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Introduction

Obesity in school children was the subject in the Muscatine Coronary Risk Factor Study (Lauer 1975;

Louisiana State University Medical Center 1978; Woolson and Clarke 1984). At each examination,

a child is classified as either obese or not obese based on measurements of weight and height. The

collected data are both longitudinal (i.e. each experimental unit is followed biennially over an eligible

period of time) and cross-sectional (i.e. groups of both sexes and different initial ages are included).

Table 1 lists the data from the last three examinations  made in 1977, 1979 and 1981 which consist of 5

age groups, i.e. 5-7, 7-9, 9-11, 11-13 and 13-15, in both sexes. In this way each sex-age group constitute

a three-wave binary panel subject to non-response, where e.g. B1 denotes the first age group (5-7) of

boys, and G4 denotes the fourth age group (11-13) of girls, and so on. Meanwhile, denote by "N"

not obese, by "0" obese and by "M" missing. For reasons which are not clear to us, no counts of the

all-missing cell were available; and we shall treat them as if this has occurred out of randomness.

We shall not consider measurement error, i.e. misclassification of obesity, in the present study since

it is believed to be of minimal effect given the fact that the classification does not depend on the wills

of the participants and the examiners. Numerically, at each wave i, we denote by xi = 1 that a child

is obese and by xi = —1 the opposite, and we denote by ri = 1 that xi is available and by ri = 0 the

opposite. The observation Yi is therefore given as

(1) Yi = XiRi,

where yi = 0 denotes non-response ("M"), yi = 1 denotes obese ("0") an d yi = —1 denotes not obese

("N"). Several analyses of either the entire data set in Table 1 or some of its subsets can be found in

the literature. Whereas Woolson and Clarke (1984), Lipsitz, Laird, and Harrington (1994), Fitzmaurice,

Laird, and Lipsitz (1994) and Azzalini (1974) have proceeded under the assumption of ignorable non-

response, Park and Davis (1993), Conaway (1994) and Baker (1995) have all found evidence of the

opposite.

A common objective of these analyses has been the effect of age (denoted by A) and sex (denoted

by S) on the marginal probabilities of obesity, in which respect Baker (1995) presented a model where

these probabilities depend on the covariates via a logistic regression model. The methodology is related

to that of Diggle and Kenward (1994), Molenberghs, Kenward, and Lesaffre (1997) and Fitzmaurice,

Laird, and Zahner (1996) except that Baker (1995) allowed for more causal patterns of non-response

than mere dropouts. More explicitly, for each m-wave panelist, the joint probability of x = (x1, ..., xm )
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Table 1: Muscatine Coronary Risk Factor Study 1977 - 1981 

Panels

Data Bl B2 B3 B4 B5 G1 G2 G3 G4 G5

NNN	 90 150 152 119 101	 75 154 148 129 91

NNO	 9 15 11	 7	 4	 8 14	 6	 8	 9

NON	 3	 8	 8	 8	 2	 2 13 10	 7 5

NO0	 7	 8 10	 3	 7	 4 19	 8	 9	 3

ONN	 0	 8	 7 13	 8	 2	 2 12	 6 6

ONO	 1	 9	 7	 4	 0	 2	 6	 0	 2 0

OON	 1	 7	 9 11	 6	 1	 6	 8	 7	 6

000	 8 20 25 16 15	 8 21 27 14 15

NNM 16 38 48 42 82 20 25 36 36 83

NOM	 5	 3	 6	 4	 9	 0	 3	 0	 9 15

ONM	 0	 1	 2	 4	 8	 0	 1	 7	 4 6

00M	 0 11	 14	 13 12	 4 11	 17	 13 23

NMN	 9 16 13 14	 6	 7 16	 8 31	 5

NMO	 3	 6	 5	 2	 1	 2	 3	 1	 4 0

OMN	 0	 1	 0	 1	 0	 0	 0	 1	 2 0

OMO	 0	 3	 3	 4	 1	 1	 4	 4	 6 1

NMM 32 45 59 82 95 23 47 53 58 89

OMM	 5	 7 17 24 23	 5	 7 16 37 32

MNN 129 42 36 18 13 109 47 39 19 11

MNO 18	 2	 5	 3	 1 22	 4	 6	 1	 1

MON	 6	 3	 4	 3	 2	 7	 1	 7	 2 2

MOO	 13 13	 3	 1	 2 24	 8 13	 2	 3

MNM 33 33 31 23 34 27 23 25 21 43

MOM 11	 4	 9	 6 12	 5	 5	 9	 1 15

MMN 70 55 40 37 15 65 39 23 23 14

MMO 24 14	 9 14	 3 19 13	 8 10 5
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and r = (ri , rm ) is factorized into

(2) p(x , rib) = p(xlb)p(rix,b)

where b denotes some known covariates. A submodel on p(r lx , b) specifies the non-response mechanism

which is nonignorable unless p(rix , b) = p(r1b). An "outcome model", denoted by Mo, accounts for

the marginal probabilities p(xilb) for 1 < i < m—a logistic regression in this case. In addition,

an "association model", denoted by MA, is introduced to allow for "temporal associations" among the

components of x. The probability p(x1b) is in this way specified as a function of these two models, i.e.

P(x ..., xm lb) = g (Mo , MA); and there are a number of parameterisations, i.e. g(.), through which the

marginal outcome model can be combined with the association model — see e.g. the relevant references

in Baker (1995).

Despite some inconvenience in presentation and possible difficulty in computation as pointed out by

Baker (1995), this modelling approach seems natural for multivariate data typical of the analysis of con-

tingency tables, or longitudinal studies using other designs than the panel. In contrast to such symmetric

data, a noticable feature of the panel design is that the data and our interest are often asymmetric in

the sense that, besides the marginal probabilities p(xilb), we are primarily concerned with the transition

probabilities p(xilxi, xi—i) instead of, say, Coy (xi, xj_i ). This is indeed one of the reasons why

panel designs are indispensable for studies on inter-strata flows within the population, since the data

collected are able to provide evidence of change on an individual basis, which stands in contrast to other

designs for repeated surveys where different samples are taken on each occasion as e.g. in a trend survey.

Given non-response, it is natural from such an asymmetric point of view to model the panel data

in terms of a more detailed factorized likelihood. For instance, the two factors of (2) can be further

factorized into

(3) P(xlb) = P(xilb)P(x2Ixi,b) • • P(xmixi xm—i,b)

and, similarly,

(4) P(rix,b) = b)P(r2 b) • Armin,

which is reasonable if the previous response (or non-response) pattern is helpful in "explaining" the

response (or non-response) behaviour which follows. Notice that all the factors are conditional proba-

bilities of a single variable here, since only one variable is interested at each wave both in (3) and (4).

Moreover, (3) and (4) define a complete dependence structure in the sense that each variable is "ex-

plained" by all the variables which so far have been "explained". Reductions in the complete structure
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can be achieved if some of the conditioning variables are ruled out from the factors, which amounts to

introducing certain conditional independence. For instance, simplifying p(x3Ixi, x2, b) to p(x31x2, b) in

(3) implies that X3 is assumed to be independent of X1 conditional to x2.

We outline the basic approach of synthetic graphical modelling in Section 2. For the present binary

panel data, we shall concentrate on the chained logistic regression models as a special case. In section 3

we study the various modelling aspects w.r.t. the effect of age and sex on obesity among school children.

Section 4 contains a discussion on sensitivity analysis, followed by some concluding remarks.

2 Synthetic graphical modelling

2.1 Directed graphs for asymmetric data
The data from each panelist in Table 1 consist of X = (xi, x2, x3) and R = (ri, r2, r3), in addi-

tion to known konstants A = (ai, a2 , a3) and S = s . The asymmetric dependence structure among

these variables and constants implied by (3) and (4), either in their complete or reduced forms, can be

summarized by a directed graph, acyclic to be sure. Indeed, Wermuth and Lauritzen (1983) named a

factorization in the form of (3) and (4) "recursive" due to the a priori ordering among the variables

induced by it. Synthetic graphical modelling thus employs the graphical techniques for the (conditional)

dependence structure among the data developed in the theory of graphical models (Lauritzen 1996; Cox

and Wermuth 1996).

We shall briefly go through the concepts relevant for the present analysis. Consider for instance the

following two factoriztions of p(x , ria, s), i.e.

P(x, s) = p(x0p(x2Ixi)P(x3Ixi, x2)P(rilxi)P(r21x2, ri)/3 (r31x3, r2)

P(x, s) = P(xi s)P(x2Ixi, 4(x3Ixi, x2, a, s)P(ri lxi)P(r2lx2, ri)P(r31x3, r2)-

The dependence structure implied by the two differs in that the former assumes that (i) (X, R) are inde-

pendent of (a, s), and (ii) R3 is independent of R1 conditional to (r2, x3). The graphical representation

of these two factorizations are, respectively, graph dia in Figure 1.a and Gib in Figure 1.b.

	(a)	 R1	 R2	 R3	 (b)	 Ri

1 1 1
X1	 X2	 X3	 X1

	J
(A&S)

Figure 1. Two graphs for the three-wave non-response panel. 

R2 R3  

6



(a)	 V1
	 (b)	 V1

V2
	

V3	 V2	 V3

Formally, let V contain all the variables and constants involved in a factorization of the joint proba-

bility of the data. There exists an arrow, in the corresponding directed graph, pointing from Vi to Vj if

and only if Vi is explanatory for Vj, i.e. Vi is one of the conditioning variables/constants for the condi-

tional probability of Vj. Together these define the corresponding directed graph, denoted by -6' = ( v, E)

where E is the set of arrows. In standard graph theory, V is the set of vertices. In particular, a vertex

is framed here if it corresponds to some known constant of the model; and no arrow exists between any

two framed vertices by stipulation. Hence (A, S) is framed in Figure 1.

Graphical theory generalizes Markov chains to Markov fields. For instance, if two vertices Vi and Vj

are separated by a subset Vs c V, then Vi is independent of Vi conditional to Vs, where Vs separates

Vj from Vi if to "travel" from Vi to Vi by following the arrows necessarily passes some vertices in Vs.

Thus, while (R2, X3) separates R3 from X1 in dia , they do not in - R1 is needed in addition.

One advantage of the graphical techniques which is particularly useful for us here, lies in their flexi-

bility in isolating the various aspects of the dependence structure among the data by means of the induced

subgraphs. Formally, a subgraph Ös = (vs , Es) of d induced by Vs C V has Vs as its vertex set and,

for any Vi and Vi from Vs, (Vi,Vj) E Es if and only if (Vi, Vi ) E E. It follows, among other things, that

Vi and Vj are independent conditional to some subset of V in d- if and only if they exists some subset of

Vs, possibly empty, conditioned on which Vi and Vj are independent in ds .

Inspection of (3) and (4) shows that (R1, R2, R3) conditional to (x, b) have the same recursive order

as that of (X1, X2, X3) conditional b. This means that the explanatory structure among the present

(R, X, A, S) can be elaborated in terms (i) that among {li1, R2, R3} and {X1, X2, X3 } with suitable

conditioning, and (ii) the way X is joined to (A, S) and R to (X, A, S). Figure 2 contains some possible

subgraphs for R or X. Under suitable conditioning, the relevant variables are independent of each other

in d2a , they form a Markov chain in d2b, whereas d2, depicts the complete structure.

Figure 2. Some subgraphs induced by R or X.

For a graphical representation of, say, the way in which R is joined to X, we slightly extend notion

of subgraphs so that they can also be induced by disjoint subsets of V. Formally, for any two disjoint

subsets, say, R and X of V, an arrow (Vi, Vj) E E belongs to the subgraph induced by (R, X) if and

only if (i) Vi E R and Vi E X, or (ii) V E X and Vi E R. The asymmetry between X and R allows

only case (ii) here; and Figure 3 contains some subgraphs induced by R and X.
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R2	 R3 	R1	 R2

1 / A /
X2 X3

1x1 3
X2

(a)
	

(b)

R1	 R2	 R3

Xi	 X2	 X3

(c)
Figure 3. Some subgraphs induced by R and X.

Directed graphs for (R, X, A, S) can thus be generated by putting together the subgraphs induced by R,

X, X and (A, S), and R and (X, A, S).

2.2 Chained logistic regression

Synthetic graphical modelling deviates from the graphical models once the corresponding graph has

been constructed. While the graphical models are uniquely determined by their graphs, we allow for

more detailed modelling of each factor. In particular, conditional GLMs (McCullagh and Neider 1989)

can be introduced recursively, whose covariates are generally given as a vector-valued function of the

corresponding explanatory variables and constants. We call this function a synthesizer; hence the term

"synthetic graphical modelling".

In (3) and (4), a conditional logistic regression can be introduced for each factor now that all the

variables involved are binary. Thus, while the dependence structure among the data is represented by

the corresponding directed graph, the explanatory details are spelled in terms of the synthesizers. For-

mally, let V1, ,Vk be explanatory for binary Vo, the synthesizer for Vo is then a vector-valued function

(vi , vk) such that p = P[Vo = ..., 74] is given as

(5) logit p = log p — log(1 — p) = Om) -I- 4 13.

In particular, the identity synthesizer is given as (vi, vk)T . Whereas a synthesizer is said to be satu-

rated w.r.t. a set of binary variables Vs C {v1, ..., vk } if for any nonempty subset 17,, of Vs, Hy, Ev. vi

is an element of {cy() (v 1 , ..., vk)}. This follows once we notice that Vs has 2I vs I — 1 nonempty subsets

and the same number of not-all-zero configurations. Thus, a synthesizer is saturated ws.t. binary vi

if vi E Icy° (vi, vk)}, it is saturated w.r.t. binary {vi, v2}  if {Vi, v2 , v1v2} C {c 0 (Vi, vk)}, and

so on. Notice that, in the logistic regression context, the (0, *specification of the variables is more

convenient than the (-1, *specification in (1) and will be adopted throughout the sequels.

Synthetic graphical modelling has thus led us to a family of chained logistic regression models,

which are suitable for the present binary panel data with an asymmetric dependence structure. Suppose

generic parameter ß and variables (Z1 , ..., Zn,), where some of the components of /3 may be common
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to several components of Z. Given non-response, not all the data are observed, and the m.l.e. ,T3 can be

obtained using the EM algorithm. The E-step calculates the conditional expectations of the unobserved

covariates of the GLMs. The M-step then solves the likelihood equation derived from the complete

data, using e.g. the Fisher-scoring method which here coincides with the Newton-Raphson algorithm.

For the logistic regression of Z, let ei be the coefficient-vector of ß conditional to (zi, zi_ 1 ), where

cii 	0 unless f3j is a parameter for Z. Denote by ni the corresponding conditional linear predictor,

i.e. ni = cß. The complete log-likelihood on z is given as l(ß; z) =	 + log(1 — pi)], where

pi = P[Zi = ljzi , zi_ 1 ]. We have, for any f3i and Ok,

	pica ; zv a fij Ecii (zi — pi)	 02/(3; z)/a0jafik — 	 ciicikpi(1 —pi).

Given independent sample identically distributed as Z, and some starting value Om , the Newton-

Raphson algorithm updates, at the r-th step,

ri a2 1 \ _ 1( al \i

	

=	 ky4-110=009-

Convergence is rarely a problem with this type of model and data.

3 The effect of age and sex

3.1 Modelling the age effect

We investigate first the effect of age on the obesity of school children, separately for each sex. The

vertex set of the model graphs is then VA = VMS} = {X1, X2, X3, R1, R2, R3, ai, a2, a3} . For the

dependence structure among VA, we assume that (i) Xi does not depend on ai for j i, and (ii) R is

independent of age conditional to X, so that the explanatory structure of a model on the effect of age is,

possibly a reduction, of the form

(6)	 P(x, rla) = AxilaiWx2la2, xi)P(x3la3, xi, x2)p(rix),

and R is separated from (al, a2, a3) by X in the model graph. Figure 4 contains some of the explanatory

structures allowed by (6). Notice how they are put together using the subgraphs from Figure 2 and 3 as

explained before.
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(b) (c)

-)/
R2	 R3

----N- X2	 X3

	J

Ri

(a)

Figure 4. Some graphs involving the age effect for the three-wave non-response panel.

To set up the conditional logistic regressions, we set for simplicity the natural age of all children

from a two-year age-group at the midpoint of that two-year interval, i.e. 6 for 5-7 age-group, 8 for 7-9

age-group, and so on. Meanwhile, denote by ci(ai, x) the synthesizer for Xi where 1 < i < 3. To

specify the marginal effect of age, we consider synthesizers of the form ci(ai, x)T = {hi (ai), (x)T1.

In other words, let pi = P[Xi = llai, x], the conditional logistic regression for Xi under model (6) is of

the form

(7) logit pi = 00 + hi (ai)f3h + (X)T Og„

where the parameters may vary from one panel to another, and (f30, Oh) are constants of i within each

panel. Notice that the contribution to the linear predictor for Xi from Age is thus given as 00 -I- hi (ai),8h.

In particular, within each panel, the identity hi (ai) = ai is equivalent to hi (ai) = i — 1, in which case

the age effect simplifies to ,80 (i - 1)0h. Meanwhile, we have gi (x) = (6 be default, and g2(x) = xi

unless X2 is independent of Xi. Whereas g3 (x) = x2 if X3 is independent of X1 given x2; otherwise,

g3 (x) = (x1, x2) or g3 (x) = (xi, x2, x1x2), of which the latter being the saturated case.

The synthesizers for (R1, R2, R3) are rather similar if we leave out the interaction between X and

R. That is, denote by qi the conditional probability of response at the ith wave, we have

(8) logit qj = a0 + ki(x) T aki + ti (r)Tati

where ti(r) is similar to gi(x) in (7). The simplest choice for k(x) is to let k(x) = xi, in which case

Ri is independent Xj conditional to Xi and Ri for j i, as in Figure 4.

3.2 Age effects within each panel
Various chained logistic regression models have been fitted separately to all the 10 panels of Table

E2i_s1, where the maximum attainable log-likelihood for each panel is given as /(y; y)	 yi log yi —

10



n log n, with yi being the counts of the 26 cells in each panel and n = Ei yi the size of panel. To

summarize the results in words, we note:

1. For all the panels except G3, d2, as the subgraph induced by R was found to be necessary for a

reasonable fit, together with saturated t2(r) = r1 and t3 (r) = (r1 , r2, rir2). As a matter of fact,

other things being the same, the inclusion of r1r2 as a covariate for R3 typically resulted into tens

of decrement in the deviance at the cost of one degree of freedom.

2. The subgraph induced by X varied between d 2b and d2c. While g3(x) = (x1, x2, x1x2) was

sometimes necessary, some panels admitted even (g2 , g3) = (xi, x2) and 092 = 093 , in which

case (X1, X2, X3) formed a Markov chain with identical transition probability conditional to

(ai, a2, a3).

3. Age effect in the form of (7) with hi (ai) i — 1 yielded reasonable fit in all the cases except for

panel Gl.

4. Subgraph d3a induced by (R, X) was found to yield reasonable fit in all cases except for panel

G3, in which case (R1, R2, R3) depended on (X1, X2, X3) in the same way as (X1, X2, X3) on

(a1, a2, a3).

For the numerical results, we denote by Mla the model with graph d4a and by Mo that of d4b. For

both models, we use hi(ai) = i — 1, and k(x) = xi, and saturated ti(r). While (g2, g3) = (xi, x2)

and 1392 = 093 in M4a , we set g2(x) x i and g3(x) = (xi, x2, x1x2) in Mo. To check on the age

effect, we also fitted the model, denoted by M4 c , where 00 h(a)ßh in (7) was substituted with qi.

Altogether, p(xla) has 7 parameters under M4c which is saturated for binary (X1, X2, X3); this is one

more in number than Mo and four more in number than M4a . The three models are the same w.r.t.

p(rjx).

The fitted log-likelihood, denoted by Î(M; y), for all the 10 panels are given in Table 2, together

with the respective /(y, y). Compare M4b with M4c , we find that only the deviance on G1 has decreased

significantly from the former to the latter, i.e. 4.5 on one degree of freedom. This of course does

not necessarily mean that there is no age effect here. Indeed, we obtain ij = (-1.68, —2.75, —2.00),

which might well be captured by a quadratic q(i) requiring 3 parameters just like (7h, 772, 773). On the

other hand, M-4a appears poor-fitting for several panels compared Mo. There are clearly a number of

compromises between the two. However, we have omitted the details of such refinements now that they

do not require theoretical considerations other than those exemplified above.
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Table 2: Model fitting for the Muscatine Coronary Risk Factor Study data

Log-likelihood Degree of  

Bl	 B2	 B3	 B4	 B5
	

G1	 G2	 G3	 G4	 G5 Deviance Freedom

1(Y;
	 -1165.6 -1346.6 -1381.5 -1227.9 -1107.1 -1071.4 -1243.5 -1266.9 -1189.1 -1194.1

i(M4a; Y)

i(m4c; y)

j(m4b; Y)

; Y)

i(M4b,2 ; Y)

i(M4b,3; Y )

i(m4b,4; y)

i(M4b,5; Y)

-1175.3

-1171.5

-1172.2

-1176.8

-1178.2

-1180.3

-1180.6

-1180.8

-1367.4

-1354.9

-1355.8

-1360.7

-1355.8

-1356.3

-1356.6

-1356.6

-1396.9

-1387.0

-1387.1

-1391.3

-1387.1

-1387.9

-1387.8

-1387.8

-1238.8

-1232.3

-1233.2

-1243.6

-1234.2

-1237.9

-1238.3

-1238.4

-1111.5

-1109.6

-1109.6

-1119.9

-1111.3

-1115.9

-1115.8

-1116.1

-1080.8

-1075.7

-1078.0

-1080.9

-1079.3

-1081.8

-1081.4

-1081.5

-1262.3

-1249.8

-1250.6

-1253.2

-1252.3

-1256.2'

-1256.1

-1256.2

-1283.4

-1278.7

-1279.7

-1299.4

-1283.0

-1288.3

-1288.9

-1288.9

-1196.7

-1193.0

-1193.8

-1198.7

-1193.9

-1194.0

-1194.2

-1194.2

-1199.2

-1197.0

-1197.4

-1202.7

-1197.4

-1200.2

-1200.7

-1200.9

237.4

111.6

127.2

267.3

157.6

210.3

213.5

215.3

120

80

90

106

98

130

134

139



Parameter ak 1fl (8) where k(x) = xi accounts for the difference in log-odds of response due to the

obesity state of a child at the ith wave, whose estimates under M4b are mostly negative - especially for

R2 and R3 . A negative value has the interpretation that a child who is not obese is more likely to respond

than another who is obese. Similary, parameters /3 account for the effects of the earlier non-response

behaviour. However, we shall not go into the relevant details here due to the abnormal absence of the

all-missing groups. From experiences as well as an inspection of the data in Table  i , we tend to believe

that these have been censored after the data were collected, and the assumption that they have occurred

out of randomness as in the previous analysis is likely not to be correct.

3.3 Age effects on boys and girls

The data of Table i overlap each other in the sense that independent samples of the same age are

available from different times. For instance, the third wave of panel G2 (age 7-9 in 1977), the second

wave of panel G3 (age 9-1 1 in 1977) and the first wave of panel G4 (age i 1-13 in 1977) are all samples

of age-12 school girls, and can be considered to be independent of each other. In extending the age-

effect model from each independent panel to the consecutive panels of the same sex, we must take into

consideration the cohort effect among the panels. In particular, we refer to the assumption that (ßo, ßh)

in (7) are identical for all the consecutive panels ofthe same sex as the assumption of constant age effect.

This can be relaxed so that only ßh remains the same, which we refer to as the assumption of minimal

common age effect.

For the five consecutive panels of each sex, identity h(a) = a = 6 + 2(i + j - 2) at the ith wave

of the jth panel (or cohort) is equivalent to  i + j - 2, in which case (7) is modified into

(9) logit Pij /30,j + (i + _ 2)ßh,j + gi (x)Tßgj ‚i i 5; i ^ 3 1 ^ j :; 5,

where Pij refers to the jth panel at its ith wave. Notice that the cohort effect here is only formulated for

p(xa); we shall treat the cohort effect in p(rx) as a nuisance, and allow it to vary freely between the

panels.

Allowing also /3j, of (9) to vary, we found that the assumption of constant age effect had to be

rejected in favour of the minimal common age effect even under such relaxed settings. Indeed, the es-

timated /3h under the former is 0.05 for girls and 0.00 for boys; none of which is significant. More

explicitly, denote by M4b,1 the model with the constant age effect, which differs from  M4b only in that

(ßo,, ßh,j) = (/3o, /3h) for all the panels of the same sex. Denote similarly by  M4b,2 the model with the

minimal common age effect, where only ßh,j is held constant. The fitted log-likelihoods for all the 10
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panels under both models are given in Table 2. Notice that the independence among the panels implies

that the log-likelihood on boys, or girls, is simply the sum of those on each panel. Such a splitting pro-

vides a clear view over the composition of the overall deviance. For instance, inspections of i(M4b,2i y)

show that the largest contribution towards the overall deviance for boys came from Bl. Indeed, applying

M4b,2 to B2 - B4 alone yielded fitted log-likelihoods (-1356.2, —1387.6, —1233.7, —1110.5), which

are about the same as those in Table 2.

3.4 The effect of sex

Take first pairs of panels of the same age, i.e. (B 1,G1) and (B2,G2) and so on. In general terms, the

sex effect means that the joint probability p(x,ria, Boy) differs from p(x, ria, Girl). For the depen-

dence structure, again we assume that R is independent of (A, S) conditional to x. The model admits

the factorization, possibly in a reduced form,

(10) P(x, ria, s) = p(xi ai)P(x21s, a2, x1)P(x3is, a3, x1, x2)Arlx).

Correspondingly, we modify the model graph by adding to it a framed vertex S which points to X1, X2

and X3. Regarding the cohort effect in p(r1x) and f3  (7) as nuisance, the effect of sex on a pair of

panels of the same age group is trivial if we allow both /30 and Oh to differ from boys to girls. Whereas

fixing 00 and allowing Oh to differ implies that pi = P[Xi = 1] is identical for boys and girls to begin

with, which seems liable to a priori objections.

To incorporate the effect of sex into a model for all the data in Table 1, we modify (9) into

(11) logit piis = 00,j,8 	 sßs	 j — 2)1311 ,j,s gi(X)T Ogi,j,s7

where (3 7 13h,j,s Ogi,j, ․) are all sex-specific. We shall keep regarding the cohort effect in p(rix)

as nuisance. Meanwhile, we recover M4b ,2 by setting (3,h,j,s7 Os) 	 (16h,s713). Denote therefore by

M4b,3 the model derived from M4b ,2 by setting (f3h,j ,s ,	 (i3h, f3gi ,․ ), and by M4b,4 that where

Ogi,j,․) = (13h, ßg ) for all the 10 panels. Whereas to further restrict the base-line effect, i.e.

00,j,s , we set 00,j,s = 00,j in addition, denoted by M_40,5. Notice that under M4b,5, boys and girls are

subjected to the same transitions from the first wave to the second, and from the second to the third,

except from a constant difference in log-odds Os between any pair of panels from the same age-group.

The cohort effect is entirely accounted for by the base-line effect f30,i for pairs of panels, and the non-

response mechanism p(rix) of each panel. The fitted log-likelihoods are given in Table 2.
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4 Discussion: sensitivity analysis

Sooner or later, every practitioner of statistical methods of analysis will have to face the trade-off

between the goodness-of-fit of a model and its explanatory power; and no universally applicable criterion

is available. The dilemma seems to be rooted in that neither of the concepts involved can be quantified

unequivocally. Not only can the various statistics of goodness-of-fit contradict each other because they

measure different aspects of a model, but there are also important areas, such as model selection for

predictive inference, where the commonly used goodness-of-fit statistics simply fail. The matter is as

elusive on the other end. For instance, a typical misconception here mixes the explanatory power of a

model with the complexity of its structure which is in turn reduced to its number of free parameters. Now

any set of data can be fitted perfectly, e.g. with zero deviance when this is the measure of "goodness"

adopted, if a free parameter is assigned to each free observation. At the same time, this might also occur

with some rather complicated parametric model which happens to use up all the degree of freedom in the

data. However, while the first model possesses no explanatory power whatsoever, the same may not be

said of the second one. It is therefore interesting if the family of models under the investigation, despite

its richness, can display some degree of robustness w.r.t. the interest of inference. In the present case,

this is the marginal obesity among school children and the effect of sex and age on it.

Among the models listed in Table 2, M4b and M4c treated each panel on its own. Whereas we

obtained 41, = —0.50 and /3', = 0.15 under all the three models M4b,3, /14"-46,4 and M4b,5, so that the

synthetic graphical models considered here do display robustness w.r.t. the estimates of the effect of age

and sex, and the deviances (or p-values) of the fitted models are misleading in this respect.

To examine the robustness of the models w.r.t. the estimates of the marginal obesity, we have listed

the key estimates for school boys and girls in Table 3 — together with those reported in Baker (1995). To

assure the validity of the mean values involved, we need to assume that the total numbers of school boys

or girls did not changed significantly over the years between 1977 and 1981. It is hardly surprising that

M4b,3 and M4b , 5 should give smoother estimates of the marginal probabilities than the others, especially

at the two ends of the age spectrum. In fact, the estimates under M4b,3 or M4b,5 agrees well with those

reported by Baker (1995) except from the upper end, i.e age 17-19. (It is not clear how one should

interpret the strict monotonicity, both in age and sex, in Baker's estimates, which seemed to counter our

intuition on the matter. In addition, Baker's model had a deviance of 1141.9 on 231 degrees of freedom,

which was not plausible compared to, say, M4b,5 here, according to the Akaike Information criterion

(Akaike 1974) used in Baker (1995) for model selection.)
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Table 3: Estimates of the marginal obesity among school boys and girls

School boys	 School girls

Model	 Year 5-7 7-9 9-11 11-13 13-15 15-17 17-19 	 5-7 7-9 9-11 11-13 13-15 15-17 17-19

1977	 .06 .18	 .18	 .25	 .20	 -	 -	 .16 .14	 .27	 .21	 .23	 -	 -

M4c	 1979	 - .18	 .19	 .23	 .24	 .21	 -	 - .17	 .24	 .27	 .31	 .28	 -

1981	 -	 -	 .25	 .22	 .24	 .20	 .18	 -	 -	 .25	 .26	 .23	 .30	 .25

Mean .06 .18	 .21	 .23	 .23	 .20	 .18	 .16 .16	 .25	 .25	 .26	 .29	 .25

1977 .08 .16	 .18	 .24	 .20	 -	 -	 .12 .15	 .26	 .22	 .22	 -	 -

M4b	 1979	 - .17	 .21	 .24	 .26	 .21	 -	 - .19	 .22	 .28	 .29	 .29	 -

1981	 -	 -	 .25	 .22	 .23	 .20	 .18	 -	 -	 .24	 .26	 .22	 .30	 .25

Mean .08 .16	 .21	 .23	 .23	 .20	 .18	 .12 .17	 .24	 .25	 .24	 .30	 .25

1977	 .17	 .17	 .19	 .19	 .17	 -	 -	 .18	 .19	 .20	 .22	 .21	 -	 -

M21,3	 1979	 -	 .21	 .21	 .23	 .24	 .22	 -	 -	 .23	 .25	 .26	 .29	 .28

1981	 -	 -	 .21	 .21	 .24	 .24	 .21	 -	 -	 .22	 .24	 .27	 .30	 .28

Mean .17	 .19	 .20	 .21	 .22	 .23	 .21	 .18	 .21	 .22	 .24	 .26	 .29	 .28

1977	 .16	 .17	 .18	 .19	 .18	 -	 -	 .18	 .19	 .21 '	 .22	 .21	 -	 -

M2f,5
	 1979	 -	 .20	 .21	 .23	 .25	 .23	 -	 -	 .23	 .24	 .27	 .28	 .26

1981	 -	 -	 .20	 .21	 .23	 .25	 .23	 -	 -	 .23	 .25	 .27	 .29	 .27

Mean .16	 .18	 .20	 .21	 .22	 .24	 .23	 .18	 .21	 .23	 .25	 .25	 .28	 .27

Baker (1995)	 .15 .17	 .19	 .21	 .24	 .26	 .29	 .17 .19	 .21	 .23	 .26	 .28	 .31



Table 4: Estimates of the marginal obesity among school children

Age group

Model	 5-7 7-9 9-11 11-13 13-15 15-17 17-19

M4c	 .11 .17	 .23	 .24	 .24	 .25	 .22

M4b	 .10 .17	 .23	 .24	 .24	 .25	 .22

M4b,3	 .18 .20	 .21	 .22	 .24	 .26	 .24

M4b,5	 .17 .20	 .21	 .23	 .24	 .26	 .25

Woolson and Clarke (1984) .11 .17	 .21	 .23	 .23	 .21	 .17

Conaway (1994)	 .13 .15	 .23	 .22	 .20	 .20	 .20

Meanwhile, assuming in addition that there are about as many boys and girls within the population,

we have listed in Table 4 the estimated marginal obesity among school children - together with those

reported by Woolson and Clarke (1984) and Conaway (1994), which rather resemble those under model

M4b or Mic here except for a flatter upper end. Again, we would like to caution against too much

emphasis in any of these estimates due to the absence of the all-missing cell, especially if these had been

censored as we suspect.

5 Concluding remarks

The synthetic graphical modelling approach of this paper combines two powerful statistical methods

of analysis, i.e. the graphical and generalized linear models. While the dependence structure among the

data is depicted by the corresponding graph, its details are spelled in terms of the conditional GLMs.

As a sepcial case, the chained logistic regression model is suitable here given the asymmtry among the

variables of the study. The fact that several existing sets of estimates on the present data, derived under

various alternative models, are close to those obtained under certain members of the family of models

considered here demontrates the richness as well as the flexibility of our approach. The unified treatment

allows non-response to depend on both the object variables and the non-response at some earlier points.

This can be useful for analysis of incomplete-data in general, such as when measurement-error and non-

response are present at the same time. Finally, applications of mixed graphs together with other types

of GLMs should enable us to handle more complex data which contain both symmetric and asymmetric

dependence structures, while preserving the conceptual clarity of the models.
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