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1. Introduction
In the literature on econometric analyses of duration data it is common practice to postulate

the proportional hazard rate framework because it is convenient for empirical analyses. Needless to

say, specifications based solely on mathematical convenience is ad hoc from a theoretical point of

view and is therefore unsatisfactory. A theoretical justification supporting the choice of functional

form is important for the issue of identifying structural effects and for making inferences about the

nature and the significance of such effects.

The choice of functional form is of particular importance in applications where the problem is

to separate effects that stem from past behavior on current preferences from spurious effects related to

correlation between current and past choices due to unobservables. This identification problem is

crucial in a variety of contexts and it has been discussed most notably by Heckman (see Heckman,

1978, 1981a, 1981b, 1991, and the references therein). For example, in analyses of unemployment it is

often noted that individuals who have experienced unemployment in the past are more likely to

experience the event in the future than are individuals who have not experienced the event. As is well

known, there may be two explanations for this empirical regularity. One explanation is that current and

past choices are correlated due to unobservables that affect the preferences and which are serially

correlated (pure taste persistence). In this case, past choices are proxies for unobserved variables that

affect preference evaluations or unobservable opportunity sets, and consequently the aggregate

transition rates will depend on past choices. The other explanation is that, as a result of choice

experience, preferences and/or choice constraints change (structural state dependence). This

fundamental identification problem cannot be solved without imposing theoretical restrictions in the

model. This example illustrates the relevance of providing a theoretical rationale for the mathematical

structure of econometric models of intertemporal discrete choice.

This paper addresses the problem of functional fonn in intertemporal discrete choice models.

Specifically, we first propose a formal axiomatic characterization of intertemporal choice models

under pure taste persistence. Since models with pure taste persistence represent a reference case it is

important to characterize this case theoretically so as to provide a point of departure for specifying

state dependence effects. Next, we discuss the extension to the case with state dependence. Our

characterization of choice behavior under pure taste persistent preferences can be viewed as a

stochastic formulation of rational behavior with exogenous preferences. The main theoretical

assumption is in fact an intertemporal version of Luce's axiom "Independence from Irrelevant

Alternatives". This assumption, together with some regularity conditions, imply that the choice process

(as a process in time) becomes a Markov chain where the transition probabilities have a particular

simple structure. Drawing on results obtained by Dagsvik (1983) and (1988) it follows that this

Markov chain model is compatible with a random utility representation where the utilities associated

with each alternative are independent extremal processes.
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Assumptions that are analogous to the one described above were proposed by Dagsvik (1992)

and (1995a).

The paper is organized as follows: In Section 2 the choice setting is formally described. In

Section 3 the basic assumptions are introduced and discussed. Furthermore, we derive some important

implications for the choice model. In Section 4 we demonstrate that our framework allows for an

interpretation that is consistent with optimizing behavior in a life cycle context where the (chosen)

expenditure path can be treated as if it were exogenous when analyzing intertemporal discrete choice

and savings. In Section 5 we briefly discuss interpretations in the context of econometric specification

of hazard functions and transition intensities. In Section 6 we analyze the case with time varying

choice sets, and in Section 7 we consider the extension of the framework to allow for state

dependence.

2. The choice setting
The individual decision-maker (agent) is supposed to have preferences over a finite set of

alternatives. The preferences are assumed random (even to the agent himself) in the sense that they

vary from one moment in time to the next in a way that cannot fully be predicted by the agent.

Although Georgescu-Roegen (1958), p. 158, argue that "we must begin with a theory of the individual

not as a perfect choosing-instrument, but as a stochastic one", the notion of random preferences is not

very common in economics where stochastic utilities usually are motivated by unobservables that are

assumed perfectly foreseeable from the agent's viewpoint. In the psychological literature however,

there is a long tradition dating back to Thurstone (1927) in which utilities are perceived as random to

the agent. The reason for this is of course that individuals have been observed to behave inconsistently

in laboratory choice experiments in the sense that a given agent makes different choices under

identical experimental conditions (cf. Tversky, 1969). One explanation for this is that the agent is

viewed as having difficulties with assessing the proper value (to him) of the choice alternatives

(optimization error). The agent may therefore not have complete confidence in his judgment and feel

that, in a different state of mind, he might have made a different choice (cf. Hogarth, 1982, Fischoff et

al., 1980, Tversky and Kahneman, 1983). Thus, while the agent (and the observing econometrician)

are unable to predict future taste-shifters the taste-shifters realized in the past are known to the agent

but unobserved to the econometrician.

Although the intra-individual randomness is stressed here the assumption of stochastic

rationality introduced in Section 3 also allows the interpretation of utilities that are deterministic to the

agent but random to the observer. However, the interpretation is less obvious in the case when the

random utilities are deterministic to the agent.
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Let S be the index set of m alternatives, al, a2,...am, and let S be the index set that corresponds

to the collection of all non-empty subsets from S. To each alternative, a i, there is associated a

stochastic process,	 (t), t 01, where U(t) is the agent's (conditional indirect) utility of aj given the

information and choice history at time t. Moreover, each alternative, aj, is characterized by an attribute

vector, Zi (t), at time t. The vector Z (t) may also contain components that are interaction terms

between attributes and agent-specific characteristics. The agent chooses a i at age t if Ui(t) is the highest

utility at t. Here age (time) is continuous. Let {J(t)}=1J(t,B(t))} denote the choice process, i.e.,

J(t)=j if U,-(t) > max U k (t)
k*j,lc€13(t)

where {B(t), t > 0, B(t) E 3} denotes the choice set process. We define the choice set process to be

increasing at time t if B(t) \ B(t—) is non-empty, and decreasing  if B(t—) B(t) is non-empty. If

B(t) B(s) for all s and t the choice set process is constant. Let h(t)= {J(s), s < t} denote the choice

history and define

u(0=(u 1 (0,u 2 (0,...,u m (0),

and

Z(t) = (Z i (0, Z 2 (0, , Z (0).

We assume that the process Z {Z(t), t > 0 } is exogenous. Furthermore, let t r = (t 1 , t 2 , , t r ) where

t i < t 2 < < t r . We assume that {U(0} is separable and continuous in probability.' Moreover, we

assume that the cumulative distribution function (c.d.f.) of U(t) is absolutely continuous for any

t E R.,. This implies that there are no ties, that is

(U i (t)= U (0) = O.

When the finite dimensional distributions have been specified it is in principle possible to

derive joint choice probabilities for a sequence of choices. However, the class of intertemporal random

utility models is quite large and it is thus of substantial interest to restrict this class on the basis of

theoretical arguments. Also it seems to be rather difficult to find stochastic processes that are

convenient candidates for utility processes in the sense that they imply tractable expressions for the

choice probabilities in the intertemporal context.



3. Characterization of pure-taste-persistent preferences and choice probabilities
In the present section we propose behavioral assumptions that enable us to characterize

preferences and the choice probabilities in the "reference state", where there are no effects from past

experiences on future preferences nor on future choice opportunities. The extension to allow for state

dependence is discussed in Section 7.

One way of introducing structural restrictions into the model is to apply probabilistic versions

of the assumption of rational behavior. A famous example of this type of assumption is Luce Choice

Axiom; "Independence from irrelevant alternatives", (IIA) (cf. Luce, 1959). A first attempt to extend

IIA to the intertemporal setting was made by Dagsvik (1983).
2
 Below we shall discuss the implications

from another version of IIA, which will be introduced below. Let

F6T;t r ,Z,y(qt r »,U(t r_0):-.=PMt r )5_yllqt i ),Z,Vi5_r-1)	 (3.1)

be the conditional marginal distribution of U(4) given Z and U(t), i=1,2,...,r-1. We assume that F is

known apart from a parameter vector y (say). The notation above signifies that the parameter vector y

that governs the conditional distribution of the utility processes, may change as a result of experience.

It should be emphazised that in a strict mathematical sense, the left hand side of (3.1) is not

immediately meaningful since when U(tt_ i ) is given, h(tr) follows. But this regards precisely the core of

the specification and identification problem, namely that without additional theory TO cannot be

determined.

Definition 1 

By pure-taste-persistent preferences (PTPP) it is understood that y in (3.1) is independent of

h(4) for any t,. , i.e., there are no effects on the parameters of the current conditional c.d.f of the

agent's preferences from previous choices.

Thus PTPP means that preferences are exogenous relative to the choice process. 3

Let

Pi (t) Pi (t;B(0) ----= P(U i (t)= km U ( 
))

	

(3.2)

and

Q ii (s,t) a-- Q ii s,t;B(t),h(s)):=-: P(U i (t)= max U k 	J(s)= i, h(s))
k eB(t)	

(3.3)



for s<t. In general, the transition probabilities (given the choice history), will also depend on past

choice sets and exogenous variables. For notational simplicity, this is suppressed in the definitions

above.

We realize that Q ii (s,;B(t), h(s)) is the conditional choice probability of choosing alternative

aj at time t given that alternative ai was chosen at time s and given the choice history before s.

Provided the choice set does not change in a neighborhood of time t, we define the transition

intensities, fq (t; B(t), h(0)}, of {J(t), t > 0} by

Qii (s, t; B(t), h(s))
	q (t; B(t), h(t)) lim 	 (3.4)

	

s-÷t	 t —s

for i # j, and

Define finally

(t; B(t), h(0)::= lim
s-->t

Q 11 (s, t,B(t),h(s))-1)

t —s
(3.5)

Q ii (s,t;B(t),h(s))	 qij (t;B(t), NO)
(t) ic (t; B(t), h(0)=-. limli	 '3 	2 d Q ik (S, t;B(t), h(s))	 q ii 0 -,B(0,h(t)Y

Ica(t){i}

for i # j . The interpretation of (3.6) is as the transition probability of going to alternative a j at time t

given that alternative ai is left and given the choice history prior to t.

Assumption Al (Stochastic rationality under PTPP)

Let B(s)= B(t—), for s <t, B(s) e S and let Be S be such that B\ B(t—)*0 . Then, for

j e B\ B(t—),

Qij (t—,t; B, h(t—)).-: P1 (t; B).	 (3.7)

Assumption Al states that provided the preferred alternative in B(t)= B at time t lies in

B \ B(t—), it does not depend (in a systematic way) on which of the alternative in B(t—) are preferred

just before time t.

To facilitate interpretation and motivation we shall discuss Al in the context of the following

example, with B(t-) = 1,21 and B = {1,2,3 }. Then with i=1,2, and j=3, (3.7) can in this example be

expressed as

(3.6)
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(3.8)

(u 3 > max(U i (t), U 2 (0)1 U i (t-)= max(U 1 (t—), U2 (t-)), NO) = (u 3 (t)> max(11 1 (t), U 2 (0».

The left hand side of (3.8) expresses the probability that a3 is the preferred alternative given that a2 is

the second preferred alternative and given the choice history. The right hand side of (3.8) is simply the

unconditional probability that a3 is the preferred alternative. Thus (3.8), states that the event, "a 3 is the

preferred alternative", is stochastically independent of the event, "a2 is the preferred alternative among

the remaining alternatives a l and a2", and of the choice history. Another way of expressing this

property goes as follows: The event, "a 3 is the preferred alternative from the set {a l , a 2 , a 3 } at time t",

is stochastically independent of previous rankings of {a l , a 2 }. Thus we realize that Al is a version of

IIA that is analogous to versions studied by Luce (1959), and Block and Marschak (1960) concerning

ranking theories (see Luce and Suppes, 1965, p.p. 353-354). It is therefore natural to interpret Al as a

characterization of stochastically rational agents under PTPP.

Assumption A2

At each point in time the distribution of the random term, 11(t)-EU(t), does not depend on Z(t).

Assumption A3 

For any t > 0, j E S. and any real number x there exists a value of Zi(t) such that EU(t)=x.

Assumption A4

Apart from a location shift the finite dimensional laws of the indirect utility process

{max k U k (t), t 0} are the same as the finite dimensional laws of III (t),t 01.

Assumption A2 states that at each moment in time the random term of the utility function is

independent of the structural term. Assumption A3 states that the structural term of the utility function

can vary over the whole real line when attributes vary freely.

Recall that the max-stable processes have the property that maximum of independent max-

stable processes is max-stable (see de Haan, 1984). The finite dimensional distributions of a

multivariate max-stable process belong to the class of multivariate extreme value distributions.

Dagsvik (1995b) has demonstrated that there is no loss of generality in assuming A4 since, in

the absence of structural state dependence effects, any intertemporal random utility model can, under

suitable regularity conditions, be approximated arbitrarily closely by choice probabilities generated

from max-stable utilities.

8



Theorem 1 

Assume that A2 and A3 hold. Then for any BE 3 , Assumption Al implies that

e ' (t)

P.(t) P
I
.(t- B) = 	

.1 	 E e
ke B

(3.9)

where v .(t)=aEU .(t) and a>0 is an arbitrary constant.
J

Proof:

Recall that {U(t), t > 0} is continuous in probability. Note that with B(t—)=B	 Al

implies that

(3.10)

P(IJ (t)— max U, (t), U 1 (t—)= 
keB\01
max U k (t--)) = P(U i (t)= max U k (0)1)(U (t) = max U (0).

keB -	 keB	 keB1{j}

By Theorem 50, p. 354, in Luce and Suppes (1965), (3.10) implies that P(B) is a strict utility model as

expressed in (3.9). Finally, Strauss (1979), p.p. 42-43, has demonstrated that the parameters Iv i (01 of

the choice model are related to the utility function by v i (t)= ocEU i (0, apart from an additive

constant.

Q.E.D.

Remark

Without loss of generality we shall in the following put a=l.

Let us now proceed by investigating the intertemporal structure of the random utilities that

follows from A1.4

Above we postulated the existence of random utility processes such that Al to A3 hold. It

remains, however, to demonstrate that such processes really exist. In the one-period case McFadden

(1973), Yellott (1977) and Strauss (1979) have, under different sets of conditions, demonstrated the

equivalence between IIA and extreme value distributed utilities in a random utility model with

independent utilities. We state a version of this result in the next theorem.
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Theorem 2 

Assume that Al to A4 hold. Then the utility processes, III j (t),t	 j=1,2,...,m, are

independent at each point in time and have type III extreme value distributed marginals. 5

Proof:

It follows from A4 that the joint distribution of (U 1 (t),U 2 (0, , Um (t)) belongs to the class

of c.d.f. considered in Theorem 6 of Strauss (1979) with (p(x)= e -x • The result now follows from

Strauss, Theorem 6. 6

Q.E.D.

Assumption A5 

The utility processes It 1 (t), t ?_01, j = 1,2,..., m, are stochastically independent.

Note that two stochastic processes {U(t), t 01 and fU i (0, t 01 may be stochastically

dependent even if U i(t) and Ui(t) are stochastically independent at each point in time. For example,

Ui(t) and Ui(s) may be interdependent for s t even if U i(t) and Ui(t) are independent. However, it

may be plausible in many applications to assume that the correlation between U i(t) and Ui(s) is less

than the correlation between U i(t) and Up, which implies that the utility processes are independent

when the utilities at each point in time are independent.

Theorem 3 

Assume Al to A.5. Then the utilities are extremal processes with type III extreme value

marginal distribution.

The proof of Theorem 3 is given in the appendix.

The class of extremal processes was introduced in statistics by Dwass (1964, 1966, 1974) and

Tiago de Oliveira (1968, 1973). An extension to inhomogeneous extremal processes has been made by

Weissman (1975). Let us briefly review the properties of what is called extremal processes with type

III extreme value marginal distributions, denoted by {Y(t), t 0} (say). This process has the same law

as {Ý(t), t 0} defined by

Ý(t) max(Ý(s),*. (s, t)
	

(3.11)
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S < t, where Ý(0)=— and where *(s, t) is independent of Ý(s) and has type rn extreme value

c.d.f. for s < t. Moreover, *(s, t) and *(s', t') are independent when (s, t) (s', t')= Ø . For a more

detailed description of extremal processes we refer to Resnick (1987). It follows from (3.11) that an

extremal process is a Markov process. Moreover, it is a pure jump Markov process.

From (3.11) it also follows that the extremal process is non-decreasing with probability one.

For the sake of interpretation it may be more intuitive to apply a "detrended" version of the extremal

process as a candidate for a utility representation. To this end we shall assume that

fU i (t)+P(t),t 0} is an extremal process, where {U i (0, t 0} is the utility process associated with

alternative j and P(t) is a suitable nondecreasing function. Analogous to (3.11) the detrended utility

process can be represented as

U i (t) = max(U i (s)+13(s)-13(t),Wi (s,t))	 (3.12)

for s < t, where U i (0)=	 and where {NATi (s, t)} has similar properties as {*(s, 0}, that is Wi(s,t)

and Wi (s', e) are independent when (s, t) (s', t')= ø , with type III extreme value c.d.f. One can

express the mean of Wi (s, t) as

exp Wi (s, t)) = exp (w i ('t)) ch

where w('r) is a suitable function. From (3.11), (3.12) and (3.13) we obtain readily that

exp U i (0+ OW) — exp (EU i (t — At)+ — At)) = At exp (w i (0+0(0) + o(At)

which implies that

exp E U i (t) + 0(0) = f (exp(w (c) + P('r)» (IT ,

or equivalently

exp (E U i (t)) 	(exp(w ('y) + f3('r)-13(0))dt.
0

When w(t) is independent of time and 13(0=t0, where 0 > 0 is a constant, (3.14) reduces to

(3.13)

(3.14)

exp(EU i (t))= e vii (1—	 (3.15)

11



Thus for large t, a constant mean utility level corresponds to constant tw i (01 when IRO is linear in t.

Also from (3.14) we realize that when NO= te, 9 is analogous to a rate of preference parameter

because by (3.14), the mean utility at time t can be expressed as a weighted integral of past

"instantaneous" mean utilities. Specifically, the contribution from the period s-specific systematic

utility component to the current mean utility is evaluated by multiplying exp(w i (s))ds by the

"depreciation" factor expHt sP). 7 This depreciation factor accounts for the loss of memory and/or

decrease in taste persistence as the time lag increase.

As demonstrated by Resnick and Roy (1990) we can express a particular version of the

autocorrelation function of the utility process as

exp(EUi (s))
corr (exp(—U (s)), exp(—U i (0)) =

exp(

EU (t)) exp 03(s) — P(t)). (3.16)

for s < t . To clarify the interpretation, consider the case with 0(t)= te, where 9 > 0 is a constant.

Then (3.16) reduces to

corr (exp(—EU (s)), exp(—EU i (0	
1 

	

)) =	 e -(t-s)0 .
1— e -(4

(3.17)

Thus when s and t are large the mean utility in this case equals w, (apart from an additive constant)

and the auto-correlation function becomes exponential.

Definition 2

We define a modified extremal process as a stochastic process which satisfies (3.12) with

U]. (0). — , with a nondecreasing function PI
(.

), and with type III extreme value distributed

marginals.

Theorem 4

Assume that the random utilities are independent modified extremal processes. Assume

furthermore that the choice set process is constant over time. Then (3.9) holds and {.1(t),t > 0} is a

Markov chain. Furthermore, the transition probabilities are given by

Qz.i (s,t)= Pi (t) — (s,t)Pi (s)
	

(3.18)

for i # j, s <t and

Qii (s,t) = Pi (t) +(s,t)(1— Pi (s))	 (3.19)
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where v j (t)= EI j (t), Be 3, P(t) is given by (3.9), and

e v,(4+ P - P (0

(s, = keB	  
e vk (t)
	(3.20)

keB.

A proof of Theorem 4 is given in Dagsvik (1988).

Theorem 4 shows that Al to A4 imply strong testable restrictions since — in addition to the

Markov property — the transition probabilities are independent of  i when i # j.

Corollary 1 

Assume that Ow+ v; (01 are differentiable with respect to t. Under the assumptions of

Theorem 4 the transition intensities of the Markov chain Vat > 61 exists and are given by

qij (t). Pi (t)(1,;(t)+ p '(i'))	 (3.21)

for i j, and

)=—	 qik(t)
keENO

where Pit) is given by (3.9). The probability of going to state (alternative)  ai given that state

(alternative) ai is left, equals

ej(t) (Vi (t)+ p '(t))
ii(t)=

evk(t) (4(t)+13'(t))
keB\{i}

where v'i (t)+ [3'(t) denotes the derivative of v j (t)+ p(t).

(3.22)

(3.23)

The results of Corollary 1 follow directly from (3.9), (3.18), (3.19) and (3.20).

Corollary 2

Under the assumptions of Theorem 4 the indirect utility, maxko3 Uk (t), is independent of

{.1(t ),T t} for any B E S.
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A proof of this result has been given by Resnick and Roy (1990).

Dagsvik (1988) and Resnick and Roy (1990) extend the result of Theorem 4 to the case where

{U(t), t 0} is a multivariate extremal process. Dagsvik considers the case where U(t) — at each t —

has a type III multivariate extreme value distribution that is absolutely continuous. The resulting

(marginal) choice probabilities at a given point in time in this case become generalized extreme value

probabilities. Resnick and Roy (1990) allow U(t) to have a multivariate c.d.f. that is not necessarily

absolutely continuous.

Recall that by (3.12) the utility processes are Markov processes. However, utility processes

with the Markov property do not usually imply that the corresponding choice process {J(O} is

Markovian. For example, Gaussian utility processes with the Markovian property do not imply that the

choice process is Markovian. In fact, there exist no Gaussian utility processes in continuous time that

can generate Markovian choice models.

Similarly, to (3.16) we have that since the indirect utility, max k U (t), i a modified

extremal process with

exp (max kEB U k (0)) =	 eXp (EU k (t))
keB

it follows that

	

con (exp max keB U k (s)),exp (-- maxiceB Uk(t)))=
	 (3.24)

In other words, (s,t) represents the autocorrelation function of the indirect utility, maxiceB

4. Life cycle consistent choice behavior
In this section we consider the following setting: The agent must make a choice between m

different alternatives (states) in each period (time is discrete). Let  ajt be a period specific cost or

income variable associated with alternative j and c, the (composite) consumption in period t. There are

no transaction costs and the preferences are assumed to be exogenous (i.e. there is no state

dependence). The extension to the case with state dependence will be discussed in Section 7. Let yt

denote total expenditure in period t and let r, be the interest rate in period t. The price index is equal to

one. Furthermore, let 03, be the income in period t and Y, the wealth at the end of period t.

The budget constraints in period t are given by

y Yt+i 
Yt +

t 1+ rt+i	
Yt (4.1)
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and

Yt =-"E i {J(t)=i} oc it + c t
	 (4.2)

where T(-) is the tax function. Let U i (t, c, ) denote the intantaneous utility as of period t given ct and

given that J(0= j. Future incomes, interest rates and costs are uncertain. Let V i (t, Y ) denote the

value function as of period t given that J(t)= j. Under the assumption of additive intertemporal

separability, the Bellman equation that corresponds to the dynamic optimization problem described

above is given by

Vi (t,Y,)=U i (t,y, —a it )+pE, (max k Vk + 1, Yt+i J(t)= .0	 4.3)

where p 5_ 1, is the time-preference discounting factor and E t denotes the subjective expectation

operator given the agent's information at time t. Since we assume that preferences are exogenous it

follows that

E, (max k Vk 	1, Yt+1 )1 J(0= j) = E, (max k Vk (t 1, Yt+i )). 	 (4.4)

This means that J(t) is determined by maximizing U i (t, y — ait). Let

max k U k (t,y — a

and

V(t,Y) ET: max k Vk (t, Y)

By (4.3) and (4.4) it follows that y t is determined as

y, = arg max (U(t,y)+pE,V + 1, (l+r, +1 )(Y, +co, T
Y

and

V(t,Y,)= U(t,y,)+ pE,V(t 	 (4.6)

From (4.1) and (4.5) it follows by recursion that 1(t, Y, ) depends on Y t and the subjective

expectation of respective future discounted instantaneous indirect utilities evaluated at the optimum

expenditure path where it is understood that future expenditures are evaluated conditional on the

information that becomes available at the times the respective future decisions are being made. Thus,

the decision problem can be viewed as a two stage process in which the agent determines the

)))

	

(4.5)
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expenditure path in the first stage and the optimal choice of state in each period is determined

conditional on the expenditure path. So far, however, we have just reviewed a version of the

wellknown two stage decomposition (two stage budgeting) of the intertemporal decision problem. As

is also wellknown, the application of two stage budgeting in empirical analyses may be difficult

because the optimal expenditure path may in general be correlated with the random terms of

fu i (t, y), j = 1,2,	 t =1,2, .1. However, due to the properties of the external processes we shall see

in a moment that this will not be the case here.

Let {x t } be any given sequence of real numbers. Suppose fu i (t, x t t > 01, j =1,2,... m, are

independent modified external processes. Consistent with the notation in Section 2, let

J(t, y) = j <=> U i (t, y – oc ;,)= u(t, y).	 (4.7)

By Corollary 2 it follows that RE, xt 5_ t} is independent of {1*,	 t} for any Ix t l. Note

furthermore that when Yt is given then fy , t} is — by (4.5) and (4.6) — determined from

{U(c,.),	 t} and by the subjective expectation operator. Suppose also that the agent's subjectively

perceived law of Mr, x	 t} is similar to the corresponding objective law in that {qr,	 'r t}

and {J('r, x i ),	 t} are independent. This would of course be true if the agent's subjective law equals

the objective one (rational expectation) — or if the agent knows future taste-shifters with perfect

certainty. Since fy	 t is determined by Yt, and by the distribution of {qt,-),	 t}, future

interest rates and incomes, it follows that { y i ,	 t} must be independent of {J(t, y ), t 5_ t} . But this

means that, under the assumptions of Theorem 4, we can analyze the choice process Nt, y t ), t > 0}

conditional on ly t as if ly t I were exogenous.

5. Some implications for econometric specifications of transition intensities under
pure taste persistence

The results in Theorem 4 and Corollary 1 are useful for justifying the choice of functional

form of the likelihood function of observations on P(T),Z('),	 t} for a particular agent under

PTPP. The first step in specifying an empirical model is to specify the structural parts of the model.

Recall that according to the representation of the modified extremal process, (3.13) yields

exp (EWi (t – dt, 0). exp(w i (t))dt which means that w(t) is equivalent to the mean of the increment

Wi (t – dt, t) at time t. Moreover, we noticed above that due to (3.13) it is possible to express the
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structural term of the current utility as a "depreciated" sum of the structural parts of the past

increments. This allows us to interpret w(t), or equivalently exp(w i (0), as the representative

instantaneous utility of alternative ai at time t. In empirical applications one would typically specify

wi(t) as

w i ( )= w(Z .i (0)	 (5.1)

where w(-) is a suitably chosen functional form that is known apart from an unknown vector of

parameters. If we assume 13(0 = et, 0 > 0 and insert (3.13) for vi(t) in Theorem 4 we obtain the next

result:

Corollary 3 

Assume that the utilities are independent modified extremal processes with Pt(t)= A),	 0,

and the choice sets process is constant over time. Then, under the Assumptions of Theorem 4

f ew)(t)-"-T dt

Pi (t)=  °
	

(5.2)

e wk (t)-(t"." dt
keB 0

j
. 
en

cr)-(t—oe ch

5, t (5.3) 

1
eWk(t )-(t-T 'IC

1,03 So

qu (t)= 	 t 
e

wi (t)	
(5,4)

e wket)-(t--" dt
keB 0

e
wi (t)

(5.5)
e wk(t)

keB‘{i}

for i j, and
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f eN ( t)-(s-oe

keB o 
(s,t)-= 	 e

--(t-s)0

I, J. e tt_ dt

keB 0

(5.6)

Evidently, q 1(t) and Q ii(s,t) are found from the adding-up conditions.

Let us next consider the particular case where {w j (t)}, j =1,2,..., m, are constant over time

i.e., w j (t)= w. . Then (5.4) and (5.6) reduce to

ee wi	 0 P.
J Clii(0= (	 =

1 — e -t° )If e wk 1. — e -
kel3

and

(s,t) 
(1— cs0 ) e-o-oe

1—e-6

From (3.24) it follows that the degree of taste persistence in the indirect utility can be measured by O.

Specifically, when 6 is large there is little taste persistence (provided s and t are large) while when() is

close to zero tastes are strongly correlated over time. Moreover, (5.7) shows that the transition

intensities are stationary when t is large. However, when t is small then the transition intensities given

by (5.7) depend on time. This is due to the fact that in the beginning of a choice process the length of

the choice history (age) will influence the strength of the taste persistence effect.

Observe that the structure of (5.7) can be viewed as a special case of the model in Olsen et al.

(1986). However, as the utilities in their model are not serially correlated, 0, in their model seems at

first glance to yield a different interpretation. In their framework the utilities are viewed as

independent draws that occur according to a Poisson process with intensity O. But this means in fact

that also in their setting 9 allows the interpretation as a measure of taste persistence because when 9 is

small the random draws occur rarely and therefore preferences are rather stable over time. In contrast

when() is large preferences are likely to change frequently.

Let us finally compare the structure of the hazard rate with the proportional hazard rate

framework which has been used extensively in empirical analyses, cf. Heckman and Singer (1985). In

the case with time invariant explanatory variables and w. (r)= w. + K(t), where K(t) is a function of

time that is independent of the explanatory variables, we obtain the hazard rate from (3.5) and (5.4):

—q„ (t) = X WO— P,	 (5.9)

(5.7)

5.8)
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where X.0 is given by

e
e

t+K(t)
o(t)= 	 (5.10)

ek"(-̀ )dt

The term X0(t) corresponds to the so-called baseline hazard in the statistical literature. This shows that

the proportional hazard rate assumption is consistent with the present framework. When ic(t)=-- 0, and t

is large, (5.10) reduces to X 0 (0= O. By means of (5.6), A.0(t) can be given a particular interpretation.

Under the present specification it follows from (5.6) and (5.10) that

Xo(t)	 as
 t) 	 (5.11)

Consequently,Consequently, Xo(t) can be interpreted as a measure of the instantaneous change in the preferences in

the neighborhood of t, due to random variation of the taste-shifters.

In the multistate case some authors (see for example Andersen et al. (1991)) have specified

transition intensities {Ei ji (0 on the form

(t) X ii (t)exp(f(Z i ,;;b))	 (5.12)

where f(-) is some specified function, Zi is an individual specific time invariant vector of covariates

that characterize alternative ai, and b is a vector of parameters. Let us now compare the structure (5.12)

with (5.7) and (5.9). We realize that (5.7) and (5.9) are essentially different from (5.12) in that (5.7)

and (5.9) depend on all the covariates in a particular way while (5.12) only depends on the covariates

related to alternatives ai and a. Therefore, the standard proportional hazard specification (5.12), which

is often applied in duration analysis, is inconsistent with a random utility formulation when the number

of states is larger than two.

6. Allowing for time varying choice sets
In many applications it is if interest to allow for time varying choice sets. For example, in the

analysis of labor market dynamics, workers' market opportunities may depend on experience and

possibly on previous unemployment spells. When modeling fertility histories one must take into

account that a woman with — say — one child at most have the choice between getting an additional

child or have no additional children.

It shall always be understood in the following that the choice sets can change at most a finite

number of times.
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When the choice sets vary over time the corresponding choice model will in general not be

Markovian. We shall in this section discuss the choice process in this case. For the sake of

interpretation, but with no loss of generality, we shall assume below that the trend function Rt) is

linear.

Theorem 5 

Assume that the utilities are modified extremal processes with f3 (t)= 9t,	 0 . If the choice set

process does not change at time t, then

q(t, h(t))=
	 e

n(t)	
(6.1)

f ewk(1)-(t-" dt

keB(t) 0

for i# j, j€13(t)E3.

If we compare (6.1) with (5.4) we realize that under the conditions of Theorem 5 the transition

intensities (6.1) have the same structure as in the case with constant choice sets over time.

The result of Theorem 5 follows immediately from Lemma 4, which is stated and proved in

the appendix.

Theorem 6 

Assume that the utilities are modified extremal processes with f3 (t) =Ot, 9 _>. 0 . Suppose,

moreover, that the choice set process increases at time t. Let r(t) be the last time before t for which

J(r(t))EB(t)\B(t—). Then, if f(r(t)» j ,

i. ewi(t)- (t-"Ch

t, h(t))--	
r(t)

t	 (6.2)
e wk(t)-(t-T)O ch

keB(t) 0

for i E B(t—), j E B(t)\B(t—). If J(r(t))= j , then

f
keB(t)\tilr(t)

h(t))= 1

e wk (t)-(t' le dt

(6.3) 

S ew, (r)- (—Adt
keB(t) 0
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for j E B(t)\ B(t—). For i j, i, j E B(t—), Qu (t—,t, h(t))= 0, and

Qii(t—,t,h(t))= 1 —	 Q k (t—,t,h(t))
	

(6.4)
keB(t)\B(t—)

for ieB(t—).

The proof of Theorem 6 is given in the appendix.

For the sake of interpretation it is interesting to consider the special case when w(t) is constant

over time for all j.

Corollary 4

Assume that wit) is constant over time for all j. Then, under the assumptions of Theorem 6

Qu (t—,t,h(t))=
w.e

—expHt r(t))8»	 (6.5)
e wk

keB(t)

for i E B(t—), j E B(t)\ B(t—), provided .1(r(t))# j. If J(r(t))= j, then

Q,:i (t—,t,h(t))= expHt r(t))03)+

for j E B(t)\B(t—), i E B(t—).

Remark

w.
e '

(1— exp(—(t r(t))0»	 (6.6)
e

keB(t)

If J(s)B(t) \ B(t—) for all s < t then r(t)=O.

From (6.5) and (6.6) we see that the probability of moving from i to j is greater when

J(r(t))= j than when .1 . (r(t))# j. It is easily verified that this is true also in the general case stated in

Theorem 6. The reason for this is that when J(r(t))= j , this means a higher preference for alternative

aj than for any other feasible alternative at time r(t). Since the autocorrelations of the utility processes

are positive this means that the preference for alternative a j at time t is likely to be higher when

J(r(t))= j than when J(r(t))# j.
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Pi (t)= (6.7)i. et)_('tO dt

keB(t) 0

and

Theorem 7 

Assume that the utilities are modified extremal processes with OW =040 0 . Assume

moreover that the choice set process is nondecreasing. Then the choice process {J(t),t > 0} is a

Markov chain. The state and transition probabilities are given by

e wAT)-(t--oe er

	Q ii (s,t)=Pi (t)—ç(s,t,B(s),B(t))Pi (s)8 (B(t))	 (6.8)

for i # j, i E B(t), j E B(t), B(s), B(t) E 3, where

S
Ç(s,t, B(s), B(t)). kelfB(s)0 ewkt)- (t-tsch( 	e -(t-5)9

i. ewk

keB(t) 0

et)-(t-"Ch

and 6 i (B(t))= 1 if iE B(t), and zero otherwise.

Proof:

The results of Theorem 7 follow from Resnick and Roy (1990) and from (3.19).

The next result concerns the case where the current choice set decreases.

Theorem 8 

Assume that the utilities are modified extremal processes with f3(t)=Ot,	 0 , and suppose

that the choice set process decreases at time t. Let s(t) be the last time before t for which

J(s(t))EB(t). Then

qii(t,h(t)).
	 en (t)	

(6.9)

j* e wk (t )- ( t—oed-c

keB(t) 0

for i # j, i, j E B(t)c B(t—), B(t—), B(t) E 3 and
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(t,h(t))=—	 qik (t,h(t)).	 (6.10)
keB(t)\{i}

If J(s(t))# j, then

.1* wi(t)-(r---oee

Qii (t—,t,h(t) (6.11) 

E e wk(t)-(t-TS (IT
keB(r) 0

for i E B(t—)\B(t), j E B(t). If As(t))= j, then

e wk ( r )-( t-"e ch

—, t,h(t))=
keBW\{i}s(t)

i. e
wk(t)-(fr" d'r

keB(t) 0

(6.12)

for i E B(t—)\B(t), j E B(t).

A proof of Theorem 8 is given in the appendix.

As above, we realize that a transition probability from  i to j is higher when J(s(t)).= j than

when J(s(t))* j.

The next result is immeditate.

Corollary 5 

Assume that wit) is constant over time for auf. Then, under the assumptions of Theorem 8 we

get that

Qij

.
	e ' 	 I

—,t,h(t))= 	
w

	kl—exp(—(t — (00»	 (6.13)
2, ewk

keB(t)

for i E B(t—)\B(t), j E B(t), provided .1(s(t))# j. If .1(s(t)).-- j, then

Qii (t—,t,h(t))= exp(—(t — s(t))0)+
w.

e
exp(—( — s(t))0))	 (6.14)

e
keB(t)

for i E B(t—)\B(t), i E B(t).
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7. Extending the model to allow for state dependence
So far we have only discussed the functional form of the choice probabilities of {J(t)} under

PT!'?. The question now arises how the particular functional form that follows from P'I?P should be

modified in the presence of state dependence.

Notice first that when the utility processes are altered by the choice history a simultaneous

equation bias problem arises. This is so because the structural terms of the utility processes become

dependent on past choices, and consequently they will depend on past realizations of the utility

processes.

For simplicity we shall consider the discrete time case. Accordingly, we will assume that the

utility processes are independent modified experience-dependent extremal processes defined by

Ui (t) = max (U i (t — 1)+ P(t — 1)— E3(t), W i (t,h(t)))	 (7.1)

where

P (NATi (t, h(t))5.. wI U(t — 1)) = exp exp (g i (t, h(0)— w))	 (7.2)

and where g i (t, h(t)) is a parametric function of the attributes of alternative j and past choice

experience. Define v i (t, h(t)) recursively by

exp (v i (t, h(t))+E3(0)= exp (v i (t —1, h(t — 1))+ 3(t — 1)) + exp (g i (t, h(t))).	 (7.3)

Note that when gi does not depend on h(t) then v i (t, h(t)) reduces to v i (t)=EU i (t).

The following result extends Theorem 7 to the case with state dependence.

Theorem 9

Assume that the choice set process is non-decreasing and {U j (t),t ?_0}, j= 1,2, ... , m, are

independent and experience-dependent utility processes defined by (7.1) and (7.2). Then the (one step)

transition probabilities, conditional on the choice history, are given by

Q ii (t — 1, t, h(t)) = R i (t, h(t))[1 — exp (v i (t — 1, h(t — 1)) — v i (t, h(t))+ 130
	

)- f3(t))]	
(7.4)

R i (t, NO) - ç(t - 1, t, h(0)R i (t - 1, h(t — 0)8 i (WO)

for i # j, E B(t), E B(t — 1), and

Qii (t — 1,t,h(t))= Ri (t,h(t))+(t — 1,t,h(t))(1— R i (t — 1, h(t — 1)))8 i (13(t))	 (7.5)
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where

(t, h(t)) = e
vf (t,h(o)

(7.6)
e

vk(t,h(o)

keB(t)

evk(t-1,h0-1)+13(t-1)-13(0)

(t — 1, t, 12(t))= keB(t-1)
	

ev,(t,h(t))
	 (7.7)

ke B(t)

B(s), B(t) E 3 and v i (t,h(t)) is defined by (7.3)

A proof of Theorem 9 is given in the appendix.

Corollary 6

Under the assumptions of Theorem 9 the c.d.f of the indirect utility, maxko3 U (t), B E 3,

depends on {.1(t ), 't t} solely through

exp	 t,h(t))).
keB

The result of Corollary 6 follows directly from Corollary 2, (7.1) and (7.2).

Corollary 6 implies that the life cycle consistent property discussed in Section 4 also holds in

the case with utilities that are experience-dependent extremal processes, provided the agent does not

take into account that current behavior may alter future preferences.

It is important to notice that in contrast to 1)(0 in (3.9), R. (t, h(t)) can of course not be

interpreted as the marginal choice probability at time t since it depends on the choice history. It can,

however, be interpreted as the marginal choice probability at time t for an agent equipped with

preferences that have been altered by experience.

We may, analogous to Section 5 model state dependence effect in the reparameterized version

in which ß(t) = tO, and v. (t, h(0) is substituted by w. (t, h(t)) defined by

e wi(t,h(o) = e n(t,h(o) — e vi(t-13,h(t-1))-0 	 (7.8)

which implies that
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ej(t0) =	
w.

'
er,h(T))+(t-t)0 •

e 
T=1

(7.9)

From (7.9), (7.4) and (7.6) it follow that Q ii (t —1, t, h(t)) can be expressed as

e wi (t,h(t))
Q ii (t — 1, t,	 = 	 (7.10)

e wk(t , h(c)) - t-t)€$

keli(t) -c=1

for i # j . The transition probability given a transition has a structure that is completely analogous to

(5.5), i.e.,

Eii(t — 1, t, h(0)= ewk(t,h(t)) •

keB(0\{i}

We realize now that both fw i (t, h(t))} as well as the taste persistent measure 0 are separately

identified. From (7.10) we get that

e
w

i
(t,h(t))

(7.11)

logi 
Q ii — 1, t, h(t))

Q	 —t, h(t))	 j
	  = W (t, h(t)) — 	(t, h(0).	 7.12)

Eq. (7.12) means that w i (t, h(0)— w 1 (t, h(t)) is non-parametrically identified. For example, if

w i (t, h(t)) has the structure

s
w j (t,h(0)=1, o3irf,r(zi(t))+132r f2r (Z i (0, h(t)))

r=1

(7.13)

where Ifkr I are known functions and 
{
o kr } are unknown parameters, k =1,2, r =1,2,...,s, then

kr are identified under rather general conditions on {Ç 01.

Finally, when w i (t, h(0) has been detemined, 0 is identified because (7.10) implies that

e w i (t,h(t))
ewko,h(o) =

Q ii (t — 1, t, h(t)) kl"del3(t) 

e
w (t-1,h(t-1))

(7.14)
Q — 2, t — 1, h(t —

for i # j.
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Example (Heckman, 1981b) 

Consider the labor supply example analyzed by Heckman (1981b). Let U2(t) be the utility of

working and IMO the utility of not working. If we assume that the transition probabilities given by

(7.10) are specified as

w t,h(0)= w 1 (t)= Z 1 (t)
	

(7.15)

and

(t, h(t)) = Z 2 (0 a 2 + 81)(t — 1),	 7.16)

where 03 > 0, Z 1 (t)is a vector that may consist of age, length of schooling and number of small

children, Z2(t) may be some function of the marginal wage rate (or instruments for the marginal wage

rate), D(T) is equal to one if the agent has worked in period c and zero otherwise, a l , a2 and 5 are

parameters to be estimated. In the formulation above 8 = 0 implies PTPP, otherwise there is state

dependence in that the agents utility for work is affected by work experience.

Clearly, this model is identified and the specification (7.15) and (7.16) can be exploited to

form the likelihood for a sample of individual work histories to estimate ai , a2, the taste persistence

parameter 0 and the state dependence parameter 8.9

8. Conclusions
In this paper we have considered the problem of functional form and stochastic structure in

intertemporal discrete choice models.

It is demonstrated that a particular extension of Luce HA axiom implies a random utility

model where the utilities are extremal. processes. When the choice set process is non-decreasing this

model has the Markov property with a particular structure of the transition probabilities. It is also

demonstrated that this model is, under specific assumptions, consistent with optimizing behavior in a

life cycle context where the (chosen) expenditure path can be treated as if it consisted of exogenous

explanatory variables in the probabilities that correspond to the discrete choices.

Finally, we discuss how the choice model can be extended to allow for time varying choice

sets and structural state dependence. In the case with time varying choice sets it turns out that the

model structure is not necessarily markovian. Specifically, the transition probabilities in this case are

shown to depend on past choices in a particular way. This property is of considerable interest for the

ability to distinguish between taste persistence and structural state dependence because it demonstrates

that dependence on past choices can arise solely as a result from (exogenous) variations in the choice

constraints.
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The framework developed in this paper is analytically tractable and it therefore appears

convenient for empirical applications.
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Footnotes
1 Loosely speaking, a separable function is, by defmition, in a certain sense determined by its

values in an everywhere-dense, enumerable set of points. A stochastic process is called separable
when its sample functions process, with probability one, have this property. However, for a
rigorous defmition of separability the reader is referred to any book on the theory of probability
and stochastic processes. Recall that a process {Y(t), t > 0} being continuous in probability

means that 38 > 0 such that for any i 	2 > 0

P(11Y(0—Y(s)11> )<T1 2

whenever It — si <8, where	 is the standard Euclidian metric.

2 In Dagsvik (1983), p. 11, a particular behavioral assumption (Axiom 1) was proposed. This axiom
is weaker than Al. Axiom 1 makes a statement analogous to IIA for choice careers
J(t 1 )= ii, J(t 2 )= j 2 , J(t 3 )= j 3 at time epochs t 1 < t 2 < t 3 , where j 1, j2 and j3 are all different.

3 Heckman (1981a) calls PTPP "habit persistence". We prefer however the notion P1PP since habit
persistence may yield association to dependence on past choice experience.

In general it appears to be rather difficult to extend the static random utility model to the
intertemporal setting when we allow for serial correlation in the utilities. Several authors (see
Mortensen (1986), Olsen et al. (1986) and Rust (1987)) specify Markovian random utility models
that are consistent with choice under uncertainty about the environment. However, in these
models the utilities are serially independent. Heckman (1978, 1981a) considers models where the
utilities are Gaussian processes. Unfortunately, in the general case with more than two
alternatives, serially correlated Gaussian utility processes yield intractable choice probabilities. In
particular, a Markovian choice model cannot be obtained as a special case unless the (Gaussian)
utilities (for a given alternative) are serially independent (which is only possible in discrete time).
McFadden (1984) considers a dynamic model for binary choice based on generalized extreme
value distributions.

Recall that the type III extreme value distribution has the form exp(—ae - x ) where

a > 0, b > 0 are constants (cf. Resnick, 1987). There is a close link between type III, type II and

type I extreme value distributions. For example, the type I c.d.f. has the form exp(—ax -b ) with

a > 0, b > 0 and it is related to the type III c.d.f. in the following manner: If a random variable Y
has type I c.d.f. then logY has type ICI c.d.f. Thus, in the context of characterizing the properties
of random utility functions type I and type III c.d.f. are equivalent since the mapping y log y is
increasing. It can easily be demonstrated that if "location shift" (cf. Assumption A4) is substituted
by "a multiplicative positive constant", then we must substitute "type III" by "type I" in Theorem
2.

See Lindberg et al. (1994) for a correction of the proof of the main result in Strauss (1979), and
Robertson and Strauss (1981).
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7 Note that we may interpret e w ' ( ` ) and e vj (t) as mean utilities. Specifically, consider the utility
function

U*J 
= e Wj +10Ej /r(1-K)

where P (e i 5_ x) = exp (—e -x ) and K is a positive constant less than one. The utility U; is of

course equivalent to w i +ice i . The mean of U; is given by

EU; =e wi.

8 Similarly to Dagsvik (1983) it can also be proved that (s,t) has the interpretation as

t) = p (corr { max U k (s), max U k (OD
keB(s)	 keB(t)

where p : [0,1 ] —> [0,1] is an increasing function with p(0) = 0 and p(1) = 1. The function p(-) has
the form

P(y)=
Yf log x dx
.1 	1—x

(cf. Tiago de Oliveira, 1973).

9 It is understood here that the sample is homogeneous in the sense that a i , a2, 0 and 8 do not vary
across individuals.

It is interesting that in Heckman's (1981b) analysis, where he postulates a discrete time probit
model with general serial dependence in the utilities and with experience dependency, the
Markovian structure of the utilities emerges (conditional on experience) as a result from the
empirical analysis. However, as mentioned above, continuous time Gaussian utility processes
cannot generate Markovian choice models in contrast to the choice models that follow from
extremal utility processes. In discrete time the corresponding Probit choice model is Markovian
only when the Gaussian utility processes have zero autocorrelation.
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Appendix

Lemma 1 

Let F(x,y) be a bivariate (type III) extreme value distribution. Then -logF(-x,-y) is convex. If

F(x,y) is continuous the left and right derivatives, aFix,y)fax and aFt(x,y)ky, exist and are non-

decreasing.

Proof:

Let L(x,y) = -logF(-x,-y). Since F is a c.d.f. it follows that L is non-decreasing. Moreover,

since F is a bivariate extreme value distribution it follows by Proposition 5.11, p. 272 in Resnick

(1987) that there exists a finite measure g on

A =	 z + z 22 =

such that

L(x, y) = max (zi ,z 2 eY) (dx, dy).

Since ziex and z2eY are convex functions it follows that L(x,y) is convex. Since L(x,y) is convex the

left and right derivatives of F(x,y) exist. (See for example Kawata, Theorem 1.11.1 p. 27.)

Q.E.D.

Proof of Theorem 3:

We assume n = 2 since the general case is completely analogous. As in eq. (4.8) let

B(s)= B(t—) = {1,2}, s < t, and B(t)= 11,2,31.

Consider the case with choices at two moments in time, s and t. Let Fi(s,t,x,y) be the c.d.f. of

(1,J i (s), U i (t)). Note that since {U i (0, t _?. 0} is assumed continuous in probability it follows that

Fi(s,t; x,y) is continuous in (x,y). Let

G. (x,y)= — log Fi (s, t; x, y)

We have, since the utility processes are continuous in probability, that

(A.1)

(s) > U 2 (s), U 2 (t—) > U 1 (t—), U 3 (t) > max(U 1 (t), U2 OM = P(U (s) > U 2 (s), U 3 (0 > U 2 (0 > UM»

i. 	(s, dx , dy )F2 (s, t; dx 2 , dy 2 )F3 (S, t*, , dy 3 )=-- 	 — F3 (S, 00, y))F (s, t; x, dy)Fi (s, dx, y).
<y2<y3
XI >X2
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Since the marginal distribution of WO is type III extreme value (Theorem 2) we can write Fj(s,t;00,y)

as

	(s, t; 00, y) = exp(—m i e-Y	 A.2)

where log m i = EU i (0— 0.5772. By Lemma 1 the first order left and right derivatives of Gi(x,y)

exist. From now on we shall use the notion "derivative of G•(x,y)" meaning the respective (first order)

right derivative. Since F by A4 is a multivariate extreme value distribution it follows that for ZE R

G i (x,y)=e -z G i (x — z,y z).

Hence

F2 (S, t; X, dy) (S, t; dx, = [exp (—e -Y (G (x — y, 0))+ G 2 (X y,	
(A.3)

• e -2Y a i o,(x - y,o)a 2 G 2 (x — y,O)dxdy

where ai denotes the partial derivative with respect to component j. Let h i (x) = G i (—x,0) . From the

relationship

G i (x,y)=e-Y G i (x— y,0)=e -Y h i (y — x)

it follows that

a 2o 1 () = - h i (x)+14(x).	 (A.4)

By Lemma 1, hi(x) is convex and therefore has derivatives that are non-decreasing. From (AA), (A.2),

(A.3) and (A.4) it follow after the change of variable x =— u+ y, that

P(U / (s)> U 2 (s),U 3 (t)>U 2 (t)> U / (0)

= (1— exp (—m 3 e-Y ))[exp (—e-Y (11 (u) + h 2 (u)))1 h I (u) (h 2 (11)— h (u) e -2y du dy	 A.5)

R 2

j• h (u) (11 2 (11) — (u))du f 	 (u) (11 2 (11) — h (u))du

h(u) 2 	(NU) + M 3 )2

where h(u)= h i (u)+ h 2 (u). Now Assumption Al implies that

(U (S) > U2 (s), U 3 > U2 (0 > (0)

= P (U 3 (t) > max (U 1 (t), U 2 (0))1) (U 1 (s) > U 2 (s), U 2 (0 > U 1 (0)

m
3 	P(U1(s)>U2(s),U1(t)<U2(t)).

in / +m 2 +m 3

(A.6)
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From (A.5) we obtain, by letting m 3	, that

,	 h(u)(1.1 (u) h(u))du
P(U i (s)>U ( ),U 1 (t)<U 2 (t))=

h(u)2
R

Hence, (A.5), (A.6) and (A.7) imply that

m +m2 	f h (u) 01 2 (11) - h '2 (u))clu	 11; (u) 01 2 (u) h '2 (u))clui 

	

m1 +m2 +m3 jR	 h(u)2	 + M 3 )2R

	Suppose now that x =	 00 is the largest point at which h i (x)+ h'2 (x) . 0. Then since

(x) is nondecreasing it must be true that li(x). h'2 (x)= 0 for x 5_ r. As a consequence the

mapping v: R,. —> [r,00) defined by

z = h(v(z))— h(0)

exists, is invertible and has (right) derivative everywhere on R. By change of variable

--u—>v 1 (u)=z

(A.8) takes the form

(A.7)

(A.8)

(A.9)

(A.10)

where

m 1 + m 2 	f  f(z) dz	 °:

	

mi +m2 +m3 (h(0)+z)	 h(0)+z+m3

q = h(	 h(0) = h(r) h(0),

	

f(z) = h'2 (v(z))Ar(z)(11 1 (v(z))— h (v(z))).	 A.11)

But the right hand side of (A.10) is a generalized Stieltjes transform of f() (see Widder (1941),

evaluated at h(0) + m 3 . Due to the uniqueness property of the generalized Stieltjes transform (A.10)

implies that f() must be constant for z q, since the left hand side of (A.10) is the generalized

Stieltjes transform of a constant. As a consequence, we must have that m 1 + m = h(0). From the

definition of v(z) we get

1= h'(qv(z))v'(z).	 (A.12)
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Hence, (A.11) and (A.12) with u = v(z) yield

h (u) (11 2 (u) — h; (u)) = h '(u) C i2 	(A.13)

for u > r, where C12 is a constant. Similarly we get

h(u)(11 1 (u)-14(u))= h'(u)C 21

for u > r, where C12 is another constant. By substracting (A.14) from (A.13) we get

h'(u) h 2(11) — h; (u) h(u) = h '(u) (C 12 — C2 1 )

which, when dividing by h(u)2 becomes equal to

h  (u) h(u) — h 2(u) h'(u) h '(u) (C21 —C 12 )

h(u) 2 	h(u)2

Next, integrating both sides of (A.15) yields

h 2 (1) C12 —C 21  + d
	h(u)	 h(u)	 1

for u > r, where d 1 is a constant. Hence we obtain

h2(u)=C12 —C21 +h(u)di

for u > r. By inserting (A.16) into (A.14) we get

h'(u) (h i (u)— h (u))cl = h '(u) C 21

(u)— h'i (u)=C 21 /d i .

Similarly, it follows that 

h2(u)— h(u)=C 12 /d 2= -/ 

for u > r. Eq. (A.17) is a first order differential equation which has a solution of the fonn

	h.(u)=a. -Ff3. &'
J	 J	 J

for u > r, which is equivalent to

(A.14)

(A.15)

A.16)

(A. 17a)

(A. 17b)

(A.18a)

for u > r	 j =1,2. Since (u) = 0 for u r and hi(u) is continuous we get from (A.18a) that
J

h.(u)=a. +P.e
J	 J	 J

(A.18b)
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for u 5. r. As a consequence

G i (x, y) = e h i (y — x) = a i e + 3. exp (— min(x, y — r)).	 (A.19)

From (A.19) we obtain that for s < t

P (U i (t) 5_ ylU i (s)=x)= 0	 (A.20)

when y < x + r, and

IqU i (t)5ylU i (s)=x)=P(U i (t).5_y)	 (A.21)

when y > x + r. Eq. (A.20) means that {U 1 (t)} is non-decreasing with probability one. Eq. (A.21)

means that conditional on U i (t) > U i (s) then U i(t) is stochastically independent of U i(s). But then we

must have that {Il i (0} is equivalent to the utility process defined by

U i (t) = max Oj i (s), W. (s, + r	 (A.22)

where Wi(s,t) is extreme value distributed and independent of U i(s). Since U 1 (t)U 2 (t) is

independent of r for any t we may without loss of generality choose r = O. But then (A.22) defmes the

external process which was to be proved.

Q.E.D.

Lemma 2

Suppose {Uk (t),t 01, k = 1,2,...,m, are independent extremal processes. Let

V(t)= max keB(t) Uk (t). If 13(s) B(t) for s <t, then there exists a mapping f(-) such that

J(t,B(t))= f (As, B(s)),V(s), 4(s, t))	 (A.23)

where 4(s, t) is a random vector which is independent of (As, B(s)),V(s)).

Proof:

The proof is similar to te proof of Theorem 2.1 in Resnick and Roy (1990). Due to (3.11) we

can express V(t) as

V(t) = max (V(s),W(s,

where W(s,t) is a random variable that is independent of V(s). Hence
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J(t , B(t)) = J (s, B(s) )1 [w(s3) , v(s)] + 	 il[v(0<w(s,0=w;(s3)]  f 0(s, B(s)), V(s), 4(s, 
))

where

4(s, t) = (w1 (s, 0, W2 (S,	 , Wm (S, t)),

which shows that J(t, B(0) can be expressed as a function of Ns, B(s)), V(s)) and something that is

independent of (.T(s, B(s)), V(s)) .

Q.E.D.

Lemma 3 

Let Ck , B E .9, Ck C B, k = 1,2,..., K, and assume that the utilities are independent extremal

processes (with extreme value marginals). Then for s <t

1)(J(t, B)= j, 171k Ceil Uk (t)5.y1A-c, Ck ),T 	 k= 1,2,..., IC)

= P (t, B)= ji	 C P(max
IceB Uk(1)37) .

(A.24)

Proof

Since Ns, C k S 01 is a Markov chain for each k it follows that also

1.10, CO, J(s, C	 JO,CK), s > 0} is a Markov chain. Thus

P(.1(t,B)= j,maxU k (t).yikt,C k ),T s,k
keB

=P(J(t,B)= j,maxU k (t)_yl J(s,CO3 k
ke B

For expository simplicity we shall go through the rest of the proof for the case with B = C 1 = {1,2,3},

C 2 = 11,24, C 3 = {1,3}, C 4 = 12,31 Then the information about the choices from C 1 , C 2 , C 3 , C 4 , is

equivalent to the information about the ranking of the alternatives at time s. Under the extremal

process assumptions we can write

where

Fi(xj,yi)E----P(Uj(s)5_xj,Ui(t)5..yi)

= exp (—a j e -min(xj ' Y ' ) —(b j — a.
(A.25)
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log a j = E U i (s) — 0.5772, log b i = E U i (t) — 0.5772.

From (A.25) it follows that

P (max(U i (0, U 2 (0)< U 3 (05. y, U 2 (s) < U 3 (s) < U 1 (s))

(C1X , dy )F2 (clx 2 , dy 2 )F3 (dx 3 , dy 3

X2 <X3 <Xi
Yi <Y3 .Y2 <Y3 .Y3<Y

F1 (clx 1 ,y 3 )F2 (dx 2 ,y 3 )F3 (dx 3 ,dy 3 )
313<Y

X, <X, <X,  

, Y »F2 (X 3 , y 3 )F3 01X 3 ,dy 3

y3 <Y

(exp(—b i e -)'3 )— exp(—a l e -x3 — (1) 1 — a l )e -Y3 ))ex (—a 2 e -x3 —(b 2 —a
X3 <y3 Sy

exp(—a 3 e -x3 — (1) 3 — a 3 )e -Y3 )(b 3 — a 3 )a 2 e -x3-3'3 dx dy 3

(exp(—b l e-Y3 )— exp(—b i e-Y 3 ))exp(-1) 2e-Y3 )exp(-1) 3 e -Y3 	a )e-Y3dy3
x3=Y3<Y

a l a 3 ( , 3 —a 3 )exp(—(b i b 2 +b 3 )e-Y)

(a 1 a 2 +a 3 Xa 2 +a 3 X1), +b 2 b 3 )

A.26)

Now since

13 (maxU k (t)5.y)=exp(—(b l +b +b 3 )e-Y)
keB	

A.27)

(A.26) implies that max U k (0 is independent of 0(s, C 1 ), J(s, C 2 ), J(s, C ), J(s, C 4 )). Moreover, it
keB

follows from Luce and Suppes (1965), p. 354 that

P (U 2 (s) < U 3 (s) < U 1 (s))=
a 	 a 3	

(A.28)
a l +a 2 +a a 2 +a 3

and from Theorem 4 that

— 

P0(t,B)=31J(s,B)=1)= b3 a3
+b 2 +b

A.29)

By inserting (A.27), (A.28) and (A.29) into (A.26) the conclusion of the theorem follows in the

particular case considered here. In the general case the argument is completely anologous.

Q.E.D.
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Lemma 4

Suppose that the utility processes are independent extremal processes (eith extreme value

marginals). Let t 1 < t2 <...<tn <t be arbitrary points is time. If BO n )-= B(t) then

P (J(t, B(t))= j I .1(t k ,	 k )), k =1,2, ..., n) = P (J(t, B(t))= j I	 n , B(0)).	 (A.30)

Proof:

Let	 Q =	 )c B(t)}, Vt et) -a max U k (t)

H P(J(t,B(0)= jIJ(t k ,B(t k ))=i k , k

with B(t)=13(t n ). We have, for i k E B(t k

H = Ell)(J(t,B(t))= j1J(t r ,13(0)= i r , r E Q,J(t k ,B(0),Vt (t k ),U g (t k ),q e 13(t k ) ' B(t), k e Q)

• i r „,
Li ktk ,B vtk =ikeQ ji •

Since U k iS independent of V t(t),	 k , B(t)), .1(t r , B(t r )),	 B(0) for q B(t), r Q, H

reduces to

H = E{P(J(t, B(t))= il J(t.„13(t i. = „ r e Q,J(t k , B(0), Vt k),1( e Oktk,B(ta=ik,keQ

which by Lemma 2 reduces further to

H = E{P(.1(t, B(t))= i l J(t n , 13(t 	 = i n Vt (tn )) 1 [J(t k 	k<n]

= E{P(J(t, BO» = il J(t n , 13(t n = i n , Vt (0, Vt (t n [j(tk ,Bm)=ik k<n i

t	 k	 , k<n]= EtP(J(t, WO) = J(t n ,B(t n ))= i n , V (0)1p (tk Bo

Since V(t) is independent of (J(t,B(t)),J(t n ,13(t n ))) , (A.31) implies that

H 7-- Efl)(4t,B(t))= Atk ,13,tk ik k<nJ (t n ,13(tn =	 r

= P(J(t,B(0)= ji J(t n ,B(t n ))= in).

(A.31)

(A.32)
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But (A.32) implies that the transition intensities given the choice history only depends on the last

choice before time t.

Q.E.D.

Proof of Theorem 6:

Let B(t) \ B(t—)#Ø, E B(t) B(t—) and let t 1 < t 2 <....< t n < t be points in time such that

one of the tk, say t:, equals r(t). Also let BOO= B(t—) and i k E B(t k ). Let

N P (J(t, B(0)= j1J(t k ,B(t k ))=i k , k 5.n).

From Lemma 3 it follows that

N = E {P (J(t,13(0)= j I J(t k , 13(t k )), k 11)1 [j(tk k

= E {P 00, B(t)»= j JO n , B(0)1[10(),B()).4 ]

= P 0(t, B(0). jIJ(r(t), B(0) =

Now (6.2) follows from (5.3) by replacing B by B(t). Eq. (6.3) follows from the adding-up conditions.

Q.E.D.

Proof of Theorem 8:

Let t / < t 2 <... < t n < t be arbitrary points in time, 13(t n )=B(t—) and

Vt (t) = pela Uk (t)

*
Let i k E B(t k ) and choose one of the time epochs, say t: such that s(t)=t : withi=i k . By

assumption, J3(t n )\ B(0# 0, i n E13(t n )\ B(t). Let j E B(t) ,

M P (J(t , B(0)= jIJ(t k ,	 k ))= i k =1,2, ...

and Q= B(t )EB(t)}. We have that

1\4 = +0'(t, WO) =	 r , 13(0),	 k Vt 	q E B(t	 B(t), r e Q, J	 B(t k )), k E Q 
[J(tk ,B(tk ))=i k ,k5n
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Since U g (t k ), for q E B(t k B(t) , is independent of J(t, B(t)), J(t , B(t)), .1. (t k , B(t k )), k EQ, M

reduces to

M = E {13(qt, WO= J(t r , B(0), Vt 	r Q, J(t k 	k )))1 ktk ,B(k))=ik ic5.n

= E {PO, B(t))= j I n , B(t)), Vt n ktk ,B00)=ik

(A.33)

Since {V, ('r), 0 <	 t} is a Markov process and V(t) is independent of J ,B(T)) for

it t, B(T) C B(t) (A.33) reduces further to

M = E {PO, B(t))= j I	 , B(0), Vt (0)1 ktk ,B(t
)

). ik

= E {1)0(t,B(t))= j1J(t,B(t)))l {j(tk,B())=ik,kni }
	

(A.34)

= E {P(J(t, B(t))= j I	 , B(t)»1 [j(t0300).ik k.Q]

= P(.1(t,B(0)= ji .4s(t),B(0)=i).

But then the results of Theorem 8 follow immediately from (5.4) and (5.3) with B is replaced by B(t).

Q.E.D.

Proof of Theorem 9 

From (7.1) and (7.2) it follow that the conditional distribution of U(t) given U j(t-1) and given

the choice history can be expressed as

P(U i (05.ylU i (t---1)= x, h(t)) = {exp exP j (t. h(0)— y)) for y x,

0 otherwise.
(A.35)

For expository simplicity let B(t)=S for all t. The proof in the general case is completely analogous.

Eq. (A.35) implies that we may write

P (U(t) 5.. y I U(t — 1) = x, h(0)= M (y g(t, h(t))x)	 (A.36)

where

g (t, h(t)) = (g i (t, h(0), g 2 (t, h(t) - , g	 , h(t)))

and

40



m(31x)_ {ex	 e-Yk , y k Xk,Vk m,
k

0 otherwise.

Let j(t), =1,2,..., be a sequence of choices and define

= f(u(1), u(2), , u(0) : u i(,) (t) = max k 	t}.

We have

P (TM= j(t), =1,2,...,t)=	 11 dM u(t)— ,h * (T))1u(t — t))	 (A.37)
Q(t) T=1

where u(0)= —00, and {h * (t)} are the choice histories

h * (t) = IJ(s)= j(s), s	 - 11.

Let g i (t), =1,2,..., denote the parameter of the c.d.f. (7.2) under pure taste persistence, and define

L (h* (t +1), g(1), g(2),..., g(t)) j. fl d *CO— g(T)I 't —
(go T=1

)),
A.38)

where g(t)= (g ('c),	 gn(T)). Clearly, (A.38) is the likelihood function under pure taste

persistence. We know from Theorem 4 that the likelihood function (A.38) has a structure that implies a

Markovian choice process under pure taste persistence. But when (U(1), U(2), ..., U(t))E WO the

choice history, including the choice at time t, equals h * (t +1) and consequently the terms

g(t,h * (T)), for 't = 1,2,..., remain constant when the integrand in (A.37) is integrated over WO.

Therefore we must have that

P (.T(T) = j(t), = 1,2, ... , t) qh * (t + 1), g(1, h * (1)), g(2, h * (2)), , g(t, h * (0)). 	(A.39)

Eq. (A.39) implies that conditional on the parameters gec, her», = 1,2,..., the choice process is a

Markov chain with transition probabilities that have the same structure as in Theorem 1 with v i(t)

replaced by v i (t, h(0), defined in (7.3).

Q.E.D.
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