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1. Introduction 
Two-stage surveys are used in sampling from finite populations of, say, N primary units or clusters, 

where each cluster consists of mi units. N is assumed known. As mentioned by Kelly and Cumberland 

(1990) and Valliant, Dorfman and Royall (2000, ch. 8.9), it often happens that the mi's are unknown 

before sampling, and this is the case we consider in this paper. Let yij be the value of the variable of 

interest for unit j of i'th cluster. The problem is to estimate the total  
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An example is considered in Thomsen, Tesfu and Binder (1986) and Thomsen and Tesfu (1988), with 

t being the size of a particular population. The clusters are certain administrative units, the units are 

households and yij is the number of persons in household j of the i'th administrative unit. 

 

We assume that, before sampling, other measures of the sizes of the clusters are available to us. Let 

Nxx ,...,1  be these measures with ∑=
=

N

i ixX
1

. Kelly and Cumberland (1990) consider a case where 

the clusters are blocks of dwelling units and xi is the number of units in block i from a previous census.  

 

The sampling plan is as follows: At stage 1 a sample s of size n0 of the clusters (1,..., N) is selected 

according to some sampling design. At stage 2 we select for each si∈ , a sample si of size ni of units 

using possibly a different sampling design than at stage 1. The designs are assumed to be non-

informative, i.e., they do not depend on the yij's and the mi's. E.g., in Thomsen and Tesfu (1988) the 

two-stage sampling plan is to use pps-sampling at stage 1 (letting selection probabilities of clusters be 

proportional to the xi's) and simple random sampling  (srs) at stage 2. This is a common two-stage 

sampling plan, as also mentioned by Kelly and Cumberland (1990). Usually, the second stage sample 

sizes are the same, leading to approximately equal selection probabilities for all units provided the 

ratios xi/mi are not too different. When the mi's are known, one often used sampling plan is to let the 

first stage selection probabilities be proportional to mi, and then srs with same sample sizes at stage 2 

yielding equal selection probabilities for all units. As mentioned by Valliant et al. (2000, ch.8.1), equal 

sample sizes at stage 2 has many advantages and is probably the most common allocation of sample 

units in practice.   
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The total sample size is ∑∈
=

si inn and our data now consists of ( )
isjsiijyy

∈∈
=

,
)(s  and the vector 

siimsm ∈= )()( , where s = }:,{ siss i ∈ . Let ( ).)(),( smyy s=  For the pps-srs sampling plan mentioned 

above, a commonly used design-unbiased estimator of t is the Horvitz-Thompson estimator (see, e.g., 

Thomsen et al. 1986, Kelly and Cumberland,1990, and Särndal, Swensson and Wretman, 1992) 
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where ∑ ∈
=

isj iiji nyy / . 

 

In this paper a population model is adopted, regarding iji ym ,  as realized values of random variables 

iji YM ,  for j = 1, ..., Mi and i = 1, ..., N.  The Mi's are assumed independent of all Yij, and furthermore: 
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Since the variance of a cluster total is nonnegative, we must have )1/(max1 −−≥ imρ as also noted by 

Kelly and Cumberland (1990). It is therefore a minor restriction to assume a nonnegative ρ. Also, 

usually gxxv =)(  with 0 ≤ g ≤ 2.  In fact, it is typically assumed that v(x) = x (see e.g.,  Royall,1986, 

Kelly and Cumberland,1990, and Valliant et al.,2000, ch. 8.9). 

 

A more general model is to let ρ and τ vary with the clusters, having cluster parameters ρi,τi . 

However, we then have the problem of estimating these parameters. Without further assumptions we 

are only able to estimate 2)1( ii τρ− . As noted by Valliant el al. (2000, ch. 8.1), it is often sensible to 

adopt model (2), especially after suitable stratification that also may allow µ  to be different for 

different parts of the population.  

 

The model (2) for the Yij's arises naturally from expressing Yij in the following way: 

ijiijY εµ +=    

where all iji εµ , are independent with  
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2)(,)( bii VE τµµµ ==  and 2)(,0)( wijij VE τεε == .    (3) 

Here, 2)( biV τµ =  expresses the variability between the clusters, and 2)( wijV τε =  expresses the 

variability within the clusters. Then 222
wb τττ +=  and the intraclass correlation is given by: 

22 /ττρ b= , 

the proportion of the total variability due to the variability between the clusters.  

 

The total t is now a realized value of a random variable T, where T can be expressed as 

ZYT
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Expressing the T on this form, we see that the problem can be expressed as one of predicting the un-

observed value z of the random variable Z. It is often clarifying to write a predictor T̂  of T on the form 

ZYT
si sj ij

i

ˆˆ +=∑ ∑∈ ∈
       (5)  

where Ẑ then implicitly is a predictor of  Z. Considering the modified Horvitz-Thompson estimate 

HTT̂ given by (1) on the form (5), we can use the following expression, with ∑∈
=

si is xX , 
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The last term predicts ∑ ∑∉ =si

M

j ij
i Y
1

while the second term predicts ∑ ∑∈ ∉si sj ij
i
Y . From this point of 

view HTT̂  does not look like a reasonable predictor.  

 

Modeling the population in survey sampling has been and still is somewhat controversial, although 

most statisticians seem to agree on using modeling in developing statistical methods while evaluation 

is done with respect to the sampling design. An important aspect of this issue is that the likelihood 

principle in a sense makes it necessary to model the population. Without a model the only stochastic 

elements are the samples s = },:,{ siss i ∈  and the likelihood function is then flat (see, e.g., Cassel, 

Särndal and Wretman, 1977). This means that from the likelihood principle point of view the data 

contains no information about the unobserved .' and  ' smsy iij  To make inference we therefore need to 
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relate the data to the unobserved values somehow, and the most natural way of doing so is to 

formulate a model (see also remarks by Berger and Wolpert, 1988, p. 114 and Bjørnstad, 1996). 

 

The random variables observed are Y(s), M(s) and s, where s now is ancillary. The likelihood principle 

implies that inference should depend only on the actual s observed and not on the sampling design. 

This is usually called the prediction approach to survey sampling and will be adopted in this paper. 

Hence, theoretical considerations are conditional on given s. The prediction approach aims at choosing 

a predictor that is good for the actual s obtained and has given significant contributions to a better 

understanding of several problems in survey sampling, some of which are mentioned in Thomsen and 

Tesfu (1988) and Valliant et al. (2000). It also enables one to use more conventional statistical 

methods, although the problem is not to make inferences about θ but rather predict Z. Hence, θ 

basically plays the role of a nuisance parameter. 

 

To predict Z we shall use predictive likelihood based methods, a non-Bayesian likelihood approach to 

prediction problems in general. One can argue that in the context of a population model, survey 

sampling provides one of the more natural "prediction" problems in statistics. Predictive likelihood 

can therefore serve as a basis for essentially all problems of this kind in survey sampling. Some major 

references to the general theory of predictive likelihood are Hinkley (1979), Mathiasen (1979) and 

Butler (1986). A review of some of the suggested likelihoods is given in Bjørnstad (1990, 1998). 

Predictive likelihood is discussed from the perspective of the likelihood principle for prediction in 

Bjørnstad (1996). Bolfarine and Zacks (1992) consider methods based on predictive likelihood in 

survey sampling. 

 

Section 2 introduces the concept of predictive likelihood and shows how predictors and prediction 

intervals can be constructed from a predictive likelihood, and in Section 3 a predictive likelihood is 

derived for the normal model. Considering a predictive likelihood for Z directly does not work, mainly 

because Z is a sum of a stochastic number of random variables. Therefore, predictor and prediction 

interval will be obtained from a joint predictive likelihood for Z and the vector )(sM  = siiM ∉)( .  

In Section 3.3 optimality theory for a class l  of predictors linear in the Yij's, but not simultaneously in 

both Yij's and  Mi's, under the distribution-free model (2) is developed. 

 

In Section 4 three prediction intervals for Z based on similar predictive likelihoods are studied and a 

comprehensive simulation study for estimating confidence levels, both model-based and design-based 

is undertaken. The prediction intervals are evaluated by four different measures; the model-based 
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coverage Cm, the design-based coverage Cd, the unconditional coverage C (expected design-based 

coverage), and the conditional coverage given the data. 

2. Predictive likelihood 
We shall here give a brief general introduction to the concept of predictive likelihood. For a more 

complete exposition we refer to Bjørnstad (1990, 1998). Let Y = y be the data.  The problem is to 

predict the unobserved or future value z of a random variable Z usually by a predictor and confidence 

interval for Z. It is assumed that (Y,Z) has a probability density or mass function (pdf) ),( zyfθ . In 

general we let )(⋅θf  and )|( ⋅⋅θf denote the pdf and conditional pdf of the enclosed variables. The 

likelihood basis in prediction is the generalized joint likelihood for the two unknown quantities, z and 

θ. In Bjørnstad (1996) it is shown that the joint likelihood function is given by ).,(),( zyfzl y θθ =  

With this likelihood, the corresponding likelihood principle is implied by the sufficiency principle for 

prediction and the conditionality principle, generalizing the fundamental result by Birnbaum (1962) 

for parametric likelihood. The aim is to develop a partial likelihood for z, L(z|y), by eliminating θ from 

ly. Any such likelihood is called a predictive likelihood and gives rise to one particular prediction 

method.  

 

Different ways of eliminating θ give rise to different L. The two main type of suggestions are the 

conditional predictive likelihood Lc , essentially suggested by Hinkley (1979), and the profile 

predictive likelihood Lp, first considered by Mathiasen (1979). Let R = r(Y,Z) denote a minimal 

sufficient statistics for (Y,Z). Then  

  )),((/),()|( zyrfzyfyzLc θθ=       (6) 

  ),(),(max)|( ˆ zyfzyfyzL
zp θθθ == .      (7) 

Typically, Lc and Lp are quite similar when sufficiency provides a genuine reduction and the 

dimension of θ is small.  

 

In linear models, Lp will ignore the number of parameters and can be misleadingly precise. A 

modification of Lp, Lmp, that adjusts for this was suggested by Butler (1986, rejoinder), see also 

Bjørnstad (1990). If Y,Z are independent, Y consisting of n independent observations and Z being an 

m-dimensional vector of independent variables, then Lmp  is given by 

  2/1'2/1 ||/|)ˆ(|)|()|( zzz
z

pmp HHIyzLyzL θ⋅=  .             (8) 
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Here, )}({)( θθ z
ij

z II =  is the "observed" information-matrix based on (y,z), i.e. =)(θz
ijI  

./),(log2
jizyf θθθ ∂∂∂−  )ˆ( zzz HH θ= , and )(θzH is the k x (n+m) matrix of second-order partial 

derivatives of log ),( zyfθ  with respect to k-dimensional θ and (y,z).  

 

We shall assume that any L considered is normalized as a probability distribution in Z. The mean and 

variance of L are then called the predictive expectation and the predictive variance of Z, denoted by 

Ep(Z) and Vp(Z). Ep(Z) is then a natural predictor for z, called the mean predictor. L(z|y) also gives us 

an idea on how likely different z-values are in light of the data, and can be used to construct prediction 

intervals for z. An interval (ay, by) is a (1-α) predictive interval based on L(z|y) if  

     ∫ −=
y

y

b

a
dzyzL .1)|( α  

A simplified (1-α) predictive interval is of the form 

)()(
2

ZVuZE pp α±       (9) 

where 
2

αu is the upper α/2-point in the actual (exact or approximate) conditional distribution, given y, 

of )|(/))|(( yZVyZEZ θθ− . 

3. Predictive likelihood and predictor in two-stage sampling 

3.1 Predictive likelihood for mixtures 
In two-stage sampling, Z is given by (4), and is the sum of two mixtures. Therefore, instead of 

considering a predictive likelihood for Z directly, we look at a joint predictive likelihood for Z and 

)(sM . It has the following form  

   )|)(()|()|)(,( )( ysmLyzLysmzL sm= .       (10) 

)|()( yzL sm  is a predictive likelihood for z conditional on )()( smsM = , i.e., based on ))(|,( smzyfθ . 

Since =))(|,( smzyfθ ))(())(),(|),(( ,,, smfsmsmzyf σβρτµ s , )|()( yzL sm  is, in fact, based 

on ))(),(|),((,, smsmzyf sρτµ . )|)(( ysmL  is a predictive likelihood for )(sm based on ))(,( smyfθ . 

The predictive likelihood for Z is given by the marginal in (10), e.g., in case of a continuous model for 

Mi , 
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   )()|)(,()|( sdmysmzLyzL ∫=                  (11) 

Then Ep and Vp  follow the usual rules for double expectation, i.e., 

))}(|({)( sMZEEZE ppp =       (12) 

))}(|({))}(|({)( sMZEVsMZVEZV ppppp += .    

In (12), ))(|( smZE p  and ))(|( smZV p  are the predictive mean and variance for Z from )|()( yzL sm . 

In principle we can derive L(z|y) as the marginal likelihood in (11). The advantage of (12) is that we 

are able to obtain Ep(Z) and Vp(Z) without actually deriving L(z|y). 

 

Under the model (2) we can factorize ))(,,( smzyfθ = ))(),(())(),(|),(( ,,, smsmfsmsmzyf σβρτµ s  and it 

is readily seen that applying Lp, given by (7), to the terms on the right hand side in (10) in fact gives us 

))(,,(max)|)(,( smzyfysmzLp θθ= , i.e.,  

)|)(()|()|)(,( ),( ysmLyzLysmzL ppsmp = .    (13) 

It follows that Ep(Z) and Vp(Z) based on )|)(,( ysmzLp  can be derived by (12). We note that Lc, given 

by (6), has the same property, i.e., )|)(()|()|)(,( ),( ysmLyzLysmzL ccsmc = . 

3.2 Normal model 
It is now assumed that model (2) holds with Yij and Mi normally distributed.  We shall first consider 

the second likelihood in (10), )|)(( ysmL , using the profile predictive likelihood Lp. Let )()( ∑ktν  

denote the k-dimensional multivariate t-distribution with ν degrees of freedom and variance-

covariance matrix Σ, i.e., )()( ∑ktν  is the distribution of (U/W) ν  where U ),0(~ ΣkN  and W2 has a 

chi-square distribution with ν degrees of freedom. Let )(sX  be the vector of ):( sixi ∉ . Then 

)|)(( ysmLp  leads to a multivariate t-distribution, such that )(~ˆ/)](ˆ)([ )( 0
0

VtsXsM nN
n

−− σβ , where 

the maximum likelihood estimators (MLE) are, with ∑∈
=

si iis xvxW )(/2 , ∑
∈

=
si

iii
s

xvxm
W

)(/1β̂ , the 

best unbiased estimator uniformly minimizing the variance, and  ).(/)ˆ(ˆ 212
0 iiisin xvxm βσ −Σ= ∈   

V = (vij) with siiii Wxxvv /)( 2+=  and sjiij Wxxv /=  for i ≠ j. It follows that ,ˆ)( iip xME β=  
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)/)((ˆ)( 22
20

0
siin

n
ip WxxvMV += − σ  and the predictive covariances are given by 

sjin
n

jip WxxMMCov /ˆ),( 2
20

0 ⋅= − σ for i ≠ j. This implies that 
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∉si

ip ME  = sXβ̂         (14) 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
=∑

∉ s

s
s

si
ip W

Xv
n

nMV
2

2

0

0 ˆ
2

)( σ   

where  ∑
∉

=
si

is xX and ∑∉= si is xvv )( .      

 

Lc and Lmp (for sixvM ii ∉,)(/ ), given by (8), lead to moments similar to (14) with n0 - 2 replaced 

by n0 - 5 and n0 - 4 respectively. 

 

Let us now consider the first term in (10),  )|()( yzL sm  based on ))(),(|),((,, smsmzyf sρτµ . For this 

likelihood we will restrict attention to Lp, i.e., deriving )|(),( yzL psm . The MLE ρτµ ˆ,ˆ,ˆ 2  can be 

expressed in the following way, with ∑ ∑∈ ∈ −= si sj iiji
yySSE 2)( : 
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and ρ̂  is found numerically, maximizing 

 ).ˆ1log()2/)(()ˆ)1(1log()2/1(ˆlog)2/( 0
2 ρρτ −−−−+−− ∑∈

nnnn
si i  

When ni = c, for all si∈ , then ∑∈== si i nyy 0/µ̂ , nSS /ˆ2 =τ , ),1,0max(ˆ 1 SS
SSE

c
c ⋅−= −ρ  where 
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−=

si sj ij
i

yySS 2)( . 

 

Consider first the case when ρ and τ are known. Then µ̂  is given by (15) with ρ replacing ρ̂ . In this 

case )|(),( yzL psm  is such that Z is normally distributed with predictive mean and predictive variance  



11 

 ∑∑
∉∈

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
+

⋅−=
si

i
si

i
i

i

i
iip my

n
n

n
nmsmZE µ

ρρ
ρ

µ
ρρ

ρ ˆ
-1

ˆ
-1

-1)())(|(    (16) 

 
2

1

2

-1
1)())(,|())(|( ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

⋅−++= ∑∑
∑ ∈∉∈ +− si i

ii
si

i
si n

np n
-nmmsmyZVsmZV

i
i ρρ

ρτ

ρρ

. (17) 

Here, )|( ⋅ZV denotes the usual variance in the conditional distribution of Z. When ρ,τ are unknown, 

)|(),( yzL psm will for large n0 be approximately such that Z is normally distributed with ))(|( smZE p  

and ))(|( smZV p  given by (16) and (17) with 2ˆ,ˆ τρ  replacing ρ,τ2. Recall that ∑ ∈
=

isj iiji nyy / and 

)ˆ,ˆ,ˆ,ˆ,ˆ(ˆ σβρτµθ =  the MLE of ),,,,( ρτµσβθ = . Then the conditional expected value of Z given the 

data, estimated at θ̂ , is equal to 
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Let )|(ˆ yZVθ denote the estimated conditional variance of Z given the data. It now follows, from (12) -

(14), (16) - (18) that, approximately, )|)(,( ysmzLp  has  
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The predictive likelihood 

)|)(()|()|)(,( ),(, ysmLyzLysmzL cpsmcp =   

leads to the same Ep(Z) while Vp(Z) equals (19) with h(5) instead of h(2). With 

)|)(()|()|)(,( ),(, ysmLyzLysmzL mppsmmpp =   

we get the same  Ep(Z) and Vp(Z) equal to (19) with h(4).  

 

Let )ˆˆ1/()ˆ(ˆ ρρρ iii nnw +−= . Writing the predictor )|(ˆ
ˆ0 yZEZ θ= , given by (18), as 

( ) µβµ ˆ)ˆ(ˆˆ)ˆ1(ˆ
0 ∑∑ ∑ ∉∈ ∉

++−=
si isi sj iii xywwZ

i
              ( 20) 

we see from (4) that predicting Z by 0Ẑ means that for i∉ s each unobserved ijY  is predicted by µ̂  and 

iM  is predicted by ixβ̂ . For i∈ s, j ∉ si, Yij is predicted by .ˆ)ˆ1(ˆ µiii wyw −+ This predictor shrinks the 

natural estimate iy towards µ̂ .  Using the representation (3) of the model, we note that 

))()|(/()|()1/()1( iiiiii VarYVarYVarn µµµρρρ +=+−− . Hence, for i∈ s, the smaller )( iVar µ is 

compared to )|( iiYVar µ , the more weight we put on µ̂  to predict Yij for j ∉ si. Or, in other words, the 

smaller the variability is between the clusters compared to the variability within the clusters, the more 

iy shrinks towards µ̂ . 

3.3 Some optimality considerations 
All three predictive likelihoods for the model (2), with normally distributed Yij and Mi,  give the same 

predictor for the population total T, 

00
ˆˆ ZyT

si sj ij
i

+=∑ ∑∈ ∈
 

with 0Ẑ  given by (20). 

   

The optimality considerations are conditional on s = },:,{ siss i ∈  and Eθ(·) is used to denote Eθ(·|s).  

Let }ˆ:ˆ{ ∑ ∑∈ ∈
==

si sj ijij
i

YaTTl  be a class of "partially" linear predictors, where each aij is a 

function of M(s). We shall restrict attention to the class of model-unbiased predictors in l , i.e., 

}.,0)ˆ(:ˆ{ θθ ∀=−∈= TTETu ll  
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We shall now consider the distribution-free model (2). The parameter estimates of (β,σ2) are still 

valid, β̂  now the best linear unbiased (BLU) estimator and 2
1 ˆ

0

0 σ−n
n  still unbiased. Regarding the 

MLE µ̂ , given by (15), it is readily seen that with ρ replacing ρ̂ , µ̂  is the BLU estimator as also 

noted by Kelly and Cumberland (1990). What remains is to derive alternative estimators for ρ and τ2. 

Here one can use an ANOVA approach, as in Valliant et al. (2000, ch. 8.3) or Kelly and Cumberland 

(1990). When ni = c for all i ∈ s, these two ANOVA approaches yield the same estimators 2ˆ,ˆ avav τρ   

satisfying 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−

−
=

00

2

1
1ˆˆ

nn
SSE

n
SSESS

cavavτρ  

0

2ˆ)ˆ1(
nn

SSE
avav −
=− τρ . 

It follows that, approximately, (for large n0 with 1/)1( 00 ≈− nn ) , nSSav /ˆ2 =τ  and SS
SSE

c
c

av ⋅−= −11ρ̂ ; 

the same as the MLE in the normal model.  

 

With these new parameter estimates 0̂T is clearly a reasonable predictor also for this distribution-free 

model, e.g., Kelly and Cumberland (1990) suggests using this predictor (see also Valliant et al., 2000, 

ch.8.9). The optimal procedure at θ, θT̂ , in ul  is defined to be the predictor in ul  that minimizes 

2)ˆ( TTE −θ  for uT l∈ˆ . If θT̂  does not depend on θ it is uniformly optimal.   

 

We see that, by using that )|ˆ()ˆ( MTTEETTE −=− , with M = ( ),...,1 NMM  

uT l∈ˆ  ∑ ∑
∈ ∈

∀=⇔
si sj

ij XaE
i

βββ ,)(                  

We note the following result. 

 

Lemma 1. The optimal predictor θT̂  must be a member of the class  

}),( offunction  is ;ˆ:ˆ{0 sisMbYbTT i
si

iiuu ∈=∈= ∑
∈

ll  

and       ∑
∈

∀=
si

i XbE βββ ,)(         (21) 
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Proof. Using the rule )|ˆ()|ˆ()ˆ( MM TTVETTEVTTV −+−=− , we see that, with isj iji naa
i

/∑ ∈
= ,

 uT l∈ˆ  )ˆ()ˆ( 2 TTVTTE −=−⇒ θθ  

 = 2222 )(][)1( iisisi sj ij anEaE
i

∑∑ ∑ ∈∈ ∈
+− θθ ρτρτ  

  - )(2 2
iisi i anME ∑∈θρτ  ψµ +−+ ∑∑

∈
∈

)(2

si
isi ii ManV     (22) 

Here, ψ  is a function of the parameters only. Since 22
iisj ij ana

i
≥∑ ∈

, it follows that θT̂  must have aij = 

ai, for all j∈si, and iii anb = .  ♦ 

 

We restrict attention to the class Lu of model-unbiased predictors in ul  where each aij is a linear 

function of M(s). We note that HTT̂ , given by (1), is a member of Lu. Then, from Lemma 1, it is 

sufficient to consider the class 

} and   ˆ:ˆ{0 ∑ ∑∈
∈

+==∈=
si

sj
jijiiiiuu MccbYbTTL l . 

From (21),  

βββ ∀=⇔∈ ∑
∈

,)(ˆ
0 XbELT

si
iu ., βββ ∀=+⇔ ∑∑∑

∈ ∈∈

Xxcc
si sj

jij
si

i  

Hence, 

XxccLT
si sj

jij
si

iu ==⇔∈ ∑∑∑
∈ ∈∈

and   0ˆ
0 .                                                 (23) 

We note that 0̂T  can be expressed as∑s ii Yb0  and 0
ib is linear in M(s). 0̂T  satisfies (23) with ci = 0 and 

hence is model-unbiased when ρ is known (e.g., when ρ = 0) and  approximately model-unbiased 

otherwise.   

   

Lemma 2. The optimal predictor θT̂ in L0u minimizes with respect to c = (ci, i∈s; cij, i∈s, j∈s), subject 

to condition (23), 

Q(c) = )]([)(2))()(( 22212
i

si
ii

si
iii

si

MbVbMEEbbV
i

−+−+ ∑∑∑
∈∈∈

µρττ φ  

where   
ρρ

φ
i

i
i n

n
+−

=
1

. 
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Proof. For ouLT ∈ˆ , we see from (22), using (21), 

  =− 2)ˆ( TTEθ ])()([)/()1( 2222
iisisi ii bEbVnbE θθθ ρτρτ ++− ∑∑ ∈∈

 

  - isi ibME ∑∈θρτ 22  ψµ +−+ ∑∑
∈

∈
)(2

si
isi i MbV  

 = ])()()[)1(( 22
2

iisi
i

bEbV
n θθρτρτ

++
−∑∈

 

- isi ibME ∑∈θρτ 22  ψµ +−+ ∑∑
∈

∈
)(2

si
isi i MbV  

Result follows since iin φρρ /1/)1( =+− .  ♦ 

 

Let now ∑= s is φφ , )/( 222 µφττα s+= and iii xmm βαα ˆ)1(ˆ +−= . Then the following result holds. 

 

Theorem. The optimal predictor at θ in Lu is given by 

∑∈
+−=

si iiiii ywmwmT )ˆ)1(ˆ(ˆ
ρθ µ + ∑∉si ixβµρ

ˆˆ        (24) 

i.e., θθ ZyT
si sj

ij
i

ˆˆ +=∑∑
∈ ∈

  where  

])ˆ)1(ˆ[(ˆ
iisi iiiii ynywmwmZ −+−=∑∈ ρθ µ + ∑∉si ixβµρ

ˆˆ . 

Here wi = ρφi and ∑= s sii y φφµρ /ˆ .   

 

Remarks. (I) The optimal predictor at θ depends only on ρ and the coefficient of variation τ/µ, and is 

hence uniformly optimal in (µ,β,σ) if ρ and τ/µ are assumed known. 

 

(II) The expression for θT̂  means that for i∈s, ∑ =

im

j ijy
1

is estimated by )ˆ)1(ˆ( iiiii ywmwm +− ρµ , and 

for i∉s, ∑ =

im

j ijy
1

is estimated by ixβµρ
ˆˆ , i.e. mi is estimated by ixβ̂ and each yij by ρµ̂ . 

 

(III) Let iiii yww +−= ρµµ ˆ)1(ˆ . Then an alternative expression to (24) is: 

∑∈
=

si iimT µθ ˆˆ  + ∑∉si ixβµρ
ˆˆ + R 
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where R = )1)(ˆ(ˆ iis i wmx −−∑ βµα ρ . 

 

Now, ∑∑ ∈∈
=

si iisi ii ynn µ̂  and therefore θθ ZyT
si sj

ij
i

ˆˆ +=∑∑
∈ ∈

 where 

∑∈
−=

si iii nmZ µθ ˆ)(ˆ  + ∑∉si ixβµρ
ˆˆ + R. 

It can be shown that R is typically of order 1/(N 0n ) or less compared to 0̂T . Hence 0̂
ˆ TT ≈θ if ρρ ≈ˆ  

and 0̂T  is approximately uniformly optimal for large 0nN  and large sample size n. 

 

(IV) Valliant et al. (2000, ch. 8.9) and Kelly and Cumberland (1990) considers optimality for a 

completely linear class in iY  and Mi. This is a rather restrictive class, excluding interesting estimators 

that are linear in iiYM , e.g., HTT̂ , and also 0̂T  even when ρ is known. Neither does the class include 

θT̂ . They show that the optimal predictor in this class at θ is given by ** ˆˆ
θθ ZyT

si sj
ij

i

+=∑∑
∈ ∈

, where  

∑∈
−+−−−=

si iiiiiiiii ywnxwnwxmZ ))()1()[(ˆ * βµµβθ  + ∑∉si ixβµ , depending on the parameters 

β,µ,ρ.  From remark (III), the theorem shows that if ixβ  is replaced by mi for i ∈ s and µ,β  is 

estimated by βµρ
ˆ,ˆ  the predictor is approximately uniformly optimal in the class Lu  for known ρ. 

 

(V) As mentioned in Section 1, usually the model for the Mi's is to assume v(x) = x, leading to the ratio 

estimator for β, ∑∑ ∈∈
=

si isi ir xm /β̂ . As mentioned earlier, a commonly used sampling design is pps-

sampling at stage 1 and srs at stage 2. Then the individual selection probabilities for unit j of the i'th 

cluster are given by )/)(/(0 iiiij mnXxn=π . In surveys consisting of persons, it is customary to let all 

persons have the same selection probabilities. This is not possible exactly, since mi is unknown when 

determining the size ni of si. However, choosing cnnni == 0/  for all si∈ will lead to Xnij /≈π , 

since ii mx / is approximately constant in i. Hence, a typical case is letting v(x) = x and ni = c for all 

i∈s. Then y=ρµ̂  and R = 0, and with ρ known, we have that θθ ∀= ,ˆ
0̂ TT , and hence 0̂T  is uniformly 

optimal for known ρ.  
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(VI) Consider the simplified model of negligible intraclass correlation, assuming ρ = 0. The simulation 

study in section 4, assuming normal model, for predictive intervals of the form (9) indicates that this is 

a valid assumption when ρ ≤ 0.01 (but not if ρ is assumed to be larger than 0.05). Then  

∑ ∑
∈ ∉

+−=
si si

iii xyynmZ β̂)(ˆ
0   and  ∑ ∑

∉

+−=
si

iii xyynmZ βθ
ˆ)ˆ(ˆ . In this case, R = )ˆ(∑∈

−
si ii mxy βα is 

of order 1/Nn and 0̂T  is approximately uniformly optimal for large Nn, which is practically always the 

case. In fact, it can be shown that ( )∑∈
−=−−−

si ssin wXxvTTVTTV /)()ˆ()ˆ( 222
0 τσα

θ  which is of 

order 1/n2 and )ˆ(/)}ˆ()ˆ({ 0 TTVTTVTTV −−−− θθ  is typically neglible even for moderate sized n. 

When v(x) = x, 0
ˆˆ ZZ =θ and 0̂T  is exactly uniformly optimal. 

    

Proof of Theorem. By Lagrange's method we shall minimize  

)(22 21 XxccQF
si sj

jij
si

i −−−= ∑∑∑
∈ ∈∈

λλ  . 

The equations for partial derivatives are as follows: 

=∂∂ icF / 0 )( *
1λρβφβ +=+⇔ ∑

∈
ii

sk
kiki xxcc , with 2

1
*
1 /τλλ = ,  for i∈s. 

Summing over i∈s gives  

s

s iixX

φ

φρβ
λ ∑−
=

)(*
1 . 

Hence: 

∑∑
∈

−
−

+=
sk

kik
s

s ii
iiii xc

xX
xc β

φ

φρβ
φφρβ

)(
                                                   (25) 

For j ≠ i, with ∑ ∈
=

sk kjj cco : 

⇔=∂∂ 0/ ijcF 2222

2

2

2

)(
)(

)(
)1( λ

στ
φφρ

σφ
βφ

τ
µφ

j

j
is kk

js

ji
j

i
ij xv

x
xX

xv
x

cc +−−−= ∑o         (26)  

⇔=∂∂ 0/ iicF 2222

2

2

2

)(
)(

)(
)1( λ

στ
φφρ

σφ
βφ

τ
µφρφ

i

i
is kk

is

ii
i

i
iii xv

xxX
xv

xcc +−−−+= ∑o   (27) 

From (26) and (27) we can determine jco as a function of λ2 : 
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]
)(

)(
)(

[1 2222

2

λφ
στ

φρ
σ
β

ρφαα s
j

j
s kk

j

j
jj xv

x
xX

xv
x

c +−−+−= ∑o . 

Since Xxc js j =∑ o , we find )/( 22
2

*
2 στλλ = : 

∑∑ −−+
−−

=
s kks kks

s

ss
xxXWXX

W
])()1([1

2

2
*
2 φρφρ

σ
β

α
α

φ
λ    (28) 

implying that 

jco = ∑−+−−+−
s kk

sj

j
js

sj

j x
Wxv

x
XX

Wxv
x

φαραρφαα
)(

))1((
)(

1   (29) 

From (26), (28) and (29) it follows that for j ≠ i, 

]
)(

))1((
)(

)1)(1[( ∑−−−+−−=
s kk

sj

j
s

sj

j
j

s

i
ij x

Wxv
x

XX
Wxv

x
c φαραρφα

φ
φ  (30) 

and, from (27), 

]
)(

))1((
)(

)1)(1[( ∑−−−+−−+=
s kk

si

i
s

si

i
i

s

i
iii x

Wxv
xXX

Wxv
xc φαραρφα

φ
φρφ  (31) 

From (30) and (31) we find that 

∑ ∈sk kik xc = iis kk
s

i xxX ρφφρ
φ
φ

+− ∑ ][  

and using (25) we see that ci  = 0. Then from (30) & (31), the optimal predictor at θ equals 

=θT̂  

)]
)(

))1((
)(

)1)(1[((∑ ∑ ∑∈ ∈
−−−+−−+

si sj js kk
sj

j
s

sj

j
j

s

i
iii mx

Wxv
x

XX
Wxv

x
my φαραρφα

φ
φρφ

=∑ ∑ ∑∈ ∈
−−−+−−+

si sj js kk
sj

j
s

sj

j
jiii mwx

Wxv
x

XX
Wxv

x
wmwy ]

)(
))1((

)(
)1)(1[(ˆ αααµρ  

= ∑ ∑ ∑∈ ∈
−++−−+

si sj s kkssjjiii wxXXwmmwy ρρρ µβαµαβµα ˆˆˆ)(ˆˆ)1()1(  

= ∑ ∑∈ ∈
−+−+

si si iiiiii wxmmwy ρµβαα ˆ)1](ˆ)1[( + ∑∉si ixβµρ
ˆˆ   

⇒ 

∑∈
+−=

si iiiii ywmwmT )ˆ)1(ˆ(ˆ
ρθ µ + ∑∉si ixβµρ

ˆˆ . ♦     
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4. Prediction intervals based on predictive likelihood  

4.1 Coverage measures and simulation set-up 
We consider model (2) under the normality assumptions in Section 3.2. It can be shown that, 

conditional on y, )|(/))|(( yZVyZEZ θθ−  is asymptotically N(0,1) as N - n0 → ∞ provided the xi's  

are bounded as N - n0 → ∞. Hence Z|y is approximately normal for large N - n0, and the (1-α) 

predictive interval given by (9) becomes 

)()|(
2ˆ ZVuyZE pαθ ±  

where 
2

αu  is the upper α/2 -point in N(0,1). This amounts to regarding ))(),(( ZVZEN pp  as a 

predictive distribution for Z. Vp(Z) equals (19) if the interval is based on )|)(,( ysmzLp , while Lp,c has 

(19) with h(5) and Lp,mp has (19) with h(4). Let us denote these prediction intervals by Ip, Ipc and Imp. 

Clearly pcmpp III ⊂⊂ . 

 

For large n0 there is practically no difference between these intervals. However, for small n0 they do 

differ.  To find out how the intervals perform a comprehensive simulation study is undertaken. The 

prediction intervals are evaluated by four different measures, (i) the model-based coverage, (ii) the 

design-based coverage, (iii) the unconditional coverage, and (iv) the conditional coverage given the 

data and the guarantee of conditional coverage 1- α . The unconditional coverage is the expected 

design-based coverage and is a measure of how the prediction interval does as a method in long run 

behaviour in repeated surveys, when regarding the population distribution as a model for how the y-

variable varies over time. This, of course, has been the standard justification for the design-based 

coverage, but it is not a correct interpretation. Rather, since the design-based coverage is for fixed y-

values, it only measures the coverage of the interval in hypothetical repeated surveys with fixed y-

values. It can not be used as a measure of coverage in the long run. The precise definitions of the 

various coverage measures for a prediction interval I(y,s) for the values z of Z are as follows: 

 

I. The model-based coverage Cm = )|),(( ssYIZPm ∈ , over the joint distribution of (Y,Z) 

II. The design-based coverage Cd  = ),|),(( zyyIzPd S∈ , over the sampling design, 

regarding the total sample S as the stochastic variable. 

III. The unconditional coverage C = )),(( SYIZP ∈  (= E (Cd)= E (Cm)) 
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IV. The conditional coverage ),|( syC θ = ),|),(( ss yyIZP ∈                                                 

and the guarantee of conditional coverage 1 - α = )|1),|(( ss αθ −≥YCP . 

 

The two-stage sampling plan used in the simulation study is as follows: 

1. At stage 1, n0 clusters are drawn proportional to the xi's, using the S-Plus function sample().  

2. At the second stage, simple random sampling is used with equal sample sizes for each 

selected cluster. 

 

As mentioned in Section 1, this is a commonly used sampling plan when the cluster sizes are unknown 

before sampling leading to approximately equal selection probabilities for the units. For the simulation 

study we assume that v(x) = x in the model for the Mi's.  

 

Note. An alternative confidence interval for Z is obtained by using an estimate )ˆ(ˆ
0 ZZV −  of 

)ˆ( 0 ZZVar − instead of )(ZVp . Let  )ˆ(ˆ
0 ZZV −  be obtained by essentially replacing the unknown 

parameters in )ˆ( 0 ZZVar −  with their estimates.  For the sampling plan and model used in the 

simulation study it can be shown that, for known ρ, )(ZVp > )ˆ(ˆ
0 ZZV −  and the relative difference can 

be substantial especially when the proportion fs = Xs/X is small. Hence such an interval will always 

give lower coverage than the predictive interval for all four coverage measures. As an example, 

consider the case where n0 = 10, ni = 20, N= 110, X = 104 and fs = 0.1.Then the square root of the ratio 

)ˆ(ˆ/)( 0 ZZVZVp −  is at least 1.11 when ρ = .1, 22 ˆ/ˆ µτ  = .2 and 1ˆ/ˆ =βσ .    

 

The approximations to psmL ),( and to the distribution of Z given y are not valid for small n0 and small 

N- n0. The simulation study considers therefore mainly moderate and large n0 and N- n0. Table 1 

describes the set-up. The N= 400- case corresponds roughly to a population of the size of Norway with 

about 400 municipalities. The four coverage measures are considered for a range of parameter values. 
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Table 1.  Moderate and large size cases for the simulation study. N is the number of clusters in 
the population, n0 is the number of clusters in the sample, and xi is the size measure 
for cluster i . The cluster sample size ni is equal to 20, and in the variance model for 
the cluster sizes v(x) = x.  

ni = 20, v(xi) = xi 

N = 50 
n0 = 10, 40 

N = 400 
n0 = 10, 40, 100 

i xi i xi 

1-7 100 1-50 1000 
8-19 500 51-180 2000 

20-26 1000 181-260 4000 
27-40 1500 261-330 6000 
41-45 2000 331-365 10000 
46-50 5000 366-385 50000 

  386-395 100000 
  396-400 250000 

 

The chosen parameter values for the simulation cases in Table 1 are presented in Table 2. Since xi can 

be regarded as a preliminary estimate of the actual size mi of cluster i, the regression coefficient β 

equals 1 in most of the simulations. Also, we consider y to be essentially positive valued. Then, at 

least, 03 ≥− τµ . Hence, we let the maximum value of the coefficient of variation τ/µ to be 1/3. To 

avoid negative mi in the simulations, we shall assume that 05.4 ≥− ii xx σβ , i.e., 5.4// ix≤βσ . 

With β = 1, 5.4/ix≤σ .  Hence, for the case of N = 50, 2≤σ , and for the case of N = 400, .7≤σ  

 

Table 2. Parameter values in the simulation study 

1-α  .95 

β .8 ,1, 1.2 

σ/β 1, 1.5, 2            if N = 50 

1, 4, 7               if N = 400 

µ 3, 6 

τ/µ 1/50, 1/30, 1/10, 1/6, ¼, 1/3  

ρ 0, .001, .005, .01, .02, .03, .04, .05, .1, .5, .9 

 

Comparisons of the three prediction intervals are presented only for unconditional coverage C. All 

other presentations for the cases in table 1 (as well as Table 5) concern Imp. There will also be a 
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broader range of parameter values for C than for the other coverage measures. Regarding the purely 

model-based Cm and design-based Cd, one may be unfortunate with s, for Cm, or the simulated 

population for Cd for some of the chosen values of the parameters. Therefore, these measures are not 

used as much as C when coverage dependency on the parameter values is studied.    

4.2 Simulation results for the unconditional coverage 
The three intervals Ip, Imp and Ipc differ only in the component h(k) such that Ip ⊂ Imp ⊂ Ipc. The term 

h(k) contributes  less than 1/1000 of the interval width,  and decreases much more rapidly than Vp(Z)   

as a function of n0. This causes a decreasing difference between the intervals as n0 increases, and for 

large n0 there are practically no differences between the three prediction intervals, as seen in Table 3. 

The estimated values of C are based on 100,000 repetitions of simulating population values and 

drawing the two-stage sample. 

 

Table 3.  The unconditional coverage C for Ip, Imp and Ipc. Parameter values: µ =3, τ =1, β =1,  
ρ = .5 .  

 N =50, σ =2 N=400, σ =7 
Prediction interval 
Ip 
Imp 
Ipc  

n0 =10 n0=40
.9110 
.9136 
.9155 

.9483

.9485

.9486  

n0=10 n0 =40 n0=100 
.9084 
.9094 
.9101 

.9426 

.9428 

.9428 

.9484 

.9485 

.9485  
 
 

From Figure 1, we see that for moderate and large n0 (≥ 40) over the range 9.05. ≤≤ ρ  and different 

values of σ, C is constant slightly below the nominal confidence level 1-α = .95, while for small n0 (= 

10) C is decreasing with ρ and increasing with σ. We note that, in practice, a small correlation is not 

unusual. When ρ is very close to 0, C is slightly larger than .95. This is due to the fact that ρ will be 

over-estimated when close to 0, causing wider intervals since Vp(Z) is increasing as a function of ρ̂ .  
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Figure 1.  The unconditional coverage C for Imp as a function of ρ. Parameter values: β = 1, µ=3 
and τ/µ=1/3.  

 
 

Let us now consider more closely C as a function of n0 and N.   Except for extremely small values of ρ  

it increases as a function of n0, as seen in Figure 1 (as well as Figures 2,3). It seems also to be slightly 

connected with N as described in the function )1(95. )3/11(
0

0 1
+⋅− −

nN
nN . The similarity is demonstrated in 

Table 4. The relationship between C and (n0, N) was found by fitting a linear regression to a 

transformation of C. 

 

Table 4.  The unconditional coverage C for Imp. Parameter values: µ =3, τ =1, ρ =0.5, β =1, σ =2 
or 7 

C .94845 .94847 .94551 .94276 .94084 .93089 .92822 .91358 .90937 
n0 40 100 60 40 25 20 15 10 10

N 50 400 400 400 50 400 50 50 400

)1(95. )3/11(
0

0 1
+⋅− −

nN
nN  .94861 .94847 .94656 .94375 .94350 .93338 .93202 .91472 .90701 

 

Figure 2 shows that C depends on µ and τ only for small samples and then through τ/µ  with higher 

values when τ/µ is extremely small (≅.02). This is also found in Figure 4 below for very small n0 and 

N.  Also from figure 2, we see that C seems to be constant over σ/β for large populations, when the 

sample size is moderate or large n0 (≥ 40), and there is a slight increase in C with σ/β when N = 50 

and n0 =10.  
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Figure 2.  The unconditional coverage C for Imp as a function of τ/µ, when β = 1, in 2a), and σ/β , 
when µ= 3, τ = 1, in 2b). The value of ρ equals .5.  

 
 

To summarize the main features of the simulation results presented in Table 3 and Figures 1,2:  

The coverage C which is the expected design-based coverage depends on the parameters basically 

through the coefficients of variation σ/β and τ/µ and the intraclass correlation coefficient ρ. For n0 ≥ 

40 and N ≥ 50 the prediction intervals has C essentially constant in the parameters and approximately 

equal to the nominal confidence level 1- α. Hence, one may say that the prediction intervals are 

calibrated with respect to long-run behaviour.   

 

For extremely small ρ the parameter will be over-estimated as mentioned above. The effect of over-

estimation and the necessity of a correlation parameter in the model is closely studied and presented in 

Figure 3. It seems that for ρ ≤ .01, one may simplify the model by assuming ρ = 0.  We note that C > 

.9 for ρ ≤ .04 for the case of n0 = 10 and N = 50.   In general, it seems that the loss of information 

provided by the prediction interval with this simplifying assumption is the least for small 

samples/small populations. To interpret these values of ρ, it may be helpful to express the model (2) as 

in (3). We can express the ratio of within to between variability as ρρττ /)1(/ 22 −=bw . For example, 

when ρ = .01 this ratio is equal to 99 and 95.999/ ==bw ττ . That is, the value ρ = .01 means that 

the variability within the clusters is about 10 times larger than between the clusters. If this is a 

reasonable assumption, we may simplify the model by letting ρ = 0. We also see that ρ ≤ .04 
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corresponds to 90.424/ =≥bw ττ . In general, if bw ττ >>  then ρ ≈ 0 and if bw ττ << , then ρ ≈ 1. For 

these two extreme values of ρ, we have of course also 00 =⇔= bτρ  and 01 =⇔= wτρ . 

 

Figure 3.  The unconditional coverage C for Imp as a function of ρ, 0 ≤ ρ ≤  .05, for the two cases 
i) ρ = 0 is assumed and ii) ρ is estimated. Parameter values: µ = 3, τ = 1, β = 1.  

 
 

Since the prediction intervals are based on asymptotic considerations, we do not expect them to be 

calibrated with respect to the coverage measures for small n0 and small N. Still, it is of interest to get 

an idea of how the coverage properties of the different intervals are in this case. To do this we consider 

C for the set-up in Table 5. 

 

Table 5.  Small size cases for the simulation study. N is the number of clusters in the 
population, n0 is the number of clusters in the sample, and xi is the size measure for 
cluster i . In case a, the second stage sample sizes are all equal to 3 or all equal to 10. 
In case b, the second stage sample sizes are all equal to 10 or all equal to 400.  

N = 10, n0 = 6, v(xi) = xi 
Case a 

ni = 3, 10 
Case b 

ni = 10, 400 
i xi  i xi  

1 -3  50 1 - 3  5000 
4, 5 30 4, 5 3000 

6 – 8 100 6 - 8 10000 
9, 10 50 9, 10 5000 
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Estimated values of C are presented in Figures 4 and 5, and are based on 10,000 repetitions of 

simulating population values and drawing the two-stage sample. It seems clear that Ip is too short 

generally while for Imp it is only for rather extremely small values of τ/µ or ρ or large values of σ/β 

that the coverage is close to the nominal confidence level, and in those cases Ipc is typically too wide.  

As a general impression for all three intervals, it seems that the coverage C is about 95% of the 

nominal level for these small size cases.  

 

Figure 4.  The unconditional coverage C for Ip, Imp and Ipc. N = 10, n0 = 6, ρ = .5. In a) as a 
function of τ/µ when β =1, σ =1. In b) as a function of σ/β when µ =3, τ =1.  
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Figure 5.  The unconditional coverage C for Ip, Imp and Ipc. N = 10, n0 = 6. As a function of ρ 
when  β=1, σ=1, µ=3, τ=1. 

 
 

The statistical computing package S-PLUS 6 for UNIX is used in the simulation study and for creating 

the graphical displays.  

4.3 The coverage measures Cm, Cd, ( | , )C yθ s , ( ( | , ) 1 | )P C Yθ α≥ −s s  
We shall consider the moderate and large sample cases in Table 1, with parameter values as presented 

in Table 2. Box-plot of   Cm -estimates from 1000 two-stage samples of size n0 according to the 

sampling plan described in Section 4.1 are shown in Figure 6. Cd - estimates from 1000 populations 

are also presented as a Box-plot in Figure 6, showing more variability than Cm. Finally, the "joint" 

coverages C over sample distribution and population distribution of iij MY ,  in Table 3 are added to 

Figure 6. Since C = E(Cm) = E(Cd), the median values in the box plots and C all estimate 

approximately the same coverage probability. As expected then, there is very little difference between 

these values in figure 6.  We note that the variability in the coverages decreases as n0 increases, but is 

still very large, especially for Cd when n0 = 100 and N = 400 compared to n0 = 40 and N = 50. Also, all 

mean values are less than .95, although just very slightly for large sample/large population case.   
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Figure 6. Box-plots of 1000 Cd - and Cm estimates for Imp with β = 1, µ = 3, τ = 1, ρ = .5. 

 
 

Next we consider the conditional coverage ),|( syC θ = ),|),(( ss yyIZP ∈  and the guarantee of 

conditional coverage .95, )|95.),|(( ss ≥YCP θ .  For each case in Table 6 a new sample s is drawn 

according to the two-stage sampling plan in Section 4.1 and Z is simulated 1000 times, from its 

conditional distribution given the data with the same parameters as for the sampled data, to estimate 

),|( syC θ  = ),|),(( ss yyZP ∈θ . This is repeated 1000 times, with respect to the distribution of Y to 

estimate )|1),|(( ss αθθ −≥YCP . For each case, the simulation is done three times with different s to 

see how much the results may vary for different s.  
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Table 6.  The conditional coverage and guarantee of conditional coverage .95 for Imp. (1000 Z 
are drawn using true parameter values, for each of 1000 samples), µ = 3, β = 1, ρ = .5. 

Mean ),|( syC θ  )|95.),|(( ss ≥YCP θ  µτ /  βσ /  N n0 

.949, .942, .948 .863, .851, .775 1/3 2 400 100

.956, .954, .950 .865, .783, .828 1/3 4 400 100

.948, .943, .948 .814, .756, .787 1/3 7 400 60

.944, .944, .944 .734, .749, .776 1/3 7 400 40

.926, .928, .937 .726, .712, .784 1/3 7 400 20

.948, .948, .948 .844, .813, .782 1/3 2 50 40

.947, .942, .939 .731, .727, .709 1/3 2 50 25

.927, .931, .927 .684, .703, .688 1/3 2 50 15

.916, .903, .906 .687, .659, .663 1/3 2 50 10

.953, .950, .949 .729, .700, .702 1/50 7 400 100

.953, .952, .952 .740, .727, .728 1/30 7 400 100

.953, .951, .948 .809, .804, .787 1/10 7 400 100

.952, .956, .946 .813, .853, .800 1/6 7 400 100

.955, .950, .946 .827, .834, .803 1/4 7 400 100

  

Figure 7 shows graphs of the mean conditional coverage and the guarantee of conditional coverage .95 

as a function of ρ. The simulations are done as for Table 6, and the graphs are based on the average of 

ten simulations with different s. 
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Figure 7.  The guarantee of conditional coverage .95 and the mean conditional coverage for Imp 
as functions of ρ. N = 400, µ =3, τ = 1, β = 1, σ = 7. 

 
 

For constant parameter values, the guarantee of conditional coverage .95 is increasing in n0 for a fixed 

N, except when ρ is close to 0. We also see that the guarantee of 95% conditional coverage is much 

less than 95%. This is to be expected of prediction intervals with unconditional coverage C equal to 

.95, as mentioned in Bjørnstad (1990). If we want 95% conditional coverage 95% of the times, C 

needs to be much larger than .95. Table 6 and Figure 7 shows that the guarantee essentially decreases 

with ρ.  It also seems that the guarantee is increasing in τ/µ  for small values until it stabilizes. We 

note that the mean ),|( syC θ is an estimate of Cm and shows a similar pattern as C (in Figures 1,2) 

when N = 400 as function of ρ and τ/µ.  

 

The conditional coverage is stochastic in Y, and to get an idea of how the distribution of the 

conditional coverage is compared to the probability of being larger than .95, Figure 8 shows simulated 

histograms of 4 different cases of (N,n0) together with the guarantee. The simulation is done in the 

same way as for Table 6. For each case, the simulation is performed twice with s selected according to 

the two-stage design in Section 4.1. We see that, except when N = 50, n0 = 10, the conditional 

coverage is larger than .975 at least 70% of the time. It is also possible to show with repeated 

simulations of 1000 Z-values that the distribution of the conditional coverage fits well a beta 

distribution. 
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Figure 8.  Histogram of conditional coverage for Imp. Parameter values: 
2,1,1,3 ==== σβτµ when N = 50, σ = 7 when N = 400, ρ = .5.  

 
 

In practice we do not know, of course, the true values of the parameters. Instead we may derive the 

conditional level and the guarantee at estimated parameter values. Then it is useful to have an idea on 

how these measures perform within one standard error (s.e.) of the true values, and also at the 

estimated values.  Table 7 presents s.e. for the different parameters, from the simulation used to derive 

table 6, based on 1000 draws of the data Y=y. 

 

Table 7.  Estimated standard errors for the estimates of parameter values based on 1000 
repetitions 

N n0 µ =3 τ =1 β =1 σ =7 or 2 ρ = .5 
400 100 .073 .039 .0038 .507 (σ=7) .040 
400 40 .114 .059 .0046 .768 (σ =7) .061 
400 10 .230 .115 .0076 1.517 (σ=7) .127 
50 40 .114 .061 .0076 .223 (σ=2) .062 
50 10 .237 .112 .0136 .443 (σ=2) .124 

 

To get an indication of how ),|( syC θ  will behave as function of θ within 1 s.e. of the true values, 

table 8 presents results where the parameters are changed one at a time. Also in Table 8 are included 

the results for the guarantee of estimated conditional coverage. Here, Z is drawn 1000 times from the 

conditional distribution given the data with parameter θ* different from the true θ used to sample the 

data, to estimate ),|*( syC θ  = ),|),((* ss yyZP ∈θ . This is repeated 1000 times, with respect to the true 



32 

distribution of Y to estimate )|1),|*(( ss αθθ −≥YCP . For each case in Table 8 a new sample s is 

drawn three times according to the two-stage sampling plan in Section 4.1.  

 

Table 8.  The conditional coverage and guarantee of conditional coverage .95 for Imp, when Z 
are drawn from a population with non-true parameter values. Standard error ( s.e.) 
from table 7. 
True values: µ =3, τ =1, β =1, σ =7 when N = 400, σ =2 when N = 50, ρ = .5  

Mean ),|*( syC θ  )|1),|*(( ss αθθ −≥YCP
 

N, n0 Parameter values θ* for 
Z 

.949, .955, .958 .805, .827, .816 400,100 true  

.919, .911, .917 .755, .792, .753 400,100 µ =3+s.e., else true  

.948, .951, .949 .833, .845, .817 400,100 τ =1+s.e., else true  

.947, .953, .944 .804, .831, .802 400,100 β =1+s.e., else true  

.953, .954, .942 .841, .833, .800 400,100 σ =7+s.e., else true  

.945, .944, .938 .829, .761, .781 400,100 ρ = .5+s.e., else true  

.986, .981, .985 .921, .931, .928 400,100 θ̂  

.998, .998, .995 .997, .998, .998 400,40 θ̂  
.999998, .999994, 

.999996 
1, 1, 1 400,10 θ̂  

.953, .953, .959 .853, .843, .823 50,40 θ̂  
.9997, .9997, .9997 1, 1, 1 50,10 θ̂  

 
 

It seems that the guarantee is most sensitive to change in µ.  From the simulated results of 

),|ˆ( sYCE θθ and )|1),|ˆ(( ss αθθ −≥YCP  we also see that, except for the case N = 50, n0 = 40, the 

estimated conditional coverages overestimate the true conditional coverages (see Table 6) by a large 

degree. It is therefore questionable how interesting this measure is in practice as regarding the 

coverage property of a given prediction interval.   

 

It is of interest to see how the parameter estimates affect the true conditional coverage. In order to do 

this we performed a simulated logistic regression analysis for N = 400, n0 = 100, based on 1000 

simulated observations of Z for each of 1000 simulated Y-values. This gives us 1000 observations in 

the regression analysis and for each observation of Y, the number of Z-values in the given prediction 

interval as the dependent variable with explanatory variables being functions of parameter 

estimates τµ ˆ,ˆ , etc., and. It turns out that 2)ˆ( µµ −  has a large negative effect, decreasing ),|( syC θ  to 

a high degree, while ),|( syC θ  seems to increase with increasing estimates of τρ and  . The estimates 
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of σβ , do not seem to influence the conditional coverage significantly. When ρ is underestimated or 

µ̂  is very different from µ, ),|( syC θ  can be very low compared to the nominal level. Still, typically, 

the estimated conditional coverage ,|ˆ( yC θ s) will still be close to the nominal confidence level. 

Hence, as also noted from Table 8, ,|ˆ( yC θ s) may not be an informative measure on the conditional 

property of the prediction interval for a given data set. Therefore, a data-based measure of coverage 

should be a plot of ),|( syC θ  as a function of θ. This measure also satisfies the likelihood principle 

for prediction, as noted by Bjørnstad (1996). 

4.4. A summary of the simulation study 
We concentrate on the moderate and large size cases in Table 1. The three prediction intervals are 

compared using the unconditional coverage C and they achieve practically the same C-level, even for 

the moderate sample size of 200, i.e., when n0 = 10. In this case C is typically around .91 when ρ ≥ .1, 

96% of the nominal level of .95. The coverage C is at least .94, when the sample size is at least 800 (n0 

= 40) and approximately .95 for the large sample case of 2000 (n0 = 100) for either case of population 

size and through out the range of the intraclass correlation coefficient ρ. The only exception occurs 

when ρ is very close to 0. Then ρ is typically overestimated, leading to slightly larger prediction 

intervals than "necessary" with C ranging from .955 to .96.  In general when ρ is close to 0, say less 

than .01 (i.e., the variability within the clusters is expected to be about 10 times larger than between 

the clusters) one may simplify the model buy assuming that ρ = 0 when deriving the prediction 

intervals.  

 

The simulation results indicate that the unconditional coverage is essentially independent of all 

parameters except for ρ when n0 is at least 40. For the case of n0 = 10, C seems to depend on µ,τ  and 

β,σ  through the coefficients of variation τ/µ  and σ/β, decreasing in τ/µ and slightly increasing in σ/β. 

Even though C is approximately .91 for most parameter values, when τ/µ is very small C achieves the 

nominal level of .95 also in this case. 

 

Regarding the model-based coverage Cm, the box-plot shows that for N=50, n0 = 10 it varies in the 

range .913 ± .006 for 50% of the selected samples, while for N=400, n0 = 10 the similar range is .908 ± 

.006, for N=400, n0 = 40 the range is .942 ± .005 and for N=400, n0 = 100 & N=50, n0 = 40 it is .949 ± 

.005. Hence, Cm shows approximately the same pattern as C. The interquartile ranges for the design-

based coverage Cd are .915 ± .010, .908 ± .008, .944 ± .007 and .949 ± .006  for the same four cases 

respectively, showing a larger variability than Cm. 
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For large sample sizes, the coverage measures C, Cm, and Cd achieve approximately the nominal level 

1-α in most cases. The coverage measures are slightly less than 1-α for moderately sized n0, and about 

95% of the nominal level for small n0, except for ρ ≈ 0. It therefore seems that the critical value uα/2 

from N(0,1) in the prediction intervals is slightly too small for small and moderate n0. Regarding the 

interval Imp, based on the predictive likelihood Lmp, we note that Lmp is a mixture of a normal 

distribution and a multivariate t-distribution with n0 - 2 degrees of freedom. One alternative is 

therefore to use the upper α/2-point in the t(n0-2)-distribution instead of uα/2 when n0 is not large, at 

least when n0 is less than 40. Some preliminary simulations regarding Cm indicate that this choice may 

work well for small values of n0.  

 

The guarantee of conditional coverage 1 - α is essentially increasing in n0 and decreasing in ρ. The 

conditional coverage is typically larger than .975 when the nominal level is .95, and guarantee of 

conditional coverage .95 varies from about .70 to .90 with largest values for ρ close to 0. 

5. Concluding remarks 
We have considered two-stage cluster sampling with unknown cluster sizes before sampling, deriving 

predictor and prediction intervals from a predictive likelihood. Optimality properties of the predictor 

and coverage properties of the prediction intervals have been studied. 

 

Predictive likelihood is derived for the model (2) assuming that the random variables are normally 

distributed. Considering a predictive likelihood for the unobserved part Z of the population directly 

does not work, mainly because Z is a sum of a stochastic number of random variables. Therefore, 

predictor and prediction interval is obtained from a joint predictive likelihood for Z and the vector 

)(sM  = siiM ∉)( . The predictor obtained from the predictive likelihood is 0Ẑ  = )|(ˆ yZEθ , where θ̂  is 

the vector of MLE for the parameters in the model. 

 

Optimality theory for a class of model-unbiased predictors linear in the Yij's, but not simultaneously in 

both Yij's and  the clusters sizes Mi's, under the distribution-free model (2) is developed. It is shown 

that the predictive likelihood-based 0Ẑ  (with the intraclass correlation ρ estimated by an ANOVA 

approach instead of MLE) is approximately uniformly optimal for large sample size and large number 

of clusters, in the sense of uniformly minimizing the mean square error in the class considered for the 

distribution-free model (2), generalizing results in Kelly and Cumberland (1990) and Valliant et al. 

(2000). A typical model for the Mi's is to let v(x) = x. If also the sample sizes at the second stage are 
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equal (the common case for the pps-srs sampling plan), then 0Ẑ  is uniformly optimal for known ρ. In 

particular this holds in the simplified model where it can be assumed that the intraclass correlation is 

negligible, i.e. we let ρ = 0. 

 

Three prediction intervals for Z based on three similar predictive likelihoods are studied. They are all 

of the form )(ˆ
20 ZVuZ pα± , where 

2
αu  is the upper α/2-point of N(0,1), and )(ZVp  is the variance in 

the normalized predictive likelihood. For small number n0 of sampled clusters they differ significantly, 

however, for large n0 the three intervals are practically identical. A comprehensive simulation study 

for estimating confidence levels, both model-based and design-based is undertaken. The prediction 

intervals are evaluated by four different measures; the model-based coverage Cm, the design-based 

coverage Cd, the unconditional coverage C (expected design-based coverage), and the conditional 

coverage given the data and the guarantee of conditional coverage 1- α . Roughly, the simulation 

study indicates that for large sample sizes (about 2000),  C,Cm and Cd achieve approximately the 

nominal level 1 - α  and are slightly less than 1 - α  for moderately large sample sizes (about 800) For 

small sample sizes (about 200) these coverage measures are about 95% of the nominal level.   
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