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1 Introduction

This paper discusses the potential of the so-called class of Pareto-Levy distributions as a frame-
work for analyzing income distributions. In the sixties and seventies Mandelbrot wrote a number
of papers where he discussed the problem of justifying the stochastic properties of economic vari-
ables such as stock market prices and incomes. His argument was that in addition to the effects
from behavior of optimizing agents in the market, there are certain aggregation operations that
take place, and which have important bearings on the structure of the probability distribution
of the relevant variables under investigation. Similarly to the tradition in the physical sciences
he was led to postulate specific invariance principles which imply that, for example, the income
distribution should belong to the class of stable distributions. Recall that the class of stable dis-
tributions has the property that a linear combination of two independent stable random variables
is a stable random variable. The class of stable distributions contains the normal distribution as
a special case, and it also follows from a general version of the Central Limit Theorem without
the condition of bounded variances. Recall that the condition of bounded variance is essential
in the classical Central Limit Theorem. More precisely, Mandelbrot restricted attention to a
subclass of stable distributions, namely the Pareto-Levy laws. A Pareto-Levy distribution has
the property that the probability mass of large negative values becomes negligeable (within the
stable class). The rationale for the focus on the Pareto-Levy law is the need to take into account
the fact that ”income” is a non-negative variable.

So far the Pareto-Levy distributions have not received much attention in the context of
analyzing the distribution of income. There may be several reasons for this. One reason is
that the estimation of the parameters of a stable distribution requires the use of nonstandard
inference procedures, since one cannot express the probability density of a stable distribution
on closed form except in a few special cases. A second reason may be that the results from the
few empirical studies that have been carried out have been ambiguous. For example Dijk and
Kloek (1980) have concluded that the Pareto-Levy distribution does not produce a particularly
good fit to the data. Third, the theoretical arguments given by Mandelbrot (1960), and which

we shall discuss shortly, may not have seemed convincing to many researchers.



In this paper we maintain that the Pareto-Levy class of distribution has a number of at-
tractive properties. Specifically, a Pareto-Levy distribution depends on three parameters that
have a clear statistical interpretation which we shall discuss further below (Section 6). Since
the sum of Pareto-Levy distributed variables has Pareto-Levy distribution, a model based on
this framework will consequently not depend critically on whether the income concept is based
on monthly or yearly income, provided the parameters that measure the right tail thickness are
equal. It is also of interest to note that the variables do not necessarily have to be independent.
We also propose a theoretical justification for the Pareto-Levy class of distributions which differs
somewhat from the arguments given by Mandelbrot (1960). Subsequently, we apply a large set
of micro-data on income from the wage sector to fit a Pareto-Levy distribution. This seems to
be the first time micro data on incomes have been used to estimate a Pareto-Levy distribution
of income.

From a economic point of view the present analysis is limited in that it does not propose
a story of how the parameters of the income distribution relate to underlying economic deter-
minants. However, we claim that since the Pareto-Levy distributions can be represented by
three parameters which have a clear statistical interpretation, and these distributions also are
supported by plausible invariance properties, this representation may be of substantial interest
for assessing the relation between key economic variables and the parameters of the income
distribution.

The paper is organized as follows: In the next section we discuss a possible theoretical
rationale which supports the class of Pareto-Levy distributions. In Section 3 we describe the
data and in Section 4 we discuss different estimation methods. In Section 5 we report empirical
results, and in Section 6 we discuss the relationship between the parameters of the Pareto-Levy

class and aggregate means of income inequality.

2 Theoretical considerations

Apparently, the first one to put forward theoretical considerations about the properties of the

income distribution was Pareto (1897). His concern was to provide a justification for the prop-



erties of the right tail of the distribution that corresponds to empirical income distributions. It
was subsequently recognized that the so-called Pareto distribution that followed from Pareto’s
arguments often fitted the right tail of empirical income distributions, but gave a poor fit of
other parts of the distributions. In a series of papers, Mandelbrot proposed a generalization of
the Pareto distribution, namely what he called the Pareto-Levy distributions, as a framework
for analyzing income distributions. The Pareto-Levy distributions constitute a subclass of the
class of stable distributions. The stable class follows from the Central Limit Theorem in the
most general version. Specifically, this class has the property that if Y7 and Y5 are independent

stable random variables, then Y3 given by
(1) YE), = aYi + bYVQ7

where a and b are constants, is stable. It is well known that the normal distribution has this
property, but it is less known that this property holds for a much wider class of distribution
functions, namely the stable class. The stable class was thoroughly investigated by Paul Levy
in the thirties. Except for a few cases, the probability distributions in the stable class cannot
be expressed on closed form. Their characteristic function, however, can be expressed as

(2) ¢ (\) = Be™ = exp <i/\u — o™ |N\% (1 —iBsign (N)) tan <O;l>> ,

where Y is a stable random variable, o > 0, and p are scale and location parameters, 3 € [—1,1]
is a parameter that represents the skewness of the distribution, « represents the thickness of the
tail of the distribution and the formulae (2) holds for all a € (0, 2] except for o = 1. When av = 1,
the characteristic function is given by a similar formulae, cf. Samorodnitsky and Taqqu (1994).
When ( = 0 the distribution is symmetric while it is maximally skew to the right (left) when
B=1(8=-1). When a = 2, we get the normal distribution and the parameter § vanishes.
When « € (1,2) the variance of the distribution is infinite and the expectation equals p, while
both the variance and the expectation are infinite when « € (0,1]. Thus, within the stable class
the only member that possesses a finite variance is the normal distribution. In Mandelbrot’s
definition, the Pareto-Levy class consists of the subclass of stable distributions with a € (1,2),
and 3 = 1. In this case the probability mass of negative values will be negligible for sufficiently

large p.



Apparently, very few researches have taken Mandelbrot’s idea of applying the Pareto-Levy
class as a framework for analyzing income distributions seriously. The reasons for this are not

clear. Our conjecture is that this state of affair may be related to the following arguments:

(i) The stable distributions are difficult to estimate since one cannot, in general, express the

stable densities on closed form.

(i) Since we never observe empirical distributions with infinite variances, it may at first glance

seem somewhat awkward to apply theoretical distributions with infinite variance.

(iii) The class of stable distributions is not flexible enough to fit typical empirical income

distributions.

(iv) The theoretical arguments provided by Mandelbrot to support the choice of the stable

distributions are not entirely convincing.

Let us now take a closer look at these arguments. The first argument (i) is no longer a
serious objection because there now exists several estimation methods which work well. The
second argument (ii) is not very relevant either. The variance is just a mathematical expression
that should not be taken too literally in every case. The situation is somewhat similar to the
following example: the normal distribution has infinite support while empirical distributions
have finite support, but this does not prevent us from usefully applying this distribution in a
large number of cases. It remains to be seen to which extent the third argument is valid; we
intend to demonstrate in the present paper that in our chosen empirical application the stable
distribution fits the data rather well. The most important argument is perhaps the fourth one.
Mandelbrot (1960) argued as follows: If one considers income as the variable of interest, this
variable may be decomposed into different kinds of incomes such as income from wage work,
self-employment work, capital income, etc. If one considers the distribution of each of the income
components, and total income, it appears, according to Mandelbrot, that these distributions have
more or less the ”same shape”. Given this point of departure, Mandelbrot is lead to postulate
that the distribution of the sum of (independent) income components (which by assumption

have distributions belonging to the ”same class” ), should also belong to the same class. Hence,



provided that the income components are stochastically independent, one obtains the stable
class. A difficulty with the argument above is that it is rather vague about what is actually
meant by ”the same shape”. For example, for eq. (1) to hold it is necessary that both the
distribution of ¥; and Ys are stable with the same «. In many cases this simply does not seem
to be true. For example, our own empirical investigations seem to indicate that the distribution
of capital income or income from self-employment have a smaller o than the a associated with
the distribution of income from wage work. It therefore seems desirable to establish further
theoretical arguments to support the relevance of the stable distributions. This is the topic to
be discussed next.

Let Y (¢) denote income at time ¢. By time we shall understand the age of the individual.

Assumption 1 The income process {Y (t) ,t > 0}, can at each point in time, be expressed as
(3) Y (1) = py + aV (1)

where p, = EY (), ax > 0, is a deterministic function of t and V (t) is a random variable
with (marginal) distribution function that is independent of t for each given t. Moreover, the

distribution of {V (t), t > 0} is independent of {u,, t > 0}, and {as, t > 0}.

An example of processes which satisfy Assumption 1 is the class of self-similar processes.
Recall that a process {X (¢),¢ > 0} is self-similar if for any scalar a > 0, X (at) has the same
distribution as a* X (t), where H is a positive constant. The intuition is that in the context
of income as well as many other cases it may be plausible to assume that apart from a scale
transform the properties of the process is invariant with respect to the (ratio) scale representation
of time. If for example Y (t) — pu, is self-similar if Y (¢) — p, has the same distribution as
t7 (Y (1) — p11) . In this case Assumption 1 holds with a; = ¢.

In Section 6 we report empirical evidence that support Assumption 1. Note that Assumption
1 does not imply that the process {V (t), ¢ > 0} is stationary since it only concerns the one-
dimensional marginal distributions. The scalar a; will in general depend on the properties of
the law P of the stochastic process {Y (¢) — u;, y > 0} . Let P denote this law. Thus, we shall

write a; = a; (P) to indicate that a; depends on the law P. Let P* denote the special case of



P which corresponds to a process with stationary independent increments, and let D denote be

the class of possible laws for the process {Y (¢) — py, ¢ > 0}.
Assumption 2 P* €D.

Assumption 2 means that a process with stationary independent increments is a possible

income process.

Theorem 1 Under Assumptions 1 and 2, the income process has stable marginal distribution

functions.

Proof. By Assumption 1 we get
(4) FAY () — i, pirad PV (D)
¢MHeap (ay (P) )
for A € R, where

(5) P\ = BV ) = etV

Since 1 (\) is the characteristic function of V (¢) it is by Assumption 1 independent of ¢ and of
at (P). By Assumption 2 ¢ (at (P*) \) is the characteristic function of a random variable that

is the sum of i.i.d. random variables. Let b; be a norming constant such that

Jim ¢ (Aay (P*) /br)

exists. Then since
Tim ¢ (ag (P*) /by) = ¢ </\tlim as (P*) /bt>

it follows that v (\) is the characteristic function of a stable random variable due to Levy’s
general version of the Central Limit Theorem. (See for example Gnedenko and Kolmogorov
(1954).) But then, by Assumption 1, it also follows that Y (¢) is stable. m

As pointed out by Mandelbrot, not every member of the stable class is relevant in the context

of income distributions. This is due to the fact that “income” sa a non-negative variable. Thus,



to ensure that the probability mass on the negative part of the real line is negligible we shall,
as mentioned above, only consider the Pareto-Levy class of distributions, that is the stable
distributions for which the mean is finite and which are maximally skew to the right. It follows
from the theory of stable laws that 3 must be equal to one to ensure that the probability mass
become negligible on the negative part of the real line (for sufficiently large value of the mean),
cf. Samorodnitsky and Taqqu (1994). Thus, in the light of the argument above the Pareto-Levy
class should be appealing from a theoretical point of view. It therefore remains to be investigated

how well the Pareto-Levy distribution conforms with empirical evidence.

3 The income data

The data used in this paper is based on the Norwegian income and wealth data for 1994 gathered
by Statistics Norway described in Pedersen (1997). We have chosen to use market income for
individuals, defined as the sum of wage income, income from self-employment and capital income.
As population we have chosen the persons that have a total income larger than the minimum
benefit from the social security system. In 1994 this amount was 60 701 NOK. The population

consists of 5618 persons. The empirical income distribution is given in Figure 1.

4 Estimation methods

There are many methods suggested in the literature for estimating the parameters of the stable
distributions. In this section we shall discuss a few of these methods.

4.1 Estimation of o based on the tails and fractiles of the empirical distribu-

tion

There are several versions of this method. The naive approach, suggested by Pareto, consists in
plotting —In (1 — F'(Y;)) against InY;, where Y;, j=1,2,...n, are the observations generated
from F'(-). If the underlying distribution has a Pareto right tail then this shows up as a straight
line in the Pareto quantile plot. The Pareto quantile plot of the income distribution is displayed
in Figure 3. The slope of the Pareto quantile plot provides an estimate for 1/a. The estimate of

the slope using the upper 55 per cent of the data is 0.326 which gives a value of a of about 3.1.



Figure 1: Distribution of market income 1994
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This estimate is inconsistent with the class of stable distributions. However, this estimate does
not “prove” that the underlying distribution is non-stable. According to McCulloch (1997) “tail
index estimates greater than 2 are to be expected for stable distributions with « as low as 1.65.”
On the other hand DuMouchel (1983) states that “When the true distribution is not stable the
estimates of « is not a robust measure of the rate of decrease of the tail probabilities”.

A more sophisticated method based on specific fractiles of the empirical distribution was
derived by McCulloch (1986). McCulloch (1986) proposes a method based on the 5%, 25%,
50 %, 75% and 95% fractiles of the empirical distribution function. This method is remarkably
simple to use and requires only the knowledge of the fractiles mentioned above and access to a

set of tables given in McCulloch’s paper.
4.2 Methods based on the empirical characteristic function

There are several estimation methods that are based on the empirical characteristic function

(2). The empirical version of the characteristic function of a distribution is defined as

10



(6) 300 = % e,

The empirical characteristic function (6) is an unbiased estimator of the characteristic function,

(7) Eo(N) = (N) = Be™™,

and the variance is given by

6N =6 ()

(8) Var Fjﬁ (/\)} = %Var {e”‘yl} = -

Equation (8) demonstrates that the empirical characteristic function yields a sharp esti-
mate of ¢ (\) when n is large. However, it is not enough to consider convergence for a given
A but rather the properties of the empirical process {5 (N, e R}, and how the parame-
ters of the mean function ¢ (\) can be recovered from {5 (AN, e R} . One difficulty here is
that we observe the process {5 (N, e R} for all real A and it is difficult to device opti-
mal estimation procedures that take all this information into account. Paulson, Holcomb, and
Leitch (1975) have discussed maximum likelihood procedures based on the fact that the process
{5 (N, e R} is asymptotically a Gaussian process. Specifically, they base the inference on the
likelihood of {5 i), k=1,2,... ,m} when the Gaussian approximation is assumed to hold,
where (A1, A2, ..., Ap) are suitably selected real numbers.

In this paper we shall instead review an alternative and remarkably simple method proposed

by Koutrouvelis (1980). Koutrouvelis noted that (2) implies that

) In <—ln]¢(/\)]2> = In(20%) + aln )
which yields

(10) In <— In ’5@)’2) = In(20%) + aln A + 7 (\)

11



where 77 () is a random error term which has approximately zero mean when n is large. By
choosing an appropriate set of A-values, we realize that it is possible to estimate In (20%) and «

by regression analysis with {In|A\gz|},k =1,2,... ,m, as independent variable and

~ 2
{m <—ln ’¢(Ak)’ > }
~ 2
as dependent variable. It is easy to show that ’(b (/\)’ can be expressed as

(1) P = 5w (-

Koutrouvelis (1980) has done simulation experiments to demonstrate that this approach works
well and is quite efficient provided that A-values are carefully selected and the data are suitably
normalized. Koutrouvelis (1980) indicates how to select appropriate A -values. Thus by this
method both a and ¢ can be estimated. Since 3 = 1 in the Pareto-Levy class the expectation
1 is the only parameter that remains. This parameter can therefore be estimated by the cor-
responding sample mean. Moreover, since the assumption of stability implies that the relation
expressed in (10) is linear, one obtains an informal test of the stability assumption by plotting
{ln <—ln ’5 (M&) ’2>} against {In |A\gz|}. If this plot is approximately linear this indicates that
the underlying distribution is stable.

On the basis of (10) Koutrouvelis estimated the parameters by using the method of ordinary
least squares. This method produces consistent estimates but the estimated standard deviations
will be biased due to the fact that & (\z) and &5(/\]-) are dependent.

In the present case where the distribution is maximally skew to the right an interesting
modification of the Koutrouvelis method applies. This approach is based on the property that

the two-sided Laplace transform of F'(y) exists and is equal to
(12) g(2) = Be ™ =exp (c2® — uz)
for z > 0, where

(13) c=———"—H-.

12



Note that since a > 0, ¢ will be positive. The corresponding empirical process equals

n

(14) G ==Y

J=1

which provides a consistent and unbiased estimate of ¢ (z). From (12) it follows that
(15) Ing(z;) = ez — pz; + 0 (2)

where 2, 29, ... , zm, are suitable chosen positive real numbers and 0 (z;) is a random variable
with F6(z;) ~ 0. when n is large. By running nonlinear regression analysis ¢, and p can
be estimated. If p is estimated by the empirical mean one can estimate o and Inc¢ by linear

regression since
(16) In(Ing(z;) — @) =alnz; + Inc+v(z)
where v (z;) is a random term with Ev (z;) =~ 0, and i denotes the empirical mean.

4.3 Estimation by inversion of the empirical characteristic function

Bohman (1975) suggested a discrete version of the Fourier inversion procedure. In this procedure

F' is approximated by F™ given by

1y - o)
* — _ AN NIV T —invy
a7) Py =5+ > 2.
v=1-H,vA0

where H and v are chosen in a suitable manner, and ¢ (-) is the characteristic function of F ().

The parameters are estimated by minimizing

(18) S [ (70 05) ~ B (v) |

J
where F, (-) is the empirical cumulative distribution, Y1, Y. .. , are the observations and W (-) is
a suitable weight function. This method has certain advantages compared to the methods based
on the empirical characteristic function: It provides a method for estimating the parameters

by putting most weight on the part of the distribution that is considered the most important.
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Table 1: Parameter estimates by different methods

Estimates (Standard deviation)

Method a o I

Bohman 1.69 (0.024) 56.5 (0.577) 214.7 (2.454)
Koutrouvelis 1.60 (0.023) 54.5 (0.558) 214.8 (2.452)
McCulloch 1.57 (0.047) 54.6 (1.395) 214.8 (2.452)

This method can also be used on grouped data. The method is computationally efficient as the
number of observations does not enter the computation of E, (x).

Let us now consider the problem of evaluating the performance of the estimators. The
calculation of standard deviation of the parameters is not straight forward for the Koutrouvelis’
and Bohman’s inversion method. The precision of the Koutrouvelis’ method will depend on the
choice of {\;} . However, conditionally on the choice of {\;} one can find asymptotic estimates of
the standard deviation of the parameter estimates by carrying out the procedure of generalized
least squares. How this method works in small samples is not known. We have therefore chosen
to estimate standard deviations by applying the bootstrap approach. For the inversion method

the bootstrap approach is currently the only alternative which is also easy to apply.

5 Estimation results and Goodness of fit

As indicated in Section 4.2 one can obtain an informal test of stability by plotting the left hand
side of (11) against In ||

This plot is displayed in Figure 2 where the data are scaled as suggested in Koutrouvelis
(1980). From the figure we realize that the plot is fairly linear up to In|A| & 0.7. The question is
now whether or not it is sufficient to consider X -values in the interval determined by In |A| < 0.7.

In the appendix we demonstrate that provided the (true)characteristic function satisfies eq.
(9) then it is sufficient to use the information represented by the empirical characteristic function
for arguments with absolute value less than 0.7. The estimates of the parameters of the income

distribution is displayed in Table 1. The reported standard deviations are obtained from 25
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Figure 2: Pareto quantile plot of the income distribution
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Figure 3: Observed and simulated densities based on the parameter estimates obtained by
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1000

Figure 4: Q-Q plot for two estimation procedures
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Figure 5: P-P plot for two estimation methods
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Figure 6: The regression line under the Koutrouvelis estimation procedure

bootstrap replications.

From Table 1 we see that the three estimation methods we have considered in this paper
preforms well and yield quite similar estimates. According to Table 1 it seems that McCulloch’s
method produces considerable higher standard deviation of the estimates of a and ¢ than the
other methods.

In Figure 3 we display the empirical density together with the fitted Pareto-Levy densi-
ties estimated by Bohman’s and Koutrouvelis’ procedure, respectively. To assess how well the
Pareto-Levy distribution fit the data we have displayed the cumulative empirical and the fitted
cumulative Pareto-Levy distribution estimated by Bohman’s inversion method. The Pareto-
Levy density and cumulative distribution have been simulated by means of a procedure devel-
oped by Chambers, Mallows, and Stuck (1976). In Figure 4 and 5 we show Quantile-Quantile
(Q-Q) plot and Percentile-Percentile (P-P) plot of the cumulative empirical distribution func-
tions against the fitted Pareto-Levy distribution. We note that these plots are close to straight

lines which indicates a good fit. The corresponding Kolmogorov-Smirnov statistics is displayed
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Figure 7: Estimated Pareto-Levy cumulative (solid) and the empirical cumulative distribution

function (dashed). Bohman’s method
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in Figure 8. We note that the Kolmogorov-Smirnov statistics does not exceed 0.015 when the
income is above 100 000 NOK. Although we have plotted the corresponding empirical and esti-
mated densities in Figure 3, is not of much interest to use this figure as an indication of the fit
because the empirical density provides a rather imprecise estimate of the underlying theoretical

density.
6 Aggregate measures of income inequality

In assessing the significance of changes in the income distribution, F (y), aggregate measures of

income inequality is often employed. The most common measure is the Gini-coefficient which
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Figure 8 The Kolmogorov-Smirnov statistics

002 T T T T T T T

0.015+

0.01

0.005

-0.005

-0.01-

-0.015

-0.02 | | | | | 1 1
0 100 200 300 400 500 600 700
1000 kr

can be expressed as

S FWA-FQ)dy
(19) =T F)ay

Another summary measure is the A-coefficient which can be expressed as

Jo o Fy)InF (y)dy
Jo A=F()dy

We refer to Aaberge (1995) for a discussion of the properties of (20).

(20) A=

800

In this section we shall consider the properties of G and A when F'(y) is a Pareto-Levy

distribution. Specifically, we shall demonstrate how G and A depends on the parameters of the

Pareto-Levy distribution. Consider first the distribution of the Gini coefficient. From (19) we

get

o0

L (re-rer)ya= [" (- rw)a- [T ooy

Note next that if ¥; and Y3 denote two ii.d. random variables with c.d.f. F (y), then F (y)? is

19



the distribution of max (Y7, Ys), which implies that

/000 <1 - F(y)2> dy = Fmax (Y1, Ys).

Hence we can express the Gini coefficient as

_ Fmax(Y1,Y3) — EYz  FE(max (Y1 —Y3,Ys — V3))

(21) € 7
Y EY;

where Y3 is a random variable with distribution F'(y), which is independent of Y7 and Y3, Since
Yy Yy and Y3 are i.i. Pareto-Levy distributed it follows that Y7 — Y3 and Yy — Y3 each have a
distribution that is symmetric and stable, cf. Samorodnitsky and Taqqu (1994). We therefore

must have that
1
B (max (Y; — Y3, Y2 — Ya)) = 5B V1 — al,

which yields

E Y1 - Y3
22 G=—1-_">

Moreover, it follows that Y7 — Y3 has zero mean and skewness parameter, and dispersion
parameter equal to o2'/% From Samorodnitsky and Taqqu (1994), p.18, we thus find that

201 (1 — 1) 2V«
(23) R Pl Gl i

s

from which it follows that G can be expressed as

ol (1 —1)2l/e

(24) G= -

Consider next the A coefficient. Recall that when F'(y) is Pareto-Levy, it can be expressed

as

(25) F) = (1)

where Fp (y) is a Pareto-Levy distribution with o = 1 and p = 0. Consequently, if follows from

(20) that the A coefficient can be expressed as

(26) A=h (a)
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where

(27) hia)=— /000 Fo (y) In Fp (y) dy.

Note that h (o) does not depend on ¢ and p.

It is also well known that if the income distribution is lognormal then the Gini-coefficient
is equal to ov/2 /. We can therefore conclude that provided o remains constant over time the
Gini coefficient is proportional to the A coefficient, and also proportional to the Gini coeflicient
obtained under the lognormal distribution'. Consequently, unless o changes, the A and G
coeflicient will show the same trend.

It is easy to show that this property also holds in the more general case in which Assumption
1 holds. Strgm, Wennemo, and Aaberge (1993) have estimated the A and G coefficient on
Norwegian micro data for the period 1973 to 1990 for selected population groups. In Appendix
B we report estimates of the ratio G/A. Unfortunately, we are unable to estimate standard errors
with the data that are available to us. Appendix B shows that the G/A ratio is remarkably

constant over this 17-year time span. Thus, according to the result of Appendix B Assumption

1 is not rejected.

7 Conclusions

In this paper we have discussed the use of the Pareto-Levy class of distributions a framework
for analyzing income distributions. We have demonstrated how this class can be justified from
theoretical invariance principle. We have subsequently applied different methods to estimate
the parameters of a Pareto-Levy distribution from a large sample of Norwegian microdata on
income. Several estimation methods have been compared. The resulting estimated Pareto-Levy

distribution provides an excellent fit to the empirical distribution.

!The A coefficient is sensetive to changes in the lower part of the distribution while the Gini coefficient is more
senitive to changes in the upper part.
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Appendix A

An estimate of the approximation error of distribution functions in terms
of the approximation error of the corresponding characteristic function

In this appendix we demonstrate that one may utilize the information represented by the
empirical characteristic function solely for arguments |\ < b, where b > 0, is a suitable real

number, provided ¢ ()) satisfies (9). To this end let

(28) 7,0 = o(\) for [N\ <0

0 otherwise.

This means that ¢, (\) is the Fourier Stieltjes transform of Fj (y) where Fy (y) is defined by

(29) Fi(y) =

11 [ e (Ndr 1 1 b<€”’A¢(—A)—6’““<J5(A)>dA
2 2mi ) A 2 %/0

— 3 7

(see Gil-Pelaez (1951)). Similarly

11 [ eMpNdh 1 1 [ (e¥p(=N) —e P (N))dA
2 2mi ) A 2 " 2mi Jy A ‘

(30)  F(y)=
From (29) and (30) it follows that

L[ |eWrg (=) —e #Ap (V)| dA
%/b A

8D |F@)-F)| <

_|_L b |eA <¢<_/\) _$<—A)> — e WA <¢ (\) —&E(,\)) ’ d\

270 A

IA

L[ ]e(=N)]+]¢ (V)]
%/b S d\

L/b (Jeen=d=n|+ s -dm)]) ar

+27T A

1 [~ —0N\Y) d\ b A) — B (A
:_/ exp (—o*\Y) - ¢ () ¢()'

i b A ﬂ-‘)\‘<b A

By change of variable c*A\% = x then the last integral can be expressed as

(32) -

s

1/°° e 7 NdN 1 (™ e fdr By (o)
b

A an Jyepa T o
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where E) (x) denotes the Exponential integral function (cf. Abramowitz and Stegun (1972)).If
oc=1,a=1.6 and log b = 0.7 we thus get from Table of F; (z) in Abramowitz and Stegun
(1972) p.p. 242, that

1
33 — By (0%b*) =210,
(33) — I (7°)
Hence
_ \ B\
(34) sup |F (y) — Fy (y)| <2102 4+ 0.64 sup M’ _
Y IA|<b A

Since ¢ (0) = ¢ (0) it follows that the last term on the right hand side exists for all A € R.
We realize that the first term on the right hand side of (34) is negligeable and therefore the right

hand side of (34) therefore depends on how well ¢ (\) approximates ¢ () for A € (=b, b).
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Appendix B

The ratio (G/A for selected population groups 1973-1990

Time

1973 1979 1982 1985 1986 1987 1988 1989 1990
Working Persons
G 0.285 0.277 0.266 0.264 0.270 0.273 0.271 0.281 0.269
Standard deviation 0.004 0.004 0.006 0.007 0.004 0.006 0.004 0.009 0.005
G/A 0.72 073 073 073 073 073 073 074 0.73
Wage workers
G 0.266 0.253 0.240 0.246 0.251 0.253 0.257 0.261 0.253
Standard deviation 0.003 0.004 0.003 0.007 0.003 0.005 0.005 0.010 0.005
G/A 070 071 071 071 071 072 073 073 0.73
Selfemployed other than farming and fishery
G 0.369 0.366 0.405 0.408 0.360 0.365 0.347 0.364 0.367
Standard deviation 0.017 0.014 0.029 0.042 0.015 0.023 0.019 0.021 0.016
G/A 0.77 077 080 080 076 078 076 077 0.78
Married couples that are working
G 0.180 0.166 0.167 0.170 0.174 0.178 0.184 0.204 0.184
Standard deviation 0.007 0.005 0.005 0.013 0.005 0.006 0.006 0.016 0.006
G/A 0.70 071 072 072 072 074 073 076 0.73
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