0,71 0,77 0,83] 0,90 1,00

P || 0,00| 0,12 0,32 0,52 0,61| 0,66 0,71 0,77 0,83] 0,90 1,00

Px || 000| 0,12 0,33 052 061 0,66] 0,71 0,77 0,83 0,90| 1,00
p(@)|| 0,00] 0,12| 0,33 0552 0,61 0,66| 0,71 0,77 0,83 0,90 1,00
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