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1 Introduction

The EM-algorithm introduced by Dempster, Laird and Rubin (1977) (hereafter DLR) is an

elegant and popular algorithm for �nding maximum likelihood estimates in missing data sit-

uations. However, in some of these situations , in particular those where the complete data

likelihood is complicated and must be maximized numerically, the EM may be less tractable.

This is because its implementation leads to nested iterations and thereby a possibly unstable

algorithm. To better handle such situations Meng and Rubin (1993) (hereafter MR) intro-

duced a closely related algorithm they called the ECM-algorithm. Here the M-step of the EM

is replaced by a sequence of conditional maximization (CM-) steps. The motivation being that

although the complete data likelihood itself may require numerical iteration, the maximization

over subvectors of the parameter vector are often, conditionally given the value of the other

parameters, in closed form. And even when this is not the case, reducing the dimension of the

numerical optimization, increases stability of the algorithm.

The ECM can in some situations lead to substantially simpler algorithms compared with

the EM. A question one might ask however, is how much this added simplicity and stability

has cost measured by a slower convergence rate of the algorithm. Obviously, the price will

vary across situations, and some times the ECM may even converge at a faster rate than EM,

see Meng (1994). Such situations are however, as MR point out, not typical in practice, but a

complete characterization of these seems di�cult.

There has been suggested a number of di�erent ways of speeding up the convergence of

the EM algorithm. A brief review of these is given in Meng and van Dyke (1997) where they

also propose another possible approach to this problem. Here, however, we discuss a way of

constructing the CM steps such that the resulting ECM algorithm converges at the same rate as

EM. The approach is motivated by the well known conjugate-directions algorithm for function

optimization, see Luenberger (1989) or Zangwill (1969). A special and important case of the

situation we discuss is when the parameters corresponding di�erent CM steps are orthogonal

(i.e their maximum likelihood estimators are asymptotically uncorrelated), here the ECM will

in large samples converge at the same rate as EM, and thus the added simplicity and stability

of ECM over EM is basically free of charge. Cox and Reid (1987) note, referring to complete

data situations, that orthogonal parameters may simplify the numerical maximization of the

likelihood.

The remainder of this paper is as follows. In section 2 the EM and ECM algorithms are

de�ned along with the measuring of convergence rate. In section 3 the main result is stated, and

examples are given in section 4. Section 5 discusses briey, through an example, the possible

implications our underlying theme has for the ECME algorithm, a close relative of the ECM.

Concluding remarks are given in the sixth and �nal section.

2 Background material

2.1 The EM and ECM algorithms

Missing data often complicates the likelihood function and makes it di�cult to manipulate

analytically. To see why, let YCOM = (YOBS ; YMIS) be the complete data, where YOBS denotes

the observed data and YMIS the missing data. Further let � 2 Rp be the parameter vector,

and f be the complete data density. The likelihood of the observed data is then:

LOBS(�) = log

Z
YMIS

f(YCOM ;�)dYMIS ;
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and it is this integrating out of the missing data that complicates LOBS. The ECM, and thus

the EM which is presented as a special case of the ECM, maximizes LOBS via the following

procedure.

The ECM generates a sequence of parameter values by, given �(0), iterating the steps:

E-step

Compute:

Q(�j�(t)) = E(LCOM (�)jYOBS ;�
(t)
) (1)

CM-steps

For each s = 1; ::; S �nd �(t+s=S) such that:

Q(�(t+s=S)j�(t)) = max�Q(�j�
(t)
) (2)

under the constraint gs(�) = gs(�
(t+(s�1)=S)

), where G = (gs(�); s = 1; ::S) are preselected

vector functions.

The parameter-sequence (�(t))10 generated by this algorithm has (under regularity conditions

see MR for the ECM, and DLR and Wu (1983) for the EM) the following two very appealing

properties:

1)

LOBS(�
(t+1)

) � LOBS(�
(t)
)

2)

lim
t!1

DLOBS(�
(t)
) = 0;

here D denotes the di�erential operator.

The EM comes about by choosing:

g(�) = a constant; (3)

and thus the one and only CM step consists in maximizing Q over the entire parameter space.

Besides (3) i.e the EM algorithm, the most frequently occurring choice of the G functions are:

gs(�) = (�1; ::; �s�1; �s+1; ::; �S) (4)

This implies that the s-th CM-step consists of maximizing the Q-function over the subvector

�s while holding the remaining elements of the parameter vector �xed. This subclass of the

ECM-algorithms is called, Meng and Rubin (1992), PECM-algorithm, with the P meaning

'partitioned'. Without missing data the ECM is a special case of the cyclic coordinate ascent

method for function maximization, see Zangwill (1969).

2.2 The rate of convergence

Here we follow the setup in Meng (1994). Any iterative estimation algorithm implicitly de�nes

a mapping 'M' from the parameter-space onto itself, such that M(�(t)) = �(t+1)
. SupposingM

is di�erentiable and that we are close enough to the limit point �� of (�(t))10 , we have, letting

DM() denote the Jacobian of the transformation M , that:

(�(t+1) � ��) = (�(t) � ��)DM(��);
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ignoring terms of higher order. The matrix DM(��) is often referred to as the matrix rate of

convergence.

The observed rate of convergence is, reasonably, de�ned as:

r = lim
t!1

k�(t+1) � ��k

k�(t) � ��k
;

which is (Meng (1994)) equal to the largest eigenvalue of DM(��). Note that a large rate

implies slow convergence. The speed of the algorithm is de�ned as s = 1� r.

DLR showed that for the mapping MEM de�ned by the EM:

DMEM(��) = IMIS(�
�)I�1COM (��) (5)

where

IMIS(�
�) = �

Z
(D�� log f(YMISjYOBS ;�

�))f(YMIS jYOBS ;�
�)dYMIS

and

ICOM(��) = �

Z
(D�� log f(YOBS ; YMIS;�

�))f(YMIS jYOBS;�
�)dYMIS (6)

Here D represents the di�erential operator as before,D� di�erentiation with respect to �, and

D�� = D�D�.

Meng (1994) showed that for the ECM-algorithm:

DMECM(��) = DMEM(��) + (Ip �DMEM (��))

SY
s=1

Ps; (7)

where

Ps = rs(r
T
s I
�1
COM

(��)rs)
�1rT

s I
�1
COM

(��); s = 1; ::; S (8)

with rs = Dgs(�
�).

3 Main result

In this section we examine ECM-algorithms where in each CM-step, say the s-th step following

the t-th E-step, one maximizes Q( j�(t)), de�ned in (1), over a set of vectors in the parameter

space, denote these by ds = (d
(1)
s : :: : d

(ms)
s ), where d

(i)
s i = 1; ::;ms are column vectors, that

are constructed to have the property:

dTi ICOM (��)dj = 0 i 6= j i; j 2 (1; ::; S) (9)

We say that such vectors are ICOM -orthogonal.

Now we proceed to show that an ECM-algorithm constructed in this manner will converge

at the same rate as EM. First some observations.

Observation 1 The span of ds and the span of the column vectors of rs (de�ned in (8)) are

orthogonal complements.
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Proof: The orthogonality of the two sets of vectors follows from the fact that gs(�) is held

�xed when we move along the vectors of ds. That the column vectors of rs span all vectors

orthogonal to ds is a consequence of the fact that if they didn't there would be vectors not

spanned by ds but that satis�ed gs(�), which would contradict that ds are the only directions

being searched over in the s-th CM-step.

Observation 2 The set of vectors ds and ICOMdi i 6= s span R
p.

Proof: The column vectors of ds are linear independent, and by construction orthogonal to

the vectors ICOMdi i 6= s, and therefore also linear independent to this set. The vectors ICOMdi

i 6= s are linear independent because the set di i 6= s is and ICOM is invertible, and thus we

have a set of p linear independent vectors which necessarily span R
p.

Observation 3 There exists an invertible matrix �s such that:

rs = ICOMDs�s; (10)

where Ds = (d1 : :: : ds�1 : ds+1 : :: : dS).

Proof: That the column vectors of rs and the column vectors of ICOMDs span the same space

is a consequence of observation 1 and 2. Thus there must exist an invertible matrix relating

the two sets of vectors, her denoted by �s.

Now it is shown that the matrix rate of convergence of an ECM-algorithm that has been

constructed as described in the beginning of this section, is identical to that of EM.

Proposition 1 If the vectors that are searched over in each CM-step are ICOM -orthogonal to

the search vectors in the other CM-steps then:

DM
ECM = DM

EM (11)

Proof: By observation 3 we have that:

rs = ICOMDs�s

Consider (8):

rT

s
I
�1

COM
rs = �

T

s
D
T

s
ICOMDs�s = �

T

s
�s;

assuming, without loss of generality, that the search vectors have been normalized and orthog-

onalized, so that DT

s
ICOMDs = I. Now:

rs(r
T

s
I
�1

COM
rs)

�1rT

s
= ICOMDs�s(�

T

s
�s)

�1
�
T

s
D
T

s
ICOM = ICOMDsD

T

s
ICOM ;

where the last equality follows from �s being invertible. Thus:

Ps = ICOMDsD
T

s
ICOMI

�1

COM
= ICOMDsD

T

s
:

And then:

SY

s=1

Ps =

SY

s=1

ICOMDsD
T

s
= ICOMD1(

S�1Y

s=1

D
T

s
ICOMDs+1)D

T

S
:
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Because of the ICOM -orthogonality of the search vectors corresponding di�erent CM-steps, we

have that:

S�1Y

s=1

DT
s ICOMDs+1 = 0;

which implies (11) through (7) .

Usually it is the case that we do not have any information about ICOM at the outset of the

estimation. Thus the search vectors cannot be determined once and for all at the start of the

algorithm. These vectors will need to be successively updated with each new element of the

parameter sequence generated by the iterative algorithm.

A convenient by-product of using an ECM algorithm as discussed above, is that the SECM

algorithm, the Supplemented-ECM algorithm (see Meng and Rubin (1992)), which uses the

matrix rate of convergence of the ECM to compute the observed information matrix, is simpli-

�ed. The SECM algorithm is the counterpart to the SEM algorithm introduced by Meng and

Rubin (1991). Meng and Rubin (1992) de�ne DMCM =
QS
s=1 Ps, where Ps is as in (8), and

derive the SECM-algorithm from the relation

IOBS = (I �DMECM)(I �DMCM )�1ICOM ;

where IOBS is the observed information matrix, and ICOM as de�ned earlier. However in

the situation discussed in Proposition 1 we have that: DMCM = 0, giving the mentioned

simpli�cation of the SECM.

Although we do not know ICOM , we do in some situations know something about the

structure of this matrix in large samples. For example, when some of the parameters are

asymptotically orthogonal, i.e the corresponding elements of the information matrix are zero.

This motivates the following proposition.

Proposition 2 If the vectors that are searched over in each CM-step are asymptotically ICOM -

orthogonal i.e:

dTj
1

n
I
(n)
COMdk !

P 0 j 6= k as n!1, (12)

where n denotes the number of observations, and I
(n)
COM the ICOM matrix with n observations

evaluated at the maximum likelihood estimate derived form these observations. Then:

kDMECM
(n) �DMEM

(n) k !
P 0 as n!1. (13)

Proof: The proof follows the same lines as the proof for Proposition 1.

The most important, from a practical point of view, case of asymptotical ICOM -orthogonality

occurs when 1
n
I
(n)
COM converges to a block-diagonal matrix. Since it is reasonable to expect that

1
n
I
(n)
COM approaches the expected information matrix in the complete data model, denoted by

i(�), the block-diagonality of the limit of 1
n
I
(n)

COM can be inferred from that of i(�), which

by de�nition means that the parameters corresponding di�erent blocks are orthogonal in the

complete data situation. In such cases it is natural to let each ds, for s = 1; ::; S, consist of the

subset of the standard basis vectors that span the rows corresponding the s-th block of i(�).

This is in other words the ECM algorithm that in each CM step maximizes the Q-function in

(1) over a subset of the parameter vector that is orthogonal, in the complete data situation,

to the parameters being held �xed. If 1
n
I
(n)
COM does not converge to a block diagonal matrix,
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then we shall see that in some situations it is possible to reparameterize the model such that

the reparameterized model does have this property.

Although I
(n)
COM

in (12) is not the observed information matrix in the complete data situ-

ation, but the expectation of this matrix, conditional on YOBS , it is reasonable to expect, as

pointed out above, that 1
n
I
(n)
COM

converges, in some sense, to i(�). Thus, under appropriate

conditions, the property dT
j
i(�)dk = 0 will imply (12). We now discuss briey conditions under

which this implication is true.

For example, by an application of the triangle inequality one can verify that the conditions:

1

n
D��LCOM(�n)!

L
1

lim
n!1

E(
1

n
D��LCOM (�)) = �i(�) as n!1, (14)

where (�n)
1

n=0 here is any sequence converging to the true parameter vector, here denoted by

�, and

jdTj
1

n
D20Q(�nj�n)dk � dTj

1

n
D20Q(�nj�)dkj !

P 0 as n!1, (15)

where DijQ(�j�) denotes that Q(�j�) has been di�erentiated i times with respect to the �rst

argument and j times with respect to the second argument, are su�cient for (12) provided

dT
j
i(�)dk = 0 j 6= k. The purpose of condition (14) is that it implies:

1

n
D20Q(�nj�)!

P
�i(�) as n!1, (16)

which sometimes is easier to verify directly.

As an example consider a (m; p) curved exponential family, then LCOM(�) may be written

mX

i=1

�i(�)ti(yCOM )� k(�1(�); ::; �m(�)) + h(yCOM ):

As is well known, see e.g Barndor�-Nielsen and Cox (1994) equation 2.120, 1
n
D��LCOM (�) has

the form

1

n

mX

i=1

(ti � �i)
@2�i

@�r@�s
� irs(�)

where �i = E�(Ti). This implies that the elements of 1
n
D20Q(�nj�) can be written

1

n

mX

i=1

[E�(TijYOBS)� �i(�n)]
@2�i

@�r@�s
� irs(�n); (17)

where the conditional expectation is not a function of �n. Since typically �i(�n) converges to

E�(Ti), the question of whether (16) holds therefore boils down to whether the conditional

expectations of Ti i = 1; ::;m converge to the unconditional as the number of observations

increases. In models with repeated sampling the conditional expectation can often be expressed

as a sum of terms depending on i. Hence due to the law of large numbers one can expect that the

search vectors, dj j = 1; ::; S, are asymptotic ICOM -orthogonal provided dT
j
i(�)dk = 0 j 6= k,

under fairly general mechanisms describing the relation between the complete and observed

data. In addition we see from (17) that condition (15) is satis�ed if for all i:

1

n
jE�n(TijYOBS)�E�(TijYOBS)j !

P 0 as n!1: (18)
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The underlying 'theme' of the EM and related algorithms is simplicity. Thus if one has

an ECM-algorithm where each CM-step has a closed form solution, but with a convergence

rate slower than that of EM, then it is not reasonable to re-construct the CM-steps to obtain

an ECM with a convergence rate approximately equal to that of EM, if the new CM-steps

are considerably more involved and require numerical techniques when executed. However it

may be the case that for one subset of the parameter-vector there exists closed form solutions,

when the other parameters are held �xed, but not closed form for the remaining set of the

parameter-vector. In this case it may be an idea to have one CM-step take care of the �rst

group, and then search in ICOM -orthogonal directions spanning the remaining set in the other

CM-steps. Thus one will have not lost the simpli�cation of the easy CM-steps, while at the

same time not sacri�cing convergence speed. A simple example of this case is given in Example

3 below.

4 Examples

Here three examples of the situation discussed in the previous section are given. Each example

illustrates the case when the parameters in di�erent CM-groups are orthogonal, and thus the

search vectors are, as pointed out earlier, the standard basis vectors or collections of these. This

is done to simplify the presentation, and because this case is the most important one in practice.

Example 1 sheds light on a well-known ECM example that is of great importance. Example

2 applies the ECM to a more recent time-series model, and discusses its performance. Exam-

ple 3 illustrates what gain there might be in basing an ECM-algorithm on ICOM -orthogonal

directions, as opposed to not doing so.

Example 1: A multivariate normal regression model with incomplete data.

MR use this example, among two others, to motivate the ECM. Suppose the complete data

consists of n independent observations from the k-dimensional model:

Yi � N(Xi�;�); (19)

where Xi is the design matrix (k � p) of the i-th observation, � a (p � 1) vector of unknown

regression coe�cients, and � a (k � k) unknown covariance matrix. MR point out that by

specifying di�erent structures on � and �, many important complete data models come out as

special cases of (19), such as general repeated measures, see Jennrich and Schluchter (1986),

and seemingly unrelated regressions, see Zellner (1962).

The maximum likelihood estimation of � = (�;�) is generally not in closed form, but

observing that if either the mean vector or the covariance matrix where known, closed form

solutions would exist, MR therefore de�ne the following ECM-algorithm (for simplicity � is

assumed unstructured):

E-step

Compute the conditional expectation of the complete data su�cient statistics, i.e.

E(YijYOBS ;�
(t);�(t)) and E(YiY

T

i
jYOBS ;�

(t);�(t)).

CM-steps

1:

�(t+1) = (

nX

i=1

XT

i (�
(t))�1Xi)

�1(

nX

i=1

XT

i (�
(t))�1Yi);
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2:

�(t+1) =
1

n

nX

i=1

(Yi �Xi�
(t+1))(Yi �Xi�

(t+1))T :

This is a considerably simpler algorithm than what an EM-algorithm applied to this model

would be. And the interesting fact here is that because � and � are orthogonal (see Barndor�-

Nielsen and Cox (1994) p.50), we have, by Proposition 2, that this added simplicity is in large

samples 'free of charge'. This was not noted by MR.

To see how this works in practice, we have simulated data from the following bivariate

version of (19):

(Yi1; Yi2)
T
� N(

�
�

�

�
;

�
�1 0

0 �2

�
):

Two sets of parameter values where used in the simulations. The �rst parameter set was � =

(�; �21 ; �
2
2) = (0; 1; 1), and the second parameter set was � = (0; 1; 1:25). Every Yij larger than

1 was censored. That dT1
1
n
I
(n)
COM

d2 !
P 0, where d1 = (1; 0; 0)T and d2 = [(0; 0; 1)T ; (0; 1; 0)T ],

follows from d
T
1 i(�)d2 = 0 and that 1

n
I
(n)
COM

!
P
i(�) which in this example follows from the

law of large numbers and the continuity of E(Yij jYij > 1;�) as a function of �, thus (13)

holds here. The EM and ECM were applied to each simulated data set. The �rst data set

had length 30, and the lengths were increased with increments of 60 to see what happens to

EjrECM � rEM j. (Each point on the following plot is the average of 20 values of the absolute

value of (rECM � rEM )).

n

diff

100 200 300 400 500

0.0
04

0.0
06

0.0
08

0.0
10

0.0
12

0.0
14

0.0
16

•

•

•

•
•

•

•
•

Figure 1: The �gure shows 1
20

P20
i=1 jr

(i)
ECM � r

(i)
EM j for increasing n. The solid line corresponds

to: �22 = 1, and the dotted line to: �22 = 1:25.

Note that the graph from the parameter set resulting in relatively more censored values, the

second set, converges quicker towards zero. This seems to be a general phenomenon, resulting

from the increased number of variables being replaced by their conditional expectations.

Example 2: A hidden Markov autoregressive time series model.

This model was introduced by Hamilton(1989) to model economic time series with piece-

wise constant mean and covariance-structures. Here we consider an AR(1) version of this

model, but the conclusion, regarding the structure and behavior of the ECM-algorithm, apply

equally well to the general model.
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Suppose the time series (Yj)
1

j=1 is generated by the model:

Yj � �sj = �(Yj�1 � �sj�1) + �j ;

where (sj)
1

j=1 is a two state Markov chain such that p(sj = i=sj�1 = i) = pi for i = 1; 2, and

(�j)
1

j=1 is a sequence of independent N(0; �) variables. In the following we have conditioned

on y1 and knowledge of s1, the unconditional likelihood is given in Hamilton (1993). In this

model the level of the series at time 'j' is �sj , and thus the state transitions of the Markov chain

show up as level jumps in the time series. The Markov chain itself is however not observed.

The general version of this model allows for higher order autoregressive behavior, that the

autoregressive parameters can also shift with the Markov chain, and that the Markov chain

can have more than 2 states with di�ering transition probabilities. For the remainder of this

example we assume that p1 = p2 = 0:5, � = 1 and �1 = 0 are known, so that the unknown

parameters are �2 and �, i.e � = (�2; �). Furthermore Y0 = 0 and s0 = 1

The maximum likelihood estimation for this model does not have closed form solutions, but

as with the preceeding example if the mean parameters are known we can analytically solve

for the autoregressive parameter, and vice versa. This leads to the following ECM-algorithm.

E-step

To �nd the Q(j�(t)) function here we need to calculate the so-called smoothed transition

probabilities (see Hamilton(1993)), i.e p(sj�1 = i; sj = kjYOBS ;�
(t)) = pj(i; k) for j = 1; ::; n

and k; i = 1; 2.

CM-steps

1:

�
(t+1)

2
=

Pn
j=2(yj � �(t)yj�1)(pj(2; 1) � �(t)pj(1; 2) + (1� �(t))pj(2; 2))
Pn

j=2((�
(t))2pj(1; 2) + pj(2; 1) + (1� �(t))2pj(2; 2))

;

2:

�(t+1) =

Pn
j=2

P
2

i;k=1(yj�1 � �
(t+1)
sj�1 )(yj � �

(t+1)
sj )pj(k; i)

Pn
j=2

P
2

i=1(yj�1 � �
(t+1)
sj�1 )

2pj(i)
:

A special characteristic of this algorithm is that the E-step requires considerably more

computer time than the two CM-steps. In an attempt to reduce the number of times the

E-step is evaluated, one might be lead to iterate the CM-steps several times in-between each E-

step, which also yields an ECM algorithm. While this strategy may work well in other models,

since � and � here are orthogonal, iterating the CM-steps will not lead to large increases in

Q(j�(t)), because in large samples executing the two CM-steps will in practice optimize this

function. It is straightforward to show the orthogonality of � and �. To verify condition (12)

in Proposition 2 here, i.e that 1

n
dT
1
I
(n)

COMd2 !
P 0, where d1 = (1; 0)T and d2 = (0; 1)T , is more

di�cult than in the previous example. Noting that this is a (8,2) curved exponential model

what has to be shown are conditions (17) and (18). However due to the complicated structure

of the smoothed transition probabilities, p(sj�1 = i; sj = kjYOBS ;�), this is not attempted

here, though it should be true under fairly weak assumptions.

To illustrate, we have simulated series under two di�erent values of � namely � = 0:7 and

� = �0:7 while �2 = 3 in each series. On each series the parameters were estimated with the

above algorithm, call it ECM1, and with an algorithm that iterates the CM-steps 50 times

in-between each E-step, denote this algorithm by ECM50. For each series length, 100 series
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were simulated, and the average value of jrECM1
� rECM50

j was calculated. The �rst series

length is n = 30 and n is then increased with increments of 60. In Figure 2 the results are

plotted.

We see that the negative correlation between successive values in the series makes EjrECM1
�

rECM50
j approach zero quicker, which is not surprising. Note also that the numerical value of

EjrECM1
� rECM50

j is small for all series lengths.

n

diff

100 200 300 400

0.0
0.0

2
0.0

4
0.0

6
0.0

8

•

•
•

•
• • • •

Figure 2: The �gure shows
1
100

P100
i=1 jr

(i)

ECM1
� r

(i)

ECM50
j for increasing n. The solid line corre-

sponds to: � = 0:7, and the dotted line to: � = �0:7.

Example 3: A gamma model with incomplete data.

If the parameters that naturally belong to di�erent CM-steps are not orthogonal, then it

may be possible to reparameterize the model to obtain this property (Barndor�-Nielsen and

Cox (1994) describe how to perform such an orthogonalization). We illustrate this idea in the

following example, and present some simulation results that suggest that this can be quite

e�ective.

This example was also used by MR to motivate the ECM-algorithm.

Here the complete data is a random sample from the gamma density:

f(y;�; �) =
y
��1

exp(�y=�)

���(�)
: (20)

The ECM-algorithm presented by MR is:

E-step

Compute zi = E(yijYOBS ;�
(t)
; �

(t)
) and log(zi) = E(log(yi)jYOBS ;�

(t)
; �

(t)
) for i = 1; ::; n.

CM-steps

1:

�
(t+1)

=

1
n

P
n

i=1 zi

�(t)
; (21)

2:

�
(t+1)

= 	
�1
(
1

n

nX

i=1

log(zi)� log(�
(t+1)

));

where 	(x) =
�0(x)

�(x)
. The second CM-step is solved e.g. by a 1-dim Newton-Raphson.

10



In dealing with complete data it is not di�cult to show that the large sample convergence

rate of the CM-algorithm, i.e. the ECM-algorithm without the E-step, is:

rCM �
1

�	0(�)
; (22)

This is a monotonically increasing function of � which indicates that for larger � values the

above ECM-algorithmmay converge substantially slower than the corresponding EM. For � = 2
1

�	0(�)
j�=2 = 0:76.

One way we can try to increase the speed of convergence of this algorithm, is to replace

the second CM-step in the above algorithm with a step that searches a maximum of Q(j�(t)),

� = (�; �) along the vector d2 = (a; 1) passing through the point (�(t+1); �(t)), where:

a =
�

@2

@�@�
Q(�j�)

@2

@2�
Q(�j�)

: (23)

The vector d2 is ICOM -orthogonal to the search vector in the �rst CM-step which is d1 = (1; 0).

This algorithm will converge by Proposition 1, at the rate of an EM-algorithm applied to this

model and, of course, the data set at hand. This can considerably increase in convergence speed,

as illustrated below. Thus we have constructed an algorithm that maintains the simplicity of

the �rst CM-step, and replaced the 1-dim numerical optimization of the second CM-step with

another 1-dim numerical optimization, thereby maintaining stability, however without loss of

convergence speed compared to EM.

In this model it is, however, also possible to orthogonalize the parameters. By keeping

�, we are lead to the new parameter � = �� which is orthogonal to �. The reparameterized

density is:

f(y;�; �) =
y
��1 exp(�y�=�)

(�=�)��(�)
: (24)

It turns out that not only is � orthogonal to �, the value of � that maximizes the likelihood

with respect to this parameter does not vary with �. The resulting ECM algorithm is therefore

also an EM algorithm in the sense that executing the two CM-steps maximizes Q(j�(t)), and

a trivial example of the result in Proposition 1 with d1 = (1; 0)T and d2 = (0; 1)T being the

ICOM -orthogonal search vectors.

E-step

(Same as before)

CM-steps

1)

�
(t+1) =

1

n

nX

i=1

zi;

2)

�
(t+1) is determined as the solution of:

1

n

nX

i=1

log(zi) + log(�) � � log(�(t+1))�
d

d�
�(�) = 0:

We have simulated some data-sets from this gamma model and applied both of the algorithms.

The number of simulated observations was in each case equal to 100, and every value larger
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than unity was censored. In Table 1 the results are shown. Note that we have only varied the

value of � bearing in mind (22), and �xated � = 1. Each entry in Table 1 is the average of 30

simulations.

Table 1: The table shows how convergence rates are e�ected by increases in �. r
(reg)
ECM

is the

rate of the ECM based on (20) , and r
(ortho)
ECM

is the rate of the ECM based on (24).

� 1 2 3 4

r
(reg)
ECM

.60 .79 .87 .92

r
(ortho)
ECM

.02 .07 .19 .43

The table shows clearly that the orthogonalization has speed up the algorithm. Note also that

since ECM (ortho) is also an EM algorithm, r
(ortho)
ECM

also gives the rates of the ECM where the

�rst CM-step is as in (21) and the second CM-step searches along d2 = (a; 1), with a same as

in (23), and the parameterization is as in (20).

5 Possible implications for ECME

Lui and Rubin (1994) introduced a related algorithm to the ECM, called the ECME algorithm.

Here the idea is to try to increase the speed of ECM by replacing some of the (typically

more di�cult and lower dimensional) CM-steps with steps that conditionally maximize LOBS .

They present 3 compelling examples where ECME considerably outperforms EM, and thus

presumably also ECM, both in convergence rate and number of iterations. There is however

reason to believe that in some situations the EM will still outperform the ECME. Example 3

in the previous section illustrates that if there is a considerable amount correlation between

the parameter estimators of parameters corresponding di�erent CM-steps of the ECM, this

algorithm can be considerably slower than the EM. Analogously one might expect that if the

parameters in the CM steps that conditionally maximize LOBS are strongly correlated to the

parameters in the other CM-steps then ECME may be slower than EM, at least when the

proportion of missing data is small. Let us illustrate this in the two-parameter situation.

Suppose the model at hand has the parameters � = (�1; �2), where �1 and �2 are both scalar.

Then it is not di�cult to show, using the results of Lui and Rubin (1994), that the rate of

ECME, rECME, when the Q-function, referring to (1), is maxized conditionally over �1 and

LOBS over �2, is:

rECME =
( @

2

@�1@�2
LOBS(�))

2

@2

@�
2

1

Q(�j�) @2

@�
2

2

LOBS(�)
+

@
2

@�
2

1

H(�j�)

@2

@�
2

1

Q(�j�)
; (25)

where Q(�j�) refers to (1) and H(�j�) = Q(�j�) � LOBS(�). Thus if j @
2

@�1@�2
LOBS(�)j is

relatively large, ECME might slow. We now illustrate the above ideas on data generated from

a negative binomial model. The example will show that ECME can be considerably slower

than EM, but after orthogonalizing the parameters in the di�erent CM steps, as in Example

3, ECME is made considerably faster than it was and appreciably so compared to EM. We

orthogonalize the parameters with respect to LCOM , which does not imply that the parameters

are orthogonal with respect to LOBS, but it is reasonable that this reduces j
@
2

@�1@�2
LOBS(�)j,

and thus also (25).
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Example 4: A negative binomial model with censored data.

Here the independent observations, say Yi for i = 1; ::; n, are generated from the following

negative binomial distribution with density:

�(y + k)

y!�(k)

�y

(1 + �)y+k
y = 0; 1; 2::: (26)

In this model the maximum likelihood estimators of the parameters k and � are considerably

correlated. Introducing the new parameter � = k�, gives a density of the form:

�(y + k)

y!�(k)

�ykk

(k + �)y+k
y = 0; 1; 2:::; (27)

but now k and � are orthogonal.

In the following we have simulated data sets from the above distribution and censored

every variate larger than a constant c. We then applied to these data sets an EM-algorithm,

an ECME-algorithm, call it ECME1, based on the model formulation in (26), and an ECME-

algorithm, call it ECME2, based on the model formulation in (27). The ECME1 maximizes

at the t-th iteration Q(�j�(t)), referring to (1), over � to obtain �(t+1) conditionally on k = k(t),

and then maximizes LOBS(�) over k to �nd k(t+1) conditionally on � = �(t+1). The ECME2

does the same as ECME1, but now with � replaced by �. The EM is by virtue of (1) and

(3) already de�ned. One important note concerning the implementation of the EM is that the

conditional expectations are not all in closed form. We can simplify, using properties of the

gamma function:

�(y + k)

y!�(k)
=

y�1Y

j=0

(k + j):

However evaluating E(log(
QY�1

j=0 (k+ j))jy > c), and the derivatives of this expression, must be

done numerically not only every E-step, but also in every iteration of the numerical optimizing

routine in the M-step, where we used a Newton-Raphson. This is a serious drawback and a

strong argument for using the ECME-algorithms that circumvent this problem since it is not

necessary to evaluate E(log(
QY�1

j=0 (k + j))jy > c) in order to maximize Q(�j�(t)) over �. We

do however have that:

E(Y jY > c; �; k) =

� �
Pc�1

y=0(
k
�
)k( 1

k

�
+1

)y+k
Qy�1

j=0(j + k)

1� F (Y � c; �; k)
;

using the fact that the negative binomial is a mixture of a gamma and a Poisson distribution

and changing the orders of summation and integration.

In the following table we show the rates of the 3 algorithms when applied to 4 simulated

data sets, each of length 1000 and generated under a di�erent value of �. For each sample

there has been used a di�erent value of � in the parameterization in (26), as indicated in the

table, while keeping k = 10. Every generated variate larger than c = 5 has been censored.
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Table 2: The table shows the rates of convergence of di�erent algorithms on negative binomial

model.

� rEM rECME1
rECME2

.35 .38 .99 .11

.45 .54 .99 .25

.55 .70 .99 .48

.65 .82 .99 .63

The table shows that the ECME1 algorithm is very slow, considerably slower than EM , while

this di�erence in rate decreases when the amount of censored variates increases, corresponding

increases in �. The ECME2 algorithm converges however appreciably faster than EM .

6 Concluding remarks

We have shown that it is possible, however not always desirable, to construct an ECM-algorithm

to converge at the same or approximately the same rate as EM. This gave insight into the per-

formance of the ECM in some practically useful models, and suggested possible ways to speed

up its convergence. It also illustrated the importance of parameter orthogonality for computa-

tional purposes, as noted by Cox and Reid (1987). The third example demonstrated that an

algorithm based on what we called ICOM -orthogonal search vectors can lead to substantially

quicker convergence than an ECM not constructed in this manner. The advantages of an ECM

with ICOM -orthogonal search directions over that of an EM algorithm, assuming that this algo-

rithm does not have a closed form M-step, is that the dimension of the numerical optimization

is reduced, thus increasing the stability of the algorithm without sacri�cing convergence speed,

at least in the quadratic region close to the maximal point . The disadvantage is that an ECM

thusly constructed may be more tedious to implement. The possible advantages of the type

of ECM we discuss , is that it may converge at a quicker rate, than in other implementations,

however the disadvantages may be that it requires more e�ort to implement and that the

CM-steps here may take longer time to evaluate. The importance of reducing the correlation

between the parameters in the CM-steps of an ECME-algorithm was also illustrated.
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