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1. Introduction 
Empirical analyses of inequality in income distributions are conventionally based on the Lorenz curve. 

To summarize the information content of the Lorenz curve and to achieve rankings of intersecting 

Lorenz curves the standard approach is to employ the Gini coefficient in combination with one or two 

inequality measures from the Atkinson family or the Theil family. However, since the Gini coefficient 

and Atkinson’s and Theil’s measures of inequality have distinct theoretical foundations it is difficult to 

evaluate their capacity as complementary measures of inequality1. 

 By exploiting the fact that the Lorenz curve can be considered analogous to a cumulative 

distribution function, Aaberge (2000) draws on standard statistical practice to justify the use of the 

first few moments of the Lorenz curve (LC-moments) as basis for summarizing the information 

content of the Lorenz curve. However, considered as a group these measures suffer from a drawback 

since none of them in general are particularly sensitive to changes that concern the lower part of the 

income distribution. The reason why the moments of the Lorenz curve in most cases are more 

sensitive to changes that take place in the central and upper part rather than in the lower part of the 

income distribution is simply due to the fact that the Lorenz curve has a convex functional form. Thus, 

even though the first three LC-moments in many cases jointly provide a good description of the 

inequality in an income distribution it would for informational reasons as well as for the sake of 

interpretation be preferable to employ a few measures of inequality that also prove to supplement each 

other with regard to sensitivity to transfers at the lower, the central and the upper part of the income 

distribution. To this end Section 2 provides arguments for using a specific transformation of the 

Lorenz curve, the scaled conditional mean curve, rather than the Lorenz curve as basis for introducing 

and justifying application of a few measures for summarizing inequality in income distributions. The 

scaled conditional mean curve turns out to possess several useful properties which will be discussed 

below. Section 3 demonstrates that the moments of the scaled conditional mean curve define a 

convenient family of inequality measures where the first three moments prove to supplement each 

other with regard to focus on the lower, the central and the upper part of the income distribution. 

Section 4 deals with estimation and asymptotic distribution theory for the empirical scaled conditional 

mean curve and the related family of empirical measures of inequality. Moreover, an empirical 

illustration based on Norwegian data for 1986-1998 is also provided. Section 5 summarizes the paper. 

                                                      
1 See Giorgi (1990) for a bibliographic portrait of the Gini coefficient. 
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2. The scaled conditional mean curve 
Let X be an income variable with cumulative distribution function F(⋅), density f(⋅) and mean µ. Let 

[0,∞> be the domain of F where F − ≡1 0 0( ) .  The Lorenz curve L(⋅) for F is defined by 

(1) L u F t dt u
u

( ) ( ) , ,= ≤ ≤−∫
1

0 11

0
µ

  

where F-1 is the left inverse of F. Note that F can either be a discrete or a continuous distribution 

function. Although the former is what we actually observe, the latter often allows simpler derivation of 

theoretical results and is a valid large sample approximation. Thus, in most cases below F will be 

assumed to be a continuous distribution function. 

 The Lorenz curve is concerned with shares of income rather than relative levels of 

income and differs in that respect from the decile-specific presentation of income inequality which 

displays decile-specific mean incomes as fractions of the overall mean income. This method of 

presentation is frequently used by national bureaus of statistics and by researchers dealing with 

analyzing distributions of income. By introducing a simple transformation of the Lorenz curve we 

obtain an alternative interpretation of the information content of the Lorenz curve which proves to be 

closely related to the conventional decile-specific approach mentioned above. To this end we use the 

scaled conditional mean curve M(⋅) introduced by Aaberge (1982) and defined by2 

(2) 

u
1 1

0

1E X|X F (u) F (t)dt, 0 u 1
M(u) u

0 , u 0.

− −


 ≤ < ≤ ≡ = µµ  =

∫   

When inserting for (1) in (2) the following simple relationship between the scaled conditional mean 

curve and the Lorenz curve emerges, 

(3) M u

L u

u
u

u

( )

( )
,

, ,

=
< ≤

=









0 1

0 0

  

where M( )1 1=  and ( )lim ( ) ( ) .
u

L u u M
→

=
0

0  Thus, formally the scaled conditional mean curve is a 

representation of inequality that is equivalent to the Lorenz curve. 

                                                      
2 This ratio was also considered by Nygård and Sandström (1981), but they did not explore its properties as a function that is 
uniquely determined by the Lorenz curve, whilst Atkinson and Bourguignon (1989) used the numerator as an alternative 
interpretation of the information provided by the generalized Lorenz curve. 
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 The scaled conditional mean curve possesses several attractive properties. First, it 

provides a convenient alternative interpretation of the information content of the Lorenz curve. For a 

fixed u, M(u) is the ratio between the mean income of the poorest 100u per cent of the population and 

the overall mean. Thus, the scaled conditional mean curve may also yield essential information on 

poverty, provided that we know the poverty line. The egalitarian reference line of M coincides with 

the horizontal line joining the points (0,1) and (1,1). At the other extreme, when one person earns the 

whole income, the scaled conditional mean curve coincides with the horizontal axis except for u 1= . 

Second, the scaled conditional mean curve of a uniform (0,a) distribution proves to be the diagonal 

line joining the points (0,0) and (1,1) and thus represents a useful additional reference line. Thus, when 

a M-curve intersects the diagonal line once from below (single intersection) the corresponding 

distribution exhibits lower inequality than a uniform (0, a) distribution below the intersection point 

and higher inequality than a uniform (0, a) distribution above the intersection point. Note that incomes 

are uniformly distributed over (0, a) if any income in this interval occurs equally frequent. Third, the 

family of scaled conditional mean curves is bounded by the unit square. Therefore visually, there is a 

sharper distinction between two different scaled conditional mean curves than between the two 

corresponding Lorenz curves. This distinction appears to be particular visible at the lower parts of the 

income distributions3. As an illustration Figures 1 and 2 give the Lorenz curves and the scaled 

conditional mean curves of the distributions of average annual earnings in Norway for the periods 

1981-1982 and 1986-1987. 

 

                                                      
3 Atkinson and Bourguignon (1989) brought forward this property to justify the use of the "incomplete mean curve" (the 
numerator of M) rather than the generalized Lorenz curve. 
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Figure 1.  Lorentz curves for distributions of average annual earnings in Norway

1981-1982
1986-1987
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Figure 2.  Scaled conditional mean curves for distributions of average annual earnings in Norway

1981-1982
1986-1987

 

 

 

As can be seen from the scaled conditional mean curves there may be differences in inequality 

between the lower tails of two distribution functions which may be perceived as negligible when the 

judgment relies on the plots of the corresponding Lorenz curves. Note, however, that a judgment of 

the statistical significance of this difference in inequality does not depend on whether we rely on the 

scaled conditional mean curve or the Lorenz curve. However, the question of whether a difference or 
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change in inequality is large or small is separate from that of statistical significance, and appears to be 

more easy to deal with when we rely on plots of the scaled conditional mean curve rather than on plots 

of the Lorenz curve4. 

 In contrast to the Lorenz curve, which always is a convex function, the shape of the 

scaled conditional mean curve proves to be strongly related to the shape of the underlying distribution 

function. In order to demonstrate this fact observe that the first derivative of M is non-negative and 

that the second derivative of M is given by 

(4) 
( )

( )
2 1u

3 3 1
0

t f F (t)1
M (u) dt ,

u f F (t)

−

−

′
′′ = −

µ ∫   

provided that ( )[ ]u f F u2 1 0/ ( )− →  when u → +0 .  The expression (4) for the second derivative of M 

demonstrates that there is a close relationship between the shape of the distribution function F and the 

shape of the scaled conditional mean curve. For example, when F is convex, i.e. F is strongly skew to 

the left, then M is concave. In this case, a minority of the population is poor and the majority is rich. 

By contrast, when F is concave, i.e. F is strongly skew to the right, then M is convex. In this case the 

majority of the population has low incomes, whereas a minority has high incomes. Moreover, a 

symmetric and convex/concave distribution function F implies a concave/convex shape of the 

corresponding scaled conditional mean curve, whereas a symmetric and concave/convex F implies a 

convex/concave scaled conditional mean curve. Note that a concave/convex distribution function 

occurs when there is a tendency of polarization in the population5. At the extreme the concave/convex 

(and symmetric) F becomes a two-point distribution function, which displays complete polarization. 

 Under the restriction of equal mean incomes the problem of ranking scaled conditional 

mean curves (M-curves) or Lorenz curves formally corresponds to the problem of choosing between 

uncertain prospects. This relationship has been utilized by e.g. Kolm (1969) and Atkinson (1970) to 

characterize the criterion of non-intersecting Lorenz curves in the case of distributions with equal 

mean incomes. This was motivated by the fact that in cases of equal mean incomes the criterion of 

non-intersecting Lorenz curves is equivalent to second-degree stochastic dominance6, which means 

that the criterion of non-intersecting Lorenz curves obeys the Pigou-Dalton principle of transfers. The 

Pigou-Dalton principle of transfers states that an income transfer from a richer to a poorer individual 

                                                      
4 The estimates of Figures 1 and 2 are based on data relative to 621 804 persons available from Statistics Norway’s Tax 
Assessment Files. Thus, sampling errors are of minor importance in this case. 
5 For recent discussions on polarization we refer to Esteban and Ray (1994) and Wolfson (1994). 
6 For a proof see Hardy, Littlewood and Polya (1934). 
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reduces income inequality, provided that their ranks in the income distribution are unchanged, and is 

defined formally by7 

 

DEFINITION 1. (The Pigou-Dalton principle of transfers.) Consider a discrete income distribution F. 

A transfer 0δ >  from a person with income 1F (t)−  to a person with income 1F (s)− , where the transfer 

is assumed to be rank-preserving, is said to reduce inequality in F when s t<  and raise inequality in F 

when s t> .  

 

The following result demonstrates that the scaled conditional mean curve M(⋅) obeys the Pigou-Dalton 

principle of transfers, which means that the criterion of non-intersecting M-curves is equivalent to 

second-degree stochastic dominance of the corresponding cumulative distribution functions, provided 

that the means are equal.  

 

THEOREM 1. Let M1 and M2 be members of the family of M-curves. Then the following statements 

are equivalent, 

(i) M1 first-degree dominates M2 

(ii) M1 can be obtained from M2 by a sequence of Pigou-Dalton transfers 

 

 We refer to Fields and Fei (1978) for a proof of the equivalence between (i) and (ii)8 

when the scaled conditional mean curve (M) in Theorem 1 is replaced by the Lorenz curve. However, 

since M(u) L(u) u= , the proof is also valid when the dominance condition is expressed in terms of 

the scaled conditional mean curve.   

3. Gini's nuclear family of inequality measures 
By observing that the Lorenz curve can be considered analogous to a cumulative distribution function 

Aaberge (2000) demonstrated that the moments of the Lorenz curve generate the following family of 

inequality measures 

(5) ( )
1

k
k

0

1
D (F) k 1 u d L(u) 1 , k 1,2,...,

k

 
= + − =  

 
∫  

                                                      
7 Note that this definition of the Pigou-Dalton principle of transfers was proposed by Fields and Fei (1978). 
8 See Rothschild and Stiglitz (1973) for a proof of the equivalence between (i) and (ii) in the case where the rank-preserving 
condition is abandoned in the definition of the Pigou-Dalton principle of transfers. 
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called the Lorenz family of inequality measures9, and moreover proved that it is strongly related to a 

subfamily of the extended Gini Family discussed by Donaldson and Weymark (1980, 1983) and 

Yitzhaki (1983). Alternatively, the members of the Lorenz family may be expressed in terms of the 

distribution function F in the following way, 

(6) ( )k
k

1
D (F) F(x) 1 F (x) dx, k 1,2,...

k
= − =

µ ∫  

Since the Lorenz curve is uniquely determined by its moments we can, without loss of information, 

restrict the examination of inequality in an income distribution F to the Lorenz family of inequality 

measures. However, even though we have obtained to reduce the size of the family of inequality 

measures from the standard infinite non-countable set to a countable set it still contains infinite 

members. For practical reasons it would be preferable to rely on a few measures of inequality in 

empirical applications. By drawing on standard statistical practice Aaberge (2000) proposed to use the 

first few moments of the Lorenz curve as primary quantities for measuring inequality, i.e. D1, D2 and 

D3, where D1 is the Gini coefficient. These three measures may jointly give a good summarization of 

the information provided by the Lorenz curve but suffer from the inconvenience of generally turning 

their attention to changes that occur in the central and/or the upper part of the income distribution. 

However, a measure of inequality that primarily focuses attention on the lower tail can be obtained by 

introducing an appropriate linear combination of D1, D2 and D3. As will be demonstrated below an 

alternative and more attractive strategy is to use the first three moments of the scaled conditional mean 

curve as primary quantities for measuring inequality in income distributions. The kth order moment of 

the scaled conditional mean curve for income distribution F, Ck(F), is defined by 

(7) C F u d M uk
k( ) ( ).= ∫

0

1

 

By recalling the properties of M we immediately realize from (7) that the moments of the scaled 

conditional mean curve { }C kk : ,2, ...= 1  constitute a family of inequality measures with range [0,1]. 

Thus, without loss of generalization we can restrict the examination of the inequality in F to the 

moments of the scaled conditional mean curve. The following alternative expression of Ck, 

(8) ( )C F k u M u du kk
k( ) ( ) , ,2,...= − =−∫ 1

0

1

1 1  

                                                      
9 Note that this is a subfamily of a family of inequality measures that was introduced by Mehran (1976). 
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demonstrates that Ck for k 1>  is adding up weighted differences between the scaled conditional mean 

curve and its egalitarian line. The mean (C1) of M is equal to the area between the scaled conditional 

mean curve and its egalitarian line10, the horizontal line joining the points (0,1) and (1,1) of Figure 2. 

The inequality measure C1 appears to be identical to a measure of inequality that was introduced by 

Bonferroni (1930) as an alternative to the Gini coefficient, but since then it has for some reason been 

paid little attention in the economic literature11. By inserting for (2) in (8) when k 1=  we obtain the 

following alternative expression for C1, 

(9) 1
1

C (F) F(x) log F(x)dx.= −
µ ∫  

Now, inserting (2) into (8) when k 2=  we find that the second order moment of the scaled conditional 

mean curve is equal to the Gini coefficient (C2), whilst an alternative expression of the third order 

moment of the scaled conditional mean curve is given by (6) for k 2= . 

 Note that C Dk k+ =1  for k 1,2,...,=  which means that the family { }kC : k 1,2,...=  simply 

is the Lorenz family of inequality measures extended with the Bonferroni coefficient C1. This also 

means that C1 is uniquely determined by the Lorenz family measures of inequality. The explicit 

relationship is found by inserting for (2) in (8) when k 1=  and by using Taylor-expansion for the term 

1/u. Finally, inserting for (5) in the attained expression yields  

(10) ( )
n

k 1
1 k

n 1 k 1

n 1 1
C (F) 1 D (F).

k 1 k 1

∞
−

= =

− 
= −  − + 
∑∑  

 

 Since C1, C2 and C3 represent the first, the second and the third order moments of the 

scaled conditional mean curve, they jointly may make up a fairly good summarization of the scaled 

conditional mean curve as well as of the Lorenz curve12. Moreover, as will be demonstrated below C1 

and C3 complement the information provided by the Gini coefficient by turning particular attention to 

changes that take place in the lower and upper part of the income distribution. Due to these features of 

C1, C2 and C3 we will treat them as a group and call them Gini's Nuclear Family of inequality 

measures. Thus, Gini's Nuclear Family of inequality measures can be considered as an adjustment of 

                                                      
10 Note that Eltetö and Frigyes (1968) proposed M(F(µ)) as a measure of inequality. However, this measure is unaffected by 
transfers between individuals on the same side of the mean, which means that it does not satisfy the Pigou-Dalton transfer 
principle. 
11 For a few exceptions we refer to D'Addario (1936), Nygård and Sandström (1981), Aaberge (1982, 2000), Giorgi (1984, 
1998), Chakravarty and  Muliere (2003) and Aaberge, Colombino and Strøm (2004). In the latter paper the Bonferroni 
coefficient defines a measure of social welfare that is used for evaluating the performance of various tax systems.  
12Aaberge (2000) demonstrates that C2 and C3 also provide essential information on the shape of the income distribution.  
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the group of measures (D1, D2 and D3) discussed by Aaberge (2000) where 2 1C D= , 3 2C D=  and D3 

is replaced by the Bonferroni coefficient C1. 

           Aaberge (2000) demonstrated that the Lorenz family of inequality measures as well as the 

Bonferroni coefficient can be given explicit expressions in terms of social welfare and moreover are 

members of the "illfare-ranked single-series Ginis" introduced by Donaldson and Weymark (1980) 

and discussed by Bossert (1990)13.  The welfare function that corresponds to Ck is given by 

(11) ( )
1

1
k k k

0

W (F) 1 C p (t)F (t)dt , k 1,2,...,−= µ − = =∫  

where kp (t)  is a weight function defined by 

(12) ( )k k 1

log t , k 1
p (t) k

1 t , k 2,3,....
k 1

−

− ==  − = −
 

The latter term of equation (11) follows by inserting for (2) in (8) and for (8) in the second term of 

(11), and then using integration by parts. Equation (11) shows that the welfare function Wk is a 

weighed sum of the ordered incomes, where the inequality aversion exhibited by Wk and the 

corresponding weight function decreases with increasing k. As kk , W→ ∞  approaches inequality 

neutrality and coincides with the linear additive welfare function defined by 

(13) 
1

1

0

W F (t)dt .−
∞ = = µ∫  

It follows by straightforward calculations that kW ≤ µ  for all k, and that Wk is equal to the mean  µ for 

finite k if and only if F is the egalitarian distribution. Thus, Wk can be interpreted as the equally 

distributed equivalent income. As a contribution to the interpretation of the inequality aversion profiles 

exhibited by W1, W2 and W3 (and C1, C2 and C3) Table 1 provides ratios of the corresponding weights 

– as defined by (12) – of the median individual and the 5 per cent poorest, the 30 per cent poorest and 

the 5 per cent richest individual. 

 

                                                      
13 See also Sen (1974), Yitzhaki (1979), Weymark (1981), Hey and Lambert (1980), Donaldson and Weymark (1983), Yaari 
(1987, 1988), Ben Porath and Gilboa (1994) and Aaberge (2001) who have provided alternative characterizations of the Gini 
coefficient and generalized Gini measures of inequality. 
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Table 1. Distributional weight profiles of W1, W2 and W3 (and C1, C2 and C3) 

 W1 (C1) 
(Bonferroni) 

W2 (C2) 
(Gini) 

W3 (C3) 

p(.05)/p(.5) 4.32 1.90 1.33 

p(.30)/p(.5) 1.74 1.40 1.21 

p(.95)/p(.5) 0.07 0.10 0.13 

 

As suggested by Table 1 W1 (C1) is more sensitive than W2 (C2) to changes in the income distribution 

that concern the poor, whereas W2 (C2) is more sensitive than W3 (C3) to changes that occur in the 

lower part of the income distribution. For example, the weights in Table 1 demonstrate that the social 

weight of an additional Euro to a person located at the 5 per cent decile is 4.3 times the weight of the 

median income earner when C1 (W1) is used as a measure of inequality (social welfare), whereas it is 

only 1.3 times the weight of the median earner when C3 (W3) is used as a measure of inequality (social 

welfare). As is suggested by Table 1 and is easily verified from equation (8), C1, C2 and C3 preserve 

first-degree M-curve and Lorenz dominance and thus satisfy the Pigou-Dalton principle of transfers. 

However, to deal with situations where M-curves or Lorenz curves intersect a more demanding 

principle than the Pigou-Dalton transfer principle is required. An obvious idea is to introduce a 

principle that places more emphasis on a given transfer the lower it occurs in the income distribution. 

Kolm (1976) and Mehran (1976) proposed two alternative versions of such a principle; the principle of 

diminishing transfers which requires the income difference between receivers and donors to be fixed 

and the principle of positional transfer sensitivity which requires a fixed difference in ranks between 

receivers and donors14. To provide a formal definition of the principle of diminishing transfers let I be 

an inequality measure and let xI ( , z)∆ δ denote the change in I resulting from a transfer δ from a person 

with income x+z to a person with income x. Thus, xI ( , z)∆ δ  is a negative number15. Furthermore, let 

x,yI ( , z)∆ δ  be defined by 

(14) ( ) ( ) ( )x,y y xI ,h I ,h I ,h∆ δ = ∆ δ − ∆ δ .  

Thus, x,yI ( , z)∆ δ  captures the difference between the effect on I resulting from a transfer δ from a 

person with income x z+  to a person with income x and the effect from a transfer from a person with 

income y z+  to a person with income y, where x y< .   

                                                      
14We refer to Mehran (1976), Zoli (1999) and Aaberge (2004) for a discussion of the principle of positional transfer 
sensitivity.  
15 For convenience the dependence of I on F is suppressed in the notation for I.  
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DEFINITION 2A. Consider an income distribution F and a transfer δ from individuals with incomes 

x z+  and y z+  to individuals with incomes x and y, respectively, where the receivers are assumed to 

not become richer than the donors. Then the inequality measure J is said to satisfy the principle of 

diminishing transfers if 

 x,yI ( , z) 0 when x y.∆ δ > < . 

Similarly, to provide a formal definition of the principle of positional transfer sensitivity, let J be an 

inequality measure and let tJ ( , z)∆ δ  denote the change in J resulting from a transfer δ from a person 

with income 1F (t h)− +  to a person with income 1F (t)−  that leaves their ranks in the income 

distribution F unchanged. Thus, tJ ( , z)∆ δ  is a negative number. Furthermore, let s,tJ ( , z)∆ δ  be defined 

by 

(15) ( ) ( ) ( )s,t t sJ ,h J ,h J ,h∆ δ = ∆ δ − ∆ δ .  

 

DEFINITION 2B. Consider an income distribution F and a rank-preserving transfer δ from individuals 

with ranks s h+  and t h+  to individuals with ranks s and t, respectively. Then the inequality measure 

J is said to satisfy the principle of positional transfer sensitivity if 

 s,tJ ( , z) 0 when s t∆ δ > < . 

 

By applying Theorem 2 in Aaberge (2000) we find that the Bonferroni coefficient satisfy the principle 

of diminishing transfers for distribution functions that are strictly logconcave16. This class includes the 

uniform, the exponential, the Pareto, the Gamma, the Laplace, the Weibull and the Wishart 

distributions. For logconcave distribution functions there are, as were also noted by Heckman and 

Honoré (1990) and Caplin and Nalebuff (1991), a rising gap between the income of the richest and the 

average income of those units with income lower than the richest as we move up the income 

distribution17, i.e. ( )x E Y Y x− ≤  is an increasing function of x. Observe that if X and Y are 

distributed according to F (with mean µ) we have 

                                                      
16 For a complete characterization of logconcavity, see An (1998). 
17 Note that the income gap is equal to the average poverty gap when x coincides with the poverty line. 
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(16) 
( ){ }

1

E X E Y Y X
C (F)

− ≤
=

µ
 

which means that the Bonferroni coefficient is equal to the ratio between the mean of these income 

gaps and the overall mean income. Consequently, the Bonferroni coefficient assigns more weight to 

transfers taking place lower down in the distribution for all distributions which are strongly skewed to 

the right and even for some distributions which are strongly skewed to the left. Distributions which are 

strongly skewed to the left exhibit a minority of poor individuals/households and a majority of rich 

individuals/households. 

 When the transfer sensitivity of the Bonferroni coefficient is judged according to the 

principle of positional transfer sensitivity the results of Aaberge (2000) show that the Bonferroni 

coefficient (C1) always treats a given transfer of money from a richer to a poorer person to be more 

equalizing the lower it occurs in the income distribution, provided that the difference in ranks between 

receivers and donors is the same.  

 For a discussion of the transfer sensitivity properties of the Gini coefficient (C2) and the 

C3-coefficient we refer to Aaberge (2000). However, for the sake of completeness we summarize the 

transfer sensitivity properties of the members of Gini's nuclear family of inequality measures in 

Proposition 1.   

 

PROPOSITION 1. The three members of Gini's Nuclear Family, C1, C2 and C3, have the following 

transfer sensitivity properties,   

(i)  The Bonferroni coefficient (C1) satisfies the principle of diminishing transfers for all strictly log-

concave distribution functions and the principle of positional transfer sensitivity for all 

distribution functions. 

(ii)  The Gini coefficient (C2) satisfies the principle of diminishing transfers for all strictly concave 

distribution functions, but does not satisfy the principle of positional transfer sensitivity. In the 

case of a fixed difference in ranks the Gini coefficient attaches an equal weight to a given transfer 

irrespective of whether it takes place in the upper , the middle or the lower part of the income 

distribution. 

(iii)  The C3-coefficient satisfies the principle of diminishing transfers for all distribution functions F 

for which F2 is strictly concave, but does not satisfy the principle of positional transfer sensitivity. 

In the case of a fixed difference in ranks the C3-coefficient assigns more weight to transfers at the 

upper than at the central and the lower parts of the income distribution.  
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As an empirical illustration of the methods proposed in this paper, Table 2 displays estimates of Gini’s 

Nuclear Family with corresponding standard deviations18 for the distribution of income after tax in 

Norway 1986 – 1998, where scale economies is accounted for by the use of the square root scale19. 

Exploring the trend in income inequality in this period is particularly interesting because a major tax 

reform was implemented in 1993, where taxation on capital income were substantially relaxed. 

Moreover, the Norwegian economy gradually recovered from a long recession at the end of 1992. 

Thus, we focus particular attention on the changes between 1986-1992 and 1993-1998. As is 

demonstrated by the estimates in Table 2, C3 increased more than G and G more than C1. Thus, 

according to the transfer sensitivity properties of C1, G and C3 indicated above, the rise in inequality is 

primarily due to increased inequality in the upper part of the income distribution. As suggested by 

Fjærli and Aaberge (2000) this result reflects the fact that changes in the tax reported dividends are the 

primary factor behind the changes in the standard reported inequality estimates and that most 

dividends are received by individuals located in the upper part of the income distribution.  

 

                                                      
18 Methods for estimation and asymptotic distribution theory for the empirical versions of the members of Gini’s nuclear 
family are reported in Section 4. 
19 A computer program for estimating the scaled conditional mean curve and the measures of Gini’s nuclear family as well as 
the related variances (standard deviations) is available on request. Note that the program allows for weighting of the 
observations when it is required due to the sampling design. 
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Table 2. Trend in income inequality in Norway, 1986-1998* 

Year C1 2C G=  C3 

1986 
0.331 

(0.002) 
0.224 

(0.002) 
0.177 

(0.002) 

1987 
0.330 

(0.003) 
0.224 

(0.003) 
0.177 

(0.002) 

1988 
0.327 

(0.003) 
0.223 

(0.002) 
0.176 

(0.002) 

1989 
0.340 

(0.004) 
0.233 

(0.004) 
0.186 

(0.004) 

1990 
0.343 

(0.003) 
0.232 

(0.002) 
0.183 

(0.002) 

1991 
0.340 

(0.003) 
0.232 

(0.003) 
0.185 

(0.003) 

1992 
0.348 

(0.003) 
0.23 

(0.003) 
0.18 

(0.002) 

1993 
0.352 

(0.005) 
0.240 

(0.005) 
0.191 

(0.005) 

1994 
0.366 

(0.003) 
0.249 

(0.002) 
0.199 

(0.002) 

1995 
0.358 

(0.003) 
0.247 

(0.003) 
0.198 

(0.003) 

1996 
0.364 

(0.004) 
0.255 

(0.004) 
0.207 

(0.004) 

1997 0.371 
(0.004) 

0.260 
(0.004) 

0.212 
(0.004) 

1998 0.355 
(0.003) 

0.249 
(0.003) 

0.202 
(0.003) 

Average of (1986-92) 0.337 
(0.001) 

0.229 
(0.001) 

0.181 
(0.001) 

Average of (1993-98) 0.361 
(0.002) 

0.250 
(0.001) 

0.201 
(0.001) 

Percentage change, 
(1986-92) - (1993-98) 

7.14 9.07 10.96 

Source: Fjærli and Aaberge (2000). 
*Standard deviation in parentheses. 
 

4. Estimation and asymptotic distribution results 
Let 1 2 nX ,X ,...,X  be independent random variables with common distribution function F and let nF  be 

the corresponding empirical distribution function. Moreover, let ( ) ( ) ( )1 2 nX X ... X≤ ≤ ≤  denote the 
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ordered 1 2 nX ,X ,...,X . Since the parametric form of F is unknown, it is natural to use the empirical 

distribution function Fn to estimate F and to use 

(17) 
( )

i

j
j 1

n

1
X

ii
M , i 1,2,..., n

n X
=  = = 

 

∑
 

to estimate M(u)  for u i n= , where X  is the sample mean.  

 By replacing M by Mn in the expression (8) for Ck, we get the following estimator20 of the 

moments of the scaled conditional mean curve21 

(18) ( )
1

k 1
k k n n

0

ˆ ˆC C (F ) k u 1 M (u) du , k 1,2,...−= = − =∫  

In order to derive the asymptotic distribution of the empirical rank-dependent measures of inequality it 

is convenient to firstly derive the asymptotic properties of the empirical scaled conditional mean curve 

M22. 

 Approximations to the variance of Mn and the asymptotic properties of Mn can be 

obtained by considering the limiting distribution of the process nV (u)  defined by 

(19) [ ]
1

2
n nV (u) n M (u) M(u)= − . 

 Assume that the support of F is a non-empty finite interval [ ]a,b . (When F is an income 

distribution, a is commonly equal to zero.) Then nV (u)  is a member of the space D of functions on 

[0,1] which are right continuous and have left hand limits. On this space we use the Skorokhod 

topology and the associated σ-field (e.g. Billingsley (1968), p. 111). We let 0W (t)  denote a Brownian 

Bridge on [0,1], that is, a Gaussian process with mean zero and covariance function 

( )s 1 t , 0 s t 1− ≤ ≤ ≤ . Moreover, let Y(u) be the Gaussian process defined by  

                                                      
20 As demonstrated by Chotikapanich and Griffiths (2001) for the extended Gini coefficients, an alternative estimator 
performs better when the informational basis is restricted to group data with less than 20 groups.     

21 Since Mn(⋅)   is a discrete function the integration symbol ∫ represents numerical integration in this case. 

22 We refer to Goldie (1977) for an alternative proof of the asymptotic properties of the empirical Lorenz curve. 
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(20) ( )
u

0
1

0

W (t)1
Y(u) dt

u f F (t)−
= ∫  

and let 2 (u)γ  and (u, v)κ  be given by 

(21) ( )
1F (u) y

2

a a

2
(u) F(x) 1 F(y) dx dy, 0 u 1

u

−

γ = − ≤ ≤∫ ∫  

and 

(22) ( ) ( )
1 1

1

F (v) F (u)

aF (u)

1
u, v F(x) 1 F(y) dx dy, 0 u v 1

uv

− −

−

κ = − ≤ ≤ ≤∫ ∫ . 

The following result follows from Aaberge (1982, 2006), 

 

THEOREM 2. Suppose that F has a continuous nonzero derivate f on [ ]a,b . Then nV (u) converges in 

distribution to the process 

(23) [ ]1
V(u) Y(u) M(u)Y(1)= −

µ
, 

with covariance function 2 (u, v)ψ  given by 

(24) 
( ) ( ) ( )( )

( )( )

2 2 2
2

2 2

1 1
u, v (u) u, v M(u) (v) v,1

v

M(v) (u) u,1 M(u)M(v) (1) , 0 u v 1.

ψ = γ + κ − γ + κµ 
− γ + κ + γ < ≤ ≤

 

In order to construct confidence intervals for the scaled conditional mean curve at fixed points, we 

apply the results of Theorem 2 which imply that the distribution of 

 
( )

1
n2

M (u) M(u)
n

u,u

−
ψ

 

tends to the ( )N 0,1  distribution for fixed u.  

 We shall now study the asymptotic distribution of the k-th order moment kĈ ( defined by 

(18)) of the empirical scaled conditional mean curve nM ( )⋅ . As will be demonstrated below Theorem 

2 forms a helpful basis for deriving the asymptotic variance of kĈ . 
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 Let 2
kθ  be a parameter defined by 

(25) 

( ) ( )

[ ] ( )( ) [ ]

1 v
k 12 2 2

k 2
0 0

1
22 k 1 2

k k

0

1 1
2k (u) u, v uv du dv

v

2 1 C k (u) u,1 u du (1) 1 C .

−

−

  θ = γ + κ  µ  

  − − γ + κ + γ −  
  

∫ ∫

∫
 

 

THEOREM 3. Suppose the conditions of Theorem 2 are satisfied and 2
kθ < ∞ . Then the distribution of 

 ( )
1

2
k k

ˆn C C−  

tends to the normal distribution with zero mean and variance 2
kθ . 

 

PROOF. From (8), (18) and (19) we see that 

 ( )
11

k 12
k k n

0

ˆn C C k u V (u)du−− = − ∫ . 

 By Theorem 2 we have that nV (u)  converges in distribution to the Gaussian process 

V(u)  defined by (23). By applying Billingsley (1968, Theorem 5.1) and Fubini’s theorem we get that 

( )
1

2
k k

ˆn C C−  converges in distribution to 

 
1 1 1

k 1 k 1 k 1
j j j j

j 1 j 10 0 0

k u V(u)du k u d (u)Z du k u d (u)du Z
∞ ∞

− − −

= =

  
− = − = −   

   
∑ ∑∫ ∫ ∫  

where 1 2Z , Z ,...  are independent ( )N 0,1  variables and jd (u)  is defined by 

(26) j j j

1
d (u) p (u) p (1)M(u) = − µ

 

and jp (u) is defined by 

(27) ( ) ( )
( )( )

1
u2

j 1
0

sin j t2
p u dt

j u f F t−

π
=

π ∫ , 
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i.e., the asymptotic distribution of ( )
1

2
k k

ˆn C C−  is normal with mean zero and variance 

(28) 

21
k 1

j
j 1 0

k u d (u)du
∞

−

=

 
 
 

∑ ∫ . 

Then it remains to show that the asymptotic variance is equal to 2
kθ . 

 Inserting (26) in (28), we get 

 

( )
2 21 1

k 1 k 1
j j j2

j 1 j 10 0

21 1 1
k 1 k 1 k 1

j j j2
j 1 j 10 0 0

21
2 k 1
j

j 1 0

1
k u d (u)du k u p (u) p (1)M(u) du

1
k u p (u)du 2 k u M(u)du p (1)k u p (u)du

p (1) k u M(u)du

∞ ∞
− −

= =

∞ ∞
− − −

= =

∞
−

=

   
= −   µ   

      = −      µ      

   +   
    

∑ ∑∫ ∫

∑ ∑∫ ∫ ∫

∑ ∫ .


 

In the following derivation we apply Fubini’s theorem and the identity  

(29) 
( ) ( )

( )
( )2

j 1

sin j s sin j t
2 s 1 t , 0 s t 1

j

∞

=

π π
= − ≤ ≤ ≤

π
∑ . 

 

( )

( ) ( )
( ) ( )

( )
( )

( )
( ) ( )

( )
( )

21 1 1
k 2k 1 2

j j j
j 1 j 10 0 0

1 1 v u k 22

21 1
j 10 0 0 0

1 v u s v u
2

1 1 1 1
0 0 0 0 u 0

k u p (u)du k uv p (u)p (v)du dv

sin j t sin j s2k uvdt ds du dv
f F (t) f F (s) j

t 1 s t 1 s
2 k 2 dt ds

f F (t) f F (s) f F (t) f F

∞ ∞
−−

= =

∞ −

− −
=

− − − −

 
= 

 

  π π
  =

  π  

− −
= +

∑ ∑∫ ∫ ∫

∑∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ ∫ ∫ ( )
( )

( ) ( ) ( )

( ) ( )

1 1 1

1

k 2

F (u) y F (v) F (u )1 v
k 2 2

0 0 a a aF (u)

1 v k 1
2 2

0 0

uvdt ds du dv
(s)

2 uv k 2 F(x) 1 F(y) dx dy F(x) 1 F(y) dx dy du dv

1uv2 k (u) u, v du dv
v

− − −

−

−

−

−

 
 
  

 
= − + − 

  

 = γ + κ  

∫ ∫ ∫ ∫ ∫ ∫

∫ ∫

 

where 2 (u)γ  and ( )u, vκ  are given by (21) and (22), respectively. Similarly, we find that 
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 ( )
1 1

k 2 2 k 1
j j

j 1 0 0

p (1) u p (u)du k (u) u,1 u du
∞

− −

=

 = γ + κ ∑ ∫ ∫ . 

 By noting that 

 2
j

j 1

p (1) (1)
∞

=
= γ∑  

and that 

 
1

k 1
k

0

k u M(u)du 1 C− = −∫ , 

the proof is completed. 

  Q.E.D. 

 

For k 2= , Theorem 3 states that 2 2
2θ = α , where α2 is defined by 

(30)    ( ) ( ) ( ) ( )
1 v 1

22 2 2 2
2

0 0 0

4 1
2 u (u) v u, v du dv 1 G u (u) u,1 du 1 G (1)

4

     α = γ + κ − − γ + κ + − γ    µ   
∫ ∫ ∫ , 

is the asymptotic variance of the empirical Gini coefficient 
1

2 ˆn G where 2G C=  and 2
ˆ ˆG C= 23. 

For k 1= , Theorem 3 provides the asymptotic variance 2β of the empirical Bonferroni coefficient 

1

2
1

ˆn C . 

(31) ( ) ( ) ( ) ( )
1 v 1

22 2 2 2
1 12

0 0 0

1 1
2 (u) u, v du dv 2 1 C (u) u,1 du dv 1 C (1)

v

     β = γ + κ − − γ + κ + − γ    µ    
∫ ∫ ∫   

 The estimation of 2
kθ  is straightforward. As in Sections 2 and 3 we assume that the 

parametric form of F is not known. Thus, replacing F by the empirical distribution function Fn in 

expressions (21) and (22) for 2 (u)γ  and ( )u, vκ  and next by replacing kC , µ, 2 (u)γ  and ( )u, vκ  by 

their respective estimates in expression (25) for 2
kθ , we obtain a consistent nonparametric estimator for 

2
kθ .  

  

                                                      
23 An alternative version of (30) is given by Hoeffding (1948). 
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5. Conclusion 
This paper proposes to use a specific transformation of the Lorenz curve, called the scaled conditional 

mean curve, rather than the Lorenz curve as basis for choosing a few summary measures of inequality 

for empirical applications. The scaled conditional mean curve turns out to possess several attractive 

properties as an alternative interpretation of the information content of the Lorenz curve and 

furthermore proves to provide essential information on polarization in the population. The discussion 

in Section 3 demonstrates that the inequality measures C1, C2 and C3 define the first three moments of 

the scaled conditional mean curve. Thus, jointly they may give a good summarization of inequality in 

the scaled conditional mean curve and consequently act as primary quantities for measuring inequality 

in distributions of income. Moreover, since C2 is the Gini coefficient and C1 and C3 prove to 

supplement the Gini coefficient with regard to focus on the lower and the upper part of the income 

distribution, it should be justified to call the group formed by these three inequality measures the 

Gini's Nuclear Family. The paper also provides asymptotic distribution results for the empirical scaled 

conditional mean curve and the related family of empirical measures of inequality, including Gini’s 

nuclear family. 
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