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Abstract

We evaluate the empirical performance of forward-looking models for inflation
dynamics in a small open economy. Using likelihood-based testing procedures, we
find that the exact formulation is at odds with Norwegian data. Moreover, some of
the parameters in the model are not well identified. We also find that the inexact
formulation is not rejected statistically using a test based on a minimum distance
method. However, confidence regions reveal an identification problem with this
model as well. Instead, we find a well-specified backward-looking model with
imperfect competition underlying the price setting, a model that outperforms an
alternative forward-looking model in-sample. The backward-looking model also
forecasts somewhat better than the alternative forward-looking model during and
after the recent financial crisis.
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I. Introduction

Forward-looking models, based on rational expectations, optimising agents and imper-

fect competition in markets for goods, have long played a central role in understanding

inflation dynamics in the economics profession and in central banks conducting inflation

targeting. Since the influential papers by Roberts (1995), Fuhrer and Moore (1995), Gaĺı

and Gertler (1999), Gaĺı et al. (2001) and Sbordone (2002), a large number of studies

have been devoted to testing the role of expectations in inflation dynamics based on

data from both closed and open economies, see Mavroeidis et al. (2014) and An and

Schorfheide (2007) for reviews of the literature. Studies differ with respect to the data

used, the sample period studied and the econometric methods applied. The supportive

evidence on forward-looking behaviour in price formation is rather mixed.

In this paper, we follow Mavroeidis et al. (2014), among several others, and

evaluate the empirical performance of forward-looking models based on Norwegian data

and using a limited-information approach. Building on Sbordone (2002), our forward-

looking models relate current inflation to expected future inflation and the difference

between the actual price and the steady state value of levels as a theory-consistent

forcing variable. The steady state value is specified as a mark-up over marginal costs,

which, in turn, are determined by costs of both labour and imported intermediate goods

along the lines of the open economy models in McCallum and Nelson (1999), Kara and

Nelson (2003) and Batini et al. (2005). We contribute to the empirical literature by

studying both the exact formulation in the sense of Hansen and Sargent (1991) and

the inexact formulation in which a stochastic error term is included in the model. For

the exact formulation, we employ the likelihood-based testing procedures suggested

by Johansen and Swensen (1999, 2008). Because a similar treatment of the inexact

formulation is more complicated to handle, we rely on a test based on a minimum

distance approach along the lines of Sbordone (2002), and Magnusson and Mavroeidis

(2010). Consequently, we are able to shed some light on the importance of introducing a

stochastic error term to the empirical model, an econometric issue that is often neglected
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in the literature. Unlike most related studies, e.g. Gaĺı and Gertler (1999), Gaĺı et al.

(2001) and Batini et al. (2005), we pay particular attention to time series properties

of the variables involved, and the possible existence of unit roots, and we search for

statistically well-specified underlying models as premises for valid statistical inference

on the forward-looking models, cf. Mavroeidis et al. (2014). Another issue that has

been little addressed in the literature is forecasting performance. Recently, Rumler and

Valderrama (2010) and King and Watson (2012) have discussed this issue. The latter

two authors find a large gap between inflation predicted by the Smets and Wouters

(2007) forward-looking model for the US and actual inflation. The gap can only be

closed by assuming large and exogenous mark-up shocks. They recommend devoting

more attention to detailed analysis of the structural inflation equation in order to detect

imperfect specifications. In our study, we also compare and contrast specifications of

a reduced form forward-looking model with a backward-looking model counterpart as

two competing models of inflation dynamics, both in-sample and out-of-sample in a

forecasting competition.

Our empirical investigation, which is based on a data set not used in this setting

earlier, produces several noteworthy findings. Firstly, we establish a well-specified em-

pirical counterpart to the theory-consistent link between consumer prices and marginal

costs. Secondly, we demonstrate that the exact formulation of the forward-looking

model is at odds with the data. That is, the rational expectations hypothesis is not

rejected statistically. However, when only economically meaningful parameters are al-

lowed for, the model is not supported by the data. In addition, a plot of the likelihood

surface reveals that some of the parameters may not be well-identified. Using alterna-

tive methods to those of Kurmann (2007), we also discuss the inexact formulation of the

forward-looking model and find no indication that this model yields radically different

results. In particular, the identification problem seems to also be present in this model.

Thirdly, we establish a well-specified competing backward-looking model of inflation

dynamics in a sample containing a major monetary policy regime shift. Finally, we

find that the backward-looking model forecasts somewhat better than a reduced form
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forward-looking model during and after the recent financial crisis.

The rest of the paper is organised as follows: Section II outlines our forward-

looking models, Section III describes the data, Section IV reports findings from the

cointegration analysis, Section V reports the various tests of the forward-looking mod-

els and Section VI evaluates the empirical performance of the reduced form forward-

looking model compared with the backward-looking model, and conducts a forecasting

competition between these models. Section VII concludes.

II. Theoretical framework

Several approaches have been suggested in the literature to introducing open economy

features into the price formation of firms. One approach treats imports as substitutable

final consumer goods for domestically produced goods and assumes that the representa-

tive firm operates in imperfectly competitive markets facing regular downward sloping

demand curves, see, e.g., B̊ardsen et al. (2005, ch. 8.7) and Gaĺı and Monacelli (2005).

Profit maximisation then implies that prices are set as a mark-up over marginal costs,

where the mark-up depends on the relative prices of domestic and imported consumer

goods. A second approach treats imports as intermediate goods in production rather

than as final consumer goods, see, e.g., McCallum and Nelson (1999), Kara and Nelson

(2003) and Batini et al. (2005). Profit maximisation then implies that prices of imports

become important determinants of marginal costs and not of the mark-up. A third

approach treats imports as intermediate inputs as well as final consumer goods. Hence,

prices of imports would be accounted for through both the mark-up and the marginal

costs. A disaggregated model would then be necessary.

We rely on the second approach in this paper and treat imports as intermediate

goods in production. Our main argument is that imports are rarely imported by con-

sumers themselves, but rather by the wholesale and retail trade sector, and are used

in combination with other inputs to supply domestic consumers with goods. These

imported goods are usually both intermediate goods and final consumer goods. For
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instance, an imported agricultural product can be bought in a shop by the consumer,

as part of a meal in a restaurant or as an input to the domestic food industry. Petrol is

used both by consumers as a final good and by firms as input in production. In any case,

the wholesale and retail trade sector adds trade margins and domestic cost components

to the costs of imports to make up the consumer prices of imported goods.

Assuming a representative profit-maximising firm facing an isoelastic, downward-

sloping demand curve and a Cobb-Douglas production function in labour and imports

of intermediate inputs, we have

p∗t = m0 + ψ1ulct + ψ2uict, (1)

where lower case letters indicate natural logarithms and p∗t , m0, ulct and uict are the

steady-state value of the price level, the constant mark-up, the unit labour costs and

the unit import costs of intermediates, respectively.1 The price equation in (1) is ho-

mogeneous of degree one in the factor prices, i.e. ψ2 = (1 − ψ1).

The various forward-looking models proposed in the literature on the new Key-

nesian Phillips curve share essentially the same semi-structural form, but differ with

respect to the specific underlying pricing behaviour, including the forward-looking lin-

ear quadratic adjustment cost model of Rotemberg (1982), the models of staggered

contracts developed by Taylor (1979, 1980) and the sticky price model of Calvo (1983).

We build on equation (2.9) in Sbordone (2002) and specify our forward-looking models

as

Δpt = δEtΔpt+1 − λ(pt − p∗t ), (2)

where Δpt = pt − pt−1 is current inflation and EtΔpt+1 is expected inflation one period

ahead, conditional on information available at time t. Now, inserting (1) in (2) yields a

1A full derivation of (1) is shown in Appendix 1. In the literature on the closed economy new
Keynesian Phillips curve, it is common to assume that producers face isoelastic demand curves, so that
the mark-up is a constant, see, e.g., Gaĺı and Gertler (1999) and Gaĺı et al. (2001).
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forward-looking model of inflation dynamics

Δpt = δEtΔpt+1 − λeqcmt + ψ0, (3)

where

eqcmt = pt − ψ1ulct − ψ2uict (4)

and ψ0 = λm0. If our specification of price formation in a small open economy, as

shown in (1), is supported by the data, then the equilibrium correction term in (4) with

the homogeneity restriction imposed should be a stationary variable. This is a testable

implication that we will return to in Section IV. Inspired by Gaĺı and Gertler (1999)

among others, we specify the so-called hybrid version of (3) as

Δpt = γfEtΔpt+1 + γbΔpt−1 − λeqcmt + ψ0, (5)

which allows for some firms to be backward-looking according to a rule of thumb hy-

pothesis where past inflation drives current inflation. The semi-structural parameter

spaces 0 ≤ γf , γb ≤ 1 and 0 ≤ λ are required in order to provide an admissible eco-

nomic interpretation of (5). The hybrid forward-looking model reduces to its non-hybrid

version when γb = 0. We note that (5) may be reparameterised as

Δpt = ϕ1EtΔpt+1 + ϕ2Δpt−1 + ϕ3Δulct + ϕ4Δuict − ϕ5eqcmt−1 + ϕ6, (6)

where ϕ1 = γf/(1 + λ), ϕ2 = γb/(1 + λ), ϕ3 = λψ1/(1 + λ), ϕ4 = λψ2/(1 + λ),

ϕ5 = λ/(1 + λ) and ϕ6 = ψ0/(1 + λ). Hence, (6) becomes a backward-looking Phillips

curve written in the usual equilibrium correction form when γf = 0.

As pointed out by Mavroeidis et al. (2014), one may in principle allow for any

number of lagged inflation terms in the model if the objective is to nest traditional

Phillips curves. In addition to the backward-looking rule of thumb, lagged inflation

terms could be motivated by staggered relative wage contracts and the indexation of
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prices to past inflation, see, e.g., Fuhrer and Moore (1995) and Christiano et al. (2005).

We will return to these issues in the discussion of our empirical findings in Section VI.

III. Data

The empirical analysis is based on quarterly, seasonally unadjusted data that span

the period 1982Q1 − 2011Q4, from which data from the period 1982Q1 − 2005Q4 and

2006Q1 − 2011Q4 are used for estimation and out-of -sample forecasting, respectively.

Mavroeidis (2004) concludes that the estimates of forward-looking models are less reli-

able when the sample covers periods in which inflation has been under effective policy

control. The starting point of our estimation period is thus motivated by the fact that

the 1970s and the early 1980s were characterised by massive governmental price controls

in Norway, see Bowitz and Cappelen (2001). If the expectation term in the forward-

looking model relationship is the most important factor determining the correlation

between exchange rate movements and inflation, we would expect the relationship to

depend closely on the monetary policy regime. We explored this hypothesis by end-

ing the estimation period in 2001Q1 rather than in 2005Q4, since monetary policy in

Norway changed fundamentally from exchange rate targeting to inflation targeting in

late March 2001, see Boug et al. (2006) for details. It turns out, however, that the

results from the cointegration analysis in the next section are virtually the same for

the two ending points. By extending the estimation sample by twenty-four quarters

for out-of -sample forecasting, we shed light on any change there may be in the link

between exchange rate movements and domestic inflation following the financial crisis

in 2008 and onwards. The out-of-sample forecasting ends in 2011Q4 since available

data on marginal costs for the years 2012 and 2013 are only preliminary figures from

the national accounts.

We measure quarterly inflation by the official consumer price index (CPI) rather

than by the GDP deflator often used in the new Keynesian Phillips curve literature.

Prices set by agents in the economy are based on gross output and not on value added.
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Figure 1: Time series for pt, uict, ulct and Δpt
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Deflators based on value added are typically residuals in the national accounts, particu-

larly those that follow the recommended principle of double-deflating, in which different

deflators are used for gross output and material inputs. Hence, the GDP deflator is

less related to micro price-setting behaviour than the consumer price index. There may

be a problem, however, with using the consumer price index if indirect taxes change

in a systematic way, although this also affects the GDP deflator. As noted below, we

adjust for one episode of indirect tax changes in the sample period. In line with Batini

et al. (2005), we employ the deflator for total imports as a proxy for unit import costs,

whereas total labour costs relative to value added in the private mainland economy

serve as a proxy for unit labour costs. The details can be found in Appendix 4. Figure

1 shows the log of the consumer price index (pt), the log of unit import costs (uict)

and the log of unit labour costs (ulct), together with the inflation rates (Δpt) over the

sample period.

During the estimation period, consumer price inflation shows rather large changes

in the quarters 1986Q3, 1996Q1, 2001Q3, 2003Q1 and 2003Q2. These changes are as-

sociated with a 12 per cent devaluation of the Norwegian currency in May 1986, a
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reduction in indirect tax rates during the first quarter 1996, a reduction in the VAT

rate on food from 24 per cent to 12 per cent in July 2001 and a substantial increase

and decrease in electricity prices during the first and second quarter 2003, respectively.

That inflation increased considerably in the third and not in the second quarter of 1986

is due to delayed pass-through from exchange rate changes to import prices and con-

sumer prices, see Boug et al. (2013). Fluctuations in electricity prices are to a large

extent related to natural causes (e.g. temperature) and not much to immediate eco-

nomic phenomena, since electricity is mainly based on hydroelectric power in Norway.

We control for the above-mentioned episodes in the empirical analysis, using impulse

dummies labelled D86Q3, D96Q1, D01Q3, D03Q1 and D03Q2. Consumer price in-

flation also shows some huge fluctuations during the forecasting period, especially in

the quarter 2007Q1 and in the years 2008 and 2009, which can likely be attributed to

the substantial fall in electricity prices and the large movements in the exchange rate

during the recent financial crisis, respectively. We further note that the time series

exhibit a clear upward trend, but with no apparent mean-reverting property, suggesting

that pt, uict and ulct are nonstationary I(1) series. Therefore, a reduced-rank vector

autoregressive (VAR) model is a candidate as an empirical model.

IV. Cointegration analysis

We adopt the cointegration rank test suggested by Johansen (1995, p. 167) to find an

empirical counterpart of (4). The point of departure of the I(1) analysis and the tests

that follow is a p-dimensional VAR of order k written as

Xt = A1Xt−1 + ∙ ∙ ∙ + AkXt−k + Φ0Dt + Φ1 + Φ2t + εt, (7)

where Xt = (pt, ulct, uict)
′, Dt includes seasonal dummies labelled SDit (i = 1, 2, 3) and

the impulse dummies D86Q3, D96Q1, D01Q3, D03Q1 and D03Q2 as described above,

t is a linear deterministic trend and εk+1, . . . , εT are independent Gaussian variables

with expectation zero and (unrestricted) covariance matrix Ω. The initial observations
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of X1, . . . , Xk are kept fixed. We follow common practice and restrict the linear trend to

lie within the cointegrating space, whereas the deterministic components Dt and Φ1 are

kept unrestricted in (7). If Xt is I(1), the presence of cointegration implies 0 < r < p,

where r denotes the rank or the number of cointegrating vectors of the impact matrix

Π = A1 + ∙ ∙ ∙+Ak − I. The null hypothesis of r cointegrating vectors can be formulated

as H0: Π = αβ ′, where α and β are p × r matrices, β′Xt comprises r cointegrating I(0)

linear combinations and α contains the adjustment coefficients.

We find that k = 3 is the appropriate choice of lag length to arrive at a model with

no serious misspecification in the residuals.2 Table 1 shows the findings from applying

the cointegration rank test to the data based on the VAR of order three.

Table 1: Tests for cointegration rank
r λi λtrace λa

trace

r = 0 0.262 47.22 [0.016]* 42.65 [0.052]
r ≤ 1 0.136 18.95 [0.290] 17.12 [0.414]
r ≤ 2 0.056 5.36 [0.555] 4.84 [0.626]
r denotes the cointegration rank and λi are the eigenvalues from the reduced-rank
regression, see Johansen (1995). The λtrace and λa

trace are the trace statistics without
and with degrees of freedom adjustments, respectively. The p-values in square brackets,
which are reported in OxMetrics, are based on the approximations to the asymptotic
distributions derived by Doornik (1998). It should be noted that inclusion of impulse
dummies in the VAR affects the asymptotic distribution of the reduced-rank test statistics.
Thus, the critical values are only indicative. The asterisk * denotes rejection of the null
hypothesis at the 5 per cent significance level.

We observe that the rank should be set to unity at the 5 per cent significance

level (albeit the λa
trace statistics is a borderline case), indicating the existence of one

cointegration relationship between consumer prices, unit labour costs and unit import

costs. It may be worth pointing out that starting with a VAR with an unrestricted

constant only yields the same result, r = 1. The p-values, not adjusted for degrees of

freedom, corresponding to r = 0, r ≤ 1 and r ≤ 2 are 0.00, 0.12 and 0.09, respectively.

The null hypothesis that the linear trend, Φ2 = 0, can be eliminated from the

VAR, assuming the rank to be unity, is not rejected by a likelihood ratio test. The

p-value is 0.388 based on a χ2 approximation with one degree of freedom. The corre-

2The preferred VAR includes an additional impulse dummy labelled D84Q1 to mop up a relatively
large residual in 1984Q1 in the ulct-equation. Without D84Q1 the ulct-equation suffers from severe
residual autoregressive heteroskedasticity. The cointegration analysis below is not significantly affected
by any of the impulse dummies included in the preferred VAR.
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sponding maximised value of the 2 log likelihood, which will be used in Section V, is

2536.72. Imposing a further restriction of homogeneity between pt, ulct and uict entails

a reduction in the value of the 2 log likelihood of 0.0097, which corresponds to a p-value

of 0.921 using the same χ2 approximation. We obtain the following empirical counter-

part of (4) when the restrictions of homogeneity between pt, ulct and uict and no linear

trend in β are imposed:

êqcm1,t = pt − 0.641ulct − 0.359uict. (8)

The issue of joint weak exogeneity of ulct and uict is more debatable. Here,

the −2 log likelihood ratio value is 7.909. The p-value based on approximating the

null distribution with a χ2 distribution with two degrees of freedom is 0.02. However,

investigating weak exogeneity more closely, using both parametric and non-parametric

bootstrap methods, reveals that the asymptotic approximations are not accurate in our

case. A bootstrap of the likelihood ratio test, as in Omtzigt and Fachin (2007), using

the estimated values of the VAR coefficients and not imposing weak exogeneity and

resampling the residuals, yields a p-value of 0.515. The outcome of a non-parametric

bootstrap is similar. We conclude that the cointegration vector enters the Δpt-equation

only. Imposing, in addition, weak exogeneity of both ulct and uict yields

êqcm2,t = pt − 0.604ulct − 0.396uict. (9)

We see that êqcm1,t and êqcm2,t are quite similar, which provides further evidence

that the restriction of weak exogeneity of both ulct and uict can be justified. Figure 2

depicts time series for pt and p̂t based on (8) over the sample period.

It is evident that p̂t matches pt rather closely, both in-sample and out-of-sample.

Hence, we interpret (8) as a long-run consumer price equation that corresponds well with

the theory of mark-up pricing and takes into account that, for a small open economy

like the Norwegian, features of an open economy such as import prices are expected

to matter. The estimates in (8) are in line with previous findings based on Norwegian
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Figure 2: Time series for pt and p̂t based on equation (8)
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data, see, e.g., B̊ardsen et al. (2005, p. 182). Nearly four decades ago, Aukrust (1977,

p. 123) pointed out that the total direct effect on consumer prices that can be expected,

under Norwegian conditions, from a proportionate increase in all import prices can be

set at 0.33 per cent. Hence, (8) is also in line with the Scandinavian model of inflation,

cf. Lindbeck (1979).

V. Tests of forward-looking models

An important econometric issue when testing the forward-looking model concerns whether

the model is specified in its exact or inexact form by introducing a stochastic error term

ut. In general, the absence of an unobserved disturbance term (ut = 0) may be a re-

strictive and nontrivial assumption since there are several justifications for why such a

term could be included in the model, see, e.g., Sbordone (2005). To shed light on the

importance of the disturbance term in our empirical case, we evaluate both versions

of the model in this paper. However, as demonstrated by Boug et al. (2010) in the

case of the new Keynesian Phillips curve within a bivariate VAR, the exact version is
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algebraically less involved and produces much simpler rational expectations restrictions

than what follow from the inexact version under the assumption that ut is a sequence

of innovations, i.e. Et(ut+1) = 0. Hence, the numerical treatment of the exact model

using likelihood-based methods is also much simpler than the inexact model. When a

trivariate VAR is the underlying model, as is the case in the present study, the numerical

treatment of the inexact model is even more complicated to handle using likelihood-

based methods. As a consequence, we employ the likelihood-based testing procedures

suggested by Johansen and Swensen (1999, 2008) for the exact model and a test based

on a minimum distance approach, along the lines of Sbordone (2002) and Magnusson

and Mavroeidis (2010), for the inexact model.

It is worth noting that, by considering the exact and inexact models as sub-

models of a reduced-rank VAR, we avoid cases like those described by Beyer and Farmer

(2007). In a single equation framework, they demonstrated that exact and inexact

models exist that have the same likelihood and are hence empirically indistinguishable.

As we shall see, the restrictions from an exact and inexact model on the coefficients of

the VAR are quite different, and thus also the likelihoods of the two sub-models.

The exact version

The basic idea behind the procedure suggested by Johansen and Swensen (1999, 2008)

is to start with a well-specified VAR model and, using the likelihood criterion, test

the implications of the hybrid forward-looking model on the coefficients of the VAR.

As explained in the previous section, a reduced-rank VAR model with three lags and

a constant, but with no linear term, passed a test for homogeneity. We will therefore

explore this model further.

Expressing (5) on level form, taking the homogeneity restriction into account,

yields

γfEt[pt+1] − (1 + γf )pt + (γb + 1)pt−1 − γbpt−2 − λ(pt − ψ1ulct − ψ2uict) + ψ0 = 0,
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or

γfEt[pt+1] − (1 + γf )pt + (γb + 1)pt−1 − γbpt−2 − λeqcmt + ψ0 = 0,

where ψ1+ψ2 = 1. With c1 = (γf , 0, 0)′, c0 = (−1−γf−λ, λψ1, λψ2)
′, c−1 = (γb+1, 0, 0)′

and c−2 = (−γb, 0, 0)′, this can be written as

c′1Et[Xt+1] + c′0Xt + c′−1Xt−1 + c′−2Xt−2 + ψ0 = 0.

The fitted VAR model contains six impulse dummies and three seasonal dummies in

addition to a constant. Denote the coefficients of the constant term as Φ1 and the co-

efficients of the rest of the deterministic terms as Φ0, so that the deterministic part of

the VAR model can be written as Φ0Dt + Φ1. The rational expectation hypothesis will

imply restrictions also on these coefficients. Because we are not focusing on the proper-

ties that the dummies capture, we simply drop those restrictions, which, as explained

in Boug et al. (2006), amounts to formulating the model as

c′1Et[Xt+1 − Φ0Dt+1] + c′0Xt + c′−1Xt−1 + c′−2Xt−2 + ψ0 = 0. (10)

Using (7) with Φ2 = 0 to obtain an expression for Et[Xt+1−Φ0Dt+1] and inserting

it in (10) implies that the following restrictions must be satisfied

c′1Π = −(c′1 + c′2 + c′3 + c′4), c′1A2 = −c−1, c′1A3 = −c−2 and c′1Φ1 = −ψ0, (11)

where Π = A1 +A2 +A3−I. For fixed values of the semi-structural parameters γf , γb, λ

and ψ = ψ1 = (1 − ψ2) the concentrated likelihood, Lc1(γf , γb, λ, ψ), can be computed

using the methods in Johansen and Swensen (1999).

However, in this particular case, the restrictions have a form that makes further

simplifications possible. As explained in Appendix 2, we can use the methods of Jo-

hansen and Swensen (2008) to concentrate out the parameters γf , γb and λ, so that the

concentrated or profile likelihood, Lc2(ψ) = Lc1(γf (ψ), γb(ψ), λ(ψ), ψ), only depends on
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ψ = ψ1 = (1−ψ2) in the case of homogeneity. Hence, it is possible to compute for each

value of ψ the value of the likelihood when the restrictions implied by (11) are satisfied.

Thus, by computing the likelihood repeatedly for many values of ψ, it is possible to

determine the maximal value of the likelihood.3

We can now test the four nested models, reduced-rank without homogeneity

restriction, reduced-rank with homogeneity restriction, exact hybrid model and exact

non-hybrid model using ordinary likelihood ratio tests. The results are summarised in

Table 2.

Table 2: Likelihood ratio tests of the exact forward-looking model. Nested models
Model 2 log L −2 log LR df. p-value
CVAR without homogeneity restriction 2536.72a

CVAR with homogeneity restriction 2536.71a 0.01 1 0.92
Exact hybrid model 2535.15b 1.56 4 0.82
Exact non-hybrid model 2529.64b 5.60 1 0.02
a Maximal values of the likelihood without the rational expectations restrictions imposed.
b Maximal values of the likelihood with the rational expectations restrictions imposed.

Using the usual top-down procedure, the test of the hybrid model is not rejected,

whereas the non-hybrid model with γb = 0 is. Hence, it is a clear advantage to include

the extra inflation lag in the expectation restrictions in the non-hybrid model. These

impressions are also evident from the plots of the concentrated likelihoods shown in

Figure 3.

The curve corresponding to the model imposing only the homogeneity restriction

reaches a maximum at ψ̂ = 0.641. This is close to the maximum likelihood estimate of

0.621 in the hybrid model. To investigate this further, we have computed the restricted

maximum likelihood estimates of the other semi-structural parameters γf , γb and λ

for some reasonable fixed values of ψ, in addition to the maximum likelihood estimate

ψ̂ = 0.621. The results are shown in Table 3. As one can see, all sums of γf and γb are

far from 1. This is not surprising. Fitting a hybrid model with the additional restriction

γf + γb = 1 yields a maximal value of 2 log L equal to 2489.10, corresponding to a value

3The procedure “optim” in the statistical package R [see http://www.r-project.org/ and R Devel-
opment Core team (2006)] is used to carry out tests and estimation of the forward-looking models. The
R-codes used for the procedures in this section and the bootstrap procedure in the previous section are
available at http://folk.uio.no/∼swensen/isoe/isoe.html.
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Figure 3: Concentrated likelihood functions 2logLc2 as functions of ψ for the CVAR
with homogeneity restriction (solid line), the exact hybrid model (short dashed line)
and the exact non-hybrid model (long dashed line)
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of 46.05 of −2 log LR. The degree of freedom is 1, so the restriction is clearly rejected.

Table 3: Some parameter estimates of the exact hybrid forward-looking model
ψ γf γb λ

0.80 3.56 −0.74 −0.14
0.62 5.16 −0.75 −0.27
0.40 5.84 −0.87 −0.23
0.10 4.83 −0.92 −0.11
The estimates of γf , γb and λ are computed for reasonable values of ψ.

Additional evidence is provided by the plots in Figure 4 of the concentrated

likelihood surface 2 log Lc1(γf , γb, λ, ψ) as a function of γf and λ with ψ and γb fixed

at 0.621 and −0.745, respectively, which are the maximum likelihood estimates of these

parameters. A rather striking feature is the smooth ridge in the γf direction, which

indicates that this parameter is not well-identified.

The economically meaningful values of the semi-structural parameters are 0 ≤

γf , γb, ψ ≤ 1 and λ ≥ 0. It is evident from Figure 4 that the unrestricted maximum

likelihood estimates will be outside this region. By defining γf (θf ) = exp(θf )/(1 +

exp(θf )), γb(θb) = exp(θb)/(1 + exp(θb)), ψ(θ) = exp(θ)/(1 + exp(θ)) and λ(θl) =

exp(θl) and maximising Lc1(γf , γb, λ, ψ) with respect to θf , θb, θ and θl, the restriction

that the parameters have a meaningful economic interpretation can be imposed. The

maximal value of 2 log Lc1 is then equal to 2437.66, corresponding to the estimates γ̂f =

1.0, γ̂b = 3.3E−06, λ̂ = 0.016 and ψ̂ = 0.70,, which are on the border of the permissible

region. The likelihood ratio test for the null hypothesis that they belong to this region

therefore has a non-standard asymptotic distribution, which is a convex combination of

χ2 distributions with different degrees of freedom. In this case, the critical values are

smaller than the critical values computed from a χ2
4 distribution. Since the difference

between the maximal values of 2 log L is so large, 2535.15 − 2437.66 = 97.49, and

therefore exceeds all relevant critical values using a χ2
4 distribution, the likelihood ratio

test also rejects the null hypothesis that 0 ≤ γf , γb, ψ ≤ 1 and λ ≥ 0.

Thus, we conclude that the hybrid model with no restrictions imposed is not

rejected by likelihood ratio tests. However, when only economically meaningful param-

eters are allowed for, the model is not supported by the data. In addition, γf seems to
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Figure 4: Surface and contour plots of concentrated likelihood function 2 lc1=2logLc1 as
a function of γf and λ for the exact hybrid model with ψ = 0.621 and γb = −0.745.
The maximal value is located at the point (5.16, −0.27)
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be poorly identified, as indicated by the rather smooth ridge of the likelihood surface

plot.

The inexact version

Another, perhaps more economically appealing, formulation of the restrictions (10) from

the hybrid forward-looking model is

c′1Et[Xt+1 − Φ0Dt+1] + c′0Xt + c′−1Xt−1 + c′−2Xt−2 + ψ0 = ut, (12)

where the error term ut is a sequence of innovations in the VAR model, i.e. Et[ut+1] = 0,

and c1, c0, c−1 and c−2 are as defined earlier. Likelihood estimation of such a model must

be handled using methods similar to those used by Boug et al. (2010) for bivariate

systems, see also Kurmann (2007) and Fanelli (2008).

The reduced-rank VAR model can be written on level form as

Xt = A1Xt−1 + A2Xt−2 + A3Xt−3 + Φ0Dt + Φ1 + εt. (13)

Rewriting (12) at time t + 1, using iterated expectations and inserting one-step

ahead forecasts from the VAR, the restrictions on the coefficients implied by the hybrid

model now take the form

c′1(A
2
1 + A2) + c′0A1 + c′−1 = 0 (14)

c′1(A1A2 + A3) + c′0A2 + c′−2 = 0

c′1(A1A3) + c′0A3 = 0

c′1Φ1 + (c′1A1 + c′0)(Φ0Dt+1 + Φ1) + ψ0 = 0. (15)

The model (13) with reduced rank equal to unity and homogeneity imposed

contains 18 + 3 + 1 = 22 autoregressive parameters in addition to the coefficients of

the deterministic terms. There are not more than 9 restrictions on the coefficients
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of the VAR in (14), so using the reversed engineering approach of Kurmann (2007),

expressing the likelihood in terms of the parameters of the inflation equation, and the

semi-structural parameters γf , γb and λ, we end up with at least 16 freely varying

parameters in addition to those from (15). Finding the maximum likelihood estimates

in such situations represents a computational problem that is beyond the scope of the

present paper. We therefore explore some alternative approaches.

The equations (14) and (15) express necessary conditions for both the exact

case, where V ar(ut) = 0, and the inexact case, where V ar(ut) > 0. By inspecting the

equations, we can see that if (14) and (15) are fulfilled, the restriction that c′1A1 +c′0 = 0

is equivalent to the exact restrictions given in (11), see also Swensen (2014). We can

then use a minimum distance method along the lines of Sbordone (2002) and Magnusson

and Mavroeidis (2010) in a related setting, see also Newey and McFadden (1994) for

a general exposition, to derive estimators for γf and λ occurring in c1 and c0 and test

the restriction. The details are provided in Appendix 3. The test statistic equals 0.11,

and the degree of freedom is 1, so the corresponding p-value is 0.74. This may not be

surprising since the likelihood ratio test for the exact hybrid model, without imposing

economic admissible parameters, was not rejected either.

To investigate further the strong indication of an identification problem, which

is evident in the exact version, we computed joint confidence regions of the parameters

γf , λ and γb using an approach reminiscent of how the Anderson-Rubin (1949) statistic

is employed in similar situations. Consider the regression

Δpt − γf0Δpt+1 + λ0êqcm − γb0Δpt−1 = ζ
′

1Z1,t + ζ
′

2Z2,t + error (16)

where the coefficients of the endogenous variables, γf0, λ0 and γb0, have specified val-

ues, Z1,t = (1, SD1t, SD2t, SD3t)
′ are exogenous variables and Z2,t are the instruments

from the reduced-rank VAR model: Z2,t = (Δpt−2, Δuict−1, Δuict−2, Δulct−1, Δulct−2,

êqcm1,t−1)
′. The particular form of (16) arises by replacing the conditional expectation

Et[Δpt+1] in (5) with Δpt+1, a common practice when estimating models of this form,
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Figure 5: Estimated confidence region for γf , λ and γb with confidence level 0.999.
Plots of (γf ,λ) where γb is maximised over intervals (–2,2), (–4,4), (–6,6) and (–10,10)
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see, e.g., Hansen et al. (1996) or B̊ardsen et al. (2005). The errors will have a first

order moving average structure, and, to take this dependency into account, we use the

residuals from an ordinary least squares regression of (16) to estimate the correlation

structure and then use a Wald statistic instead of the usual F-statistic. Projected re-

gions consisting of the parameters (γf , λ, γb)
′ for which a test of ζ2 = 0 with the level

0.001 is not rejected are shown in Figure 5, where the values γb that are maximised

above belong to the intervals (−2, 2), (−4, 4), (−6, 6) and (−10, 10).

The increasing size of the projected regions indicates that the three-dimensional

confidence region for (γf , λ, γb)
′ is unbounded, which signifies that there is an identifi-

cation problem, see, e.g., Dufour (2003). That the exact and inexact models may share

several features is therefore confirmed by more than the non-rejection of the test.
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VI. A competing backward-looking model

So far, the formal tests clearly indicate that the forward-looking model is at odds with

the data. By themselves, however, these tests are not sufficient evidence that inflation

expectations do not matter. Expectations may still matter for inflation dynamics if past

information is relevant through its implications for the expectations of future inflation.

Remember that, so far, we have only considered expectations as conditional mathemat-

ical expectations. In this section, we compare and contrast estimates of a reduced form

of (5) with a backward-looking Phillips curve as a competing model of inflation dynam-

ics. To this end, we first estimate a backward-looking Phillips curve based on (6) with

γf = 0 and the same information set used in the testing of the forward-looking models.

Based on the estimated backward-looking Phillips curve, we infer one-step ahead infla-

tion expectations, EtΔpt+1, substitute into (5) and solve for inflation, Δpt, to obtain

a reduced form model. We then assess the fit of this reduced form model by asking

whether there are any economically reasonable values of the semi-structural parame-

ters, γf , γb and λ, that make the model consistent with the data in-sample. Finally, we

evaluate the fit of the two models by means of a forecasting competition out-of-sample.

We rely on a general-to-specific modelling strategy in the estimation of the

backward-looking model for Δpt using the autometrics procedure available in OxMet-

rics, see Doornik and Hendry (2009). Our point of departure is a general conditional

model for Δpt with Δpt−1, Δpt−2, Δuict, Δuict−1, Δuict−2, Δulct, Δulct−1, Δulct−2,

êqcm2,t−1, 1, SD1t, SD2t, SD3t, D84Q1, D86Q3, D96Q1, D01Q3, D03Q1 and D03Q2

as regressors. This general model is fully in accordance with the fitted reduced-rank

VAR, both in terms of the number of lags and the weak exogeneity status of uict and

ulct. Autometrics picks the following specific model in our case, together with diagnostic
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tests and standard errors in parenthesis4:

Δpt = 0.150
(0.061)

Δpt−1 + 0.132
(0.064)

Δpt−2 − 0.059
(0.011)

êqcm2,t−1 + 0.028
(0.005)

+ 0.0058
(0.0011)

SD1t (17)

+0.0036
(0.0012)

SD2t − 0.0036
(0.0011)

SD3t + 0.020
(0.003)

D86Q3 − 0.011
(0.003)

D96Q1

−0.015
(0.003)

D01Q3 + 0.023
(0.002)

D03Q1Q2

OLS, T = 93 (1982Q4 − 2005Q4), σ̂ = 0.0033

AR1−5: F (5, 77) = 1.76 [0.13], ARCH1−4: F (4, 85) = 1.72 [0.15],

NORM : χ2(2) = 1.21 [0.55], HET : F (11, 78) = 1.58 [0.12].

Several features of Norwegian inflation dynamics stand out from (17). Firstly,

the economic variables entering the model are all highly significant. Consumer price

inflation in Norway seems to be rather persistent, as represented by the significant

autoregressive coefficients of Δpt−1 and Δpt−2. The êqcm2,t−1 appears with a t-value

of −5.36, hence adding force to the results obtained from the cointegration analysis.

Secondly, the sign of the impulse dummies corresponds well with the expected effects

of the associated economic events described above. Thirdly, there are no significant

contemporaneous short-run effects on inflation from unit import costs and unit labour

costs in (17). No contemporaneous short-run effects combined with the small magnitude

of the estimated loading coefficient (−0.059) imply very slow consumer price adjustment

in the face of shocks in unit import costs and unit labour costs.

As stated by Fuhrer (2006) among others, lagged inflation is not simply a second-

order add-on to the model, but is important when accounting for persistence in inflation.

It is not commonplace to require an explicit economic interpretation of parameters in

a VAR model, except those necessary for identification, but we think this is possible

4AR1−5 is a test for up to 5th order residual autocorrelation; ARCH1−4 is a test for up to 4th
order autoregressive conditional heteroskedasticity in the residuals; NORM is a joint test for residual
normality (no skewness and excess kurtosis) and HET is a test for residual heteroskedasticity, see
Doornik and Hendry (2009). The numbers in square brackets are p-values. The dummy variable
D03Q1Q2 combines the two dummy variables D03Q1 and D03Q2 and takes the value 1 in 2003Q1
and −1 in 2003Q2.
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in our case. The Norwegian CPI includes housing rents with a weight of around 0 .17.

Most of the contracts in the housing market include an index clause that allows the

owner to adjust the rent based on the observed increase in the CPI. This usually takes

place in January based on the CPI in December. During the rest of the year, rents

are not adjusted in line with inflation. In many cases, rents are not adjusted every

year, but stay nominally constant as long as the contract lasts. However, the total

index for rents will increase during the year as old contracts expire and new contracts

are signed. In addition, the standard contract has a clause that states that the rent

can be renegotiated every third year to bring it into line with current market prices.

The CPI for imputed rents for households living in their own house or flat is based

on the rent equivalence principle, such that imputed rent follows observed rent with

some sampling modifications. The relevance to modelling aggregate CPI in Norway is

the acknowledgement that the housing market is quite different from standard product

markets and that nominal price rigidity and long lags are present and observable in the

microdata on which the CPI is based.

Empirical evidence of constancy of (17) can be assessed from recursive test statis-

tics, see Doornik and Hendry (2009). Neither one-step residuals with 2 estimated equa-

tion standard errors nor a sequence of break point Chow tests at the 1 per cent signifi-

cance level indicate non-constancy. All recursive estimates vary little, especially relative

to their estimated uncertainty. That no significant structural breaks are detected around

the date of the shift in monetary policy regime from exchange rate targeting to inflation

targeting (late March 2001) points to (17) not being subject to the Lucas critique.

To investigate whether incorporating forward-looking features into the model

may lead to any improvement, we write the part of (17) not involving the impulse

dummies as Δpt = aΔpt−1 + bΔpt−2 + cêqcm2,t−1 + d + seasonals and let that part be

past information relevant to one-step ahead inflation expectations in (5) to obtain the

following reduced form forward-looking model for Δpt:

Δpt = β0 + β1Δpt−1 − β2(Δulct − Δuict) − β3(Δuict − êqcm2,t−1) + seasonals, (18)
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where

β0 = (ψ0 + γfd)$, (19)

β1 = (γfb + γb)$,

β2 = (γfc − λ)ψ1$,

β3 = (γfc − λ)$,

$ = (1 − aγf − cγf + λ)−1.

We see that (18) consists of the three composite parameters, β1, β2 and β3, for

determination of the three semi-structural parameters, γf , γb and λ, which are thereby

exactly identified. Because both uict and ulct are weakly exogenous, we can generate

the variables (Δulct − Δuict) and (Δuict − êqcm2,t−1) and estimate (18) by means of

OLS. By also including the impulse dummies from (17) as additional regressors, we

obtain the following OLS estimate of (18):

Δpt = 0.126
(0.067)

Δpt−1 + 0.032
(0.009)

(Δulct − Δuict) + 0.070
(0.009)

(Δuict − êqcm2,t−1) (20)

+0.035
(0.004)

+ 0.0029
(0.0015)

SD1t + 0.0007
(0.0015)

SD2t − 0.0061
(0.0014)

SD3t

+0.017
(0.004)

D86Q3 − 0.010
(0.004)

D96Q1 − 0.013
(0.004)

D01Q3 + 0.022
(0.003)

D03Q1Q2

OLS, T = 93 (1982Q4 − 2005Q4), σ̂ = 0.0035

AR1−5: F (5, 77) = 1.77 [0.13], ARCH1−4: F (4, 85) = 1.19 [0.32],

NORM : χ2(2) = 4.14 [0.13], HET : F (11, 78) = 1.68 [0.09].

Like the estimated backward-looking Phillips curve, the estimated reduced form

forward-looking model, is well specified, judging by the diagnostic tests. However, σ̂

increases somewhat and calculations using (19) reveal that γ̂f = 6.84, γ̂b = −0.908

and λ̂ = −0.408, all of which are outside the regions containing sensible economic

interpretations. These parameter estimates correspond to the earlier findings in Section
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V (Table 3) and may not be surprising since both the hypotheses of weak exogeneity of

uict and ulct and zero restrictions on the autoregressive parameters from the VAR are

not rejected.

Although (20) has a slightly poorer fit than (17) and the parameter estimates

are difficult to interpret economically, we compare the out-of-sample forecasting per-

formance of the two competing models of inflation to shed light on their robustness

with respect to relatively large movements in the exchange rate during the recent fi-

nancial crisis. Taylor (2000) argues that the extent to which a firm matches exchange

rate movements by changing its own price depends on how persistent the movements

are expected to be. For a retail firm that adds services to its imports of goods, a de-

preciation of the exchange rate will raise the costs of the imports valued in domestic

currency. According to Taylor (2000), if the depreciation is viewed as temporary, the

retail firm will pass through less of the depreciation to its own price. In any case, if

the price-setting behaviour changed significantly following the financial crisis, we should

expect instabilities in the estimated Δpt-equations, as indicated, for example, by poor

out-of-sample forecasting ability.

To assess the forecasting performance of (20) and (17), we employ twenty-four

quarters (2006Q1−2011Q4) of out-of-sample observations, including the period of the fi-

nancial crisis. According to the theoretical model in Section II, both the forward-looking

and the backward-looking models embody the price level. This feature is supported by

the data, as is evident from the cointegration analysis and Figure 2. An inflation-

targeting central bank is interested in forecasting inflation over a certain horizon (say

two to four years), but may not be very concerned about forecasts of quarterly inflation

a few quarters ahead. Thus, to evaluate the forecasting performance of the two com-

peting models of inflation, we focus on the medium-term (ex ante) dynamic forecasts

for the consumer price level.

A preliminary investigation of the two models reveals that a majority of the actual

values of pt stay within their corresponding confidence intervals over the forecasting

period. However, the actual value of pt is close to being outside the confidence intervals
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Figure 6: The backward-looking model: Actual values and dynamic forecasts of pt±
2STD
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in the first quarter 2007. The actual value of pt in 2007Q1 and the values thereafter

are likely to be influenced by the huge and transitory fall in electricity prices during the

first quarter 2007. Consequently, the dynamic forecasts over-predict the actual values of

pt thereafter, irrespective of whether (20) or (17) is used as the underlying forecasting

model.

To take a closer look at this hypothesis, we re-estimated the two models over the

period 1982Q4 − 2007Q1 with an impulse dummy in 2007Q1 as a separate regressor,

controlling for the substantial fall in electricity prices during that quarter. Hence,

nineteen observations are now available for forecasting. The two re-estimated models

are virtually unchanged from (20) and (17) with respect to both parameter estimates

and diagnostics. Figures 6 and 7 depict actual values of pt together with dynamic

forecasts, adding bands of 95 per cent confidence intervals to each forecast, when the

re-estimated models are used for forecasting.

We observe that the out-of-sample forecasting ability of each of the two com-

peting models of inflation is reasonably good despite relatively large exchange rate

movements in the wake of the financial crisis. That said, the forecasting performance of
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Figure 7: The forward-looking model: Actual values and dynamic forecasts of pt± 2STD

Dynamic forecasts pt 

2006 2007 2008 2009 2010 2011 2012

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250
Dynamic forecasts pt 

the backward-looking model is somewhat better than the forward-looking model since

the RMSE is 0.0167 and 0.0183, respectively. Moreover, the average yearly forecast-

ing failure within the relevant three-year horizon for the Norwegian central bank is

about 0.23 percentage points with the former model and about 0 .35 percentage points

with the latter model. Because no significant forecasting failures are evident with the

backward-looking model, we may argue, in light of Taylor (2000), that the exchange rate

movements during the financial crisis were perceived as transitory rather than perma-

nent shocks, such that firms found it rational not to alter their pricing behaviour. We

conclude that there may not be any value added of having forward-looking expectations

once the model accounts for all relevant backward-looking terms, as is the case with

(17).

Our results as regards forecasting can be compared to the results in King and

Watson (2012). As mentioned in the introduction, they find that the Smets and Wouters

(2007) forward-looking model of the US economy predicted inflation poorly after the

financial crisis in 2008. Del Negro et al. (2015) argue that, when a standard DSGE

model is extended by including financial frictions and the forecasts are conditional on
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the increased financial stress that occurred in autumn 2008, the forward-looking pricing

equation forecasts inflation well after the financial crisis. Consequently, they accept

that earlier inflation models did not perform well post sample and that previous DSGE

models did not include parameters that were stable over time. That said, their modified

model has one interesting feature in that lagged inflation becomes more important than

is standard in the literature. This supports the argument by Fuhrer (2006) that lagged

inflation is not a minor feature of the forward-looking model. Rather it is the model.

VII. Conclusions

In this paper, using Norwegian data, we have evaluated the empirical performance of

forward-looking models for inflation dynamics in a small open economy. Our forward-

looking models relate current inflation to expected future inflation and the difference

between the actual price and the steady state value of levels as a theory-consistent

forcing variable. The steady state value is specified as a mark-up over marginal costs,

which, in turn, are determined by costs of both labour and imported intermediate goods

in line with the open economy literature. The models thus include variables, both levels

and differences, that require caution with respect to both the time series properties and

possible cointegrated nature of the variables involved. Such econometric issues have

typically been ignored in related studies on data from open economies and they raise

questions about the validity of the existing statistical inference.

Using reduced-rank regressions, we first established a cointegrating vector be-

tween consumer prices and marginal costs. Thus, the theory-driven price equation un-

derlying the models of inflation dynamics is well supported by the data. Secondly, using

likelihood-based testing procedures, we found that the exact version of the forward-

looking model is at odds with the data. That is, the rational expectations hypothesis

is not rejected statistically, but when only economically meaningful parameters are al-

lowed for, the model is not supported by the data. In addition, some of the parameters

in the exact version of the model are not well identified. We also found that the in-
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exact version is not rejected statistically using a test based on a minimum distance

method. However, confidence regions obtained by inverting a test reminiscent of the

Anderson-Rubin statistic reveal an identification problem in this model as well.

Finally, we established a well-specified dynamic backward-looking model, which,

in addition to the theory-consistent forcing variable, includes backward-looking terms

only. The backward-looking model of inflation dynamics outperforms a reduced form

forward-looking model, it is reasonably stable in a sample containing a major monetary

policy regime shift from exchange rate targeting to inflation targeting, and it forecasts

well post-sample and during and after the recent financial crisis. All these findings

provide strong evidence in favour of the backward-looking model and the Lucas critique

does not seem to be important in our empirical context. Our findings are in line with

Fuhrer (2006), among others, who points out that lagged inflation is not a second-order

add-on to the optimising model, it is the model.
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Inflation, Krause, L.B. and Salânt, W.S. (eds.), Brookings, 1977, Washington D.C.

Batini, N., Jackson, B., and Nickell, S. (2005), An Open Economy New Keynesian

Phillips Curve for the UK, Journal of Monetary Economics 52, 1061-1071.

Beyer, A. and Farmer, R.E.A. (2007), Testing for Indeterminancy: An Application to

U.S. Monetary Policy: Comment, The American Economic Review 97, 524-529.
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Appendix 1

We show here how the steady state value of the price level in (1) is derived.

As mentioned in the text, a representative firm is assumed to face a Cobb-Douglas

production function of the form

Yt = ALα
t Iβ

t , (A1)

where Lt and It denote labour and imports of intermediate inputs, respectively. Variable

costs in production are given by the sum of labour costs and import costs

Ct = WtLt + PItIt, (A2)

where Wt is wage per hour and PIt is the price of imports. Minimising variable costs

given the production function leads to

WtLt = (α/β)PItIt. (A3)

Solving for It in (A3) and inserting it into (A1) gives

Lt = L0(Wt/PIt)
−β/(α+β)Y

1/(α+β)
t . (A4)

Inserting (A4) into (A3) and solving for It gives a similar expression for It

It = I0(Wt/PIt)
α/(α+β)Y

1/(α+β)
t . (A5)

Inserting (A4) and (A5) into (A2) gives the cost function, and it is straightforward to

show that marginal costs, MCt, become

MCt = C0W
α/(α+β)
t PI

β/(α+β)
t Y

1/(α+β)−1
t , (A6)

which is homogeneous of degree one in factor prices. Using the production function
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(A1), we can express marginal costs as a function of two terms

MCt = C0(WtLt/Yt)
α/(α+β)(PItIt/Yt)

β/(α+β). (A7)

Using lower case letters to indicate logs, we have

mct = c0 + ψ1ulct + ψ2uict, (A8)

where ulct is labour unit costs, uict is import unit costs, ψ1 = α/(α + β) and ψ2 =

β/(α + β). As explained in the text, a representative profit-maximising firm facing an

isoelastic demand function will set prices as a mark-up on marginal costs. In log form,

we thus have p∗t = m0 + mct, where m0 is the constant mark-up. Using the expression

for marginal costs in (A8), we have

p∗t = m0 + ψ1ulct + ψ2uict, (A9)

which is the steady state value of the price level given in (1).
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Appendix 2

Equation (10) describing the estimated hybrid forward-looking model can be

reformulated as

c′1Et[ΔXt+1 − Φ0Dt+1] + (c′1 + c′0 + c′−1 + c′−2)Xt (A10)

−(c′−1 + c′2)ΔXt − c′2ΔXt−1 + ψ0 = 0.

If e1 = (1, 0, 0)′ denotes the vector having the first element equal to 1 and zero otherwise,

c1 = γfe1, c−1 + c−2 = e1 and c−2 = −γbe1. Furthermore, if we define d = −(c′1 + c′0 +

c′−1 + c′−2)/λ = (1,−ψ1,−(1 − ψ1)) the model (A10) may be written

e′1Et[ΔXt+1 − Φ0Dt+1] =

(λ/γf )d
′Xt−1 + (1/γf )e

′
1ΔXt − (γb/γf )e

′
1ΔXt−1 − ψ0 =

τd′Xt−1 + τ 1e
′
1ΔXt + τ 2e

′
1ΔXt−1 + μ0 = 0,

where the parameters τ = λ/γf , τ 1 = 1/γf , τ 2 = −γb/γf and μ0 = −ψ0/γf vary

freely. Thus, for fixed ψ = ψ1 this has exactly the form treated in Johansen and

Swensen (2008).

The marginal part of the model now takes the form

Δpt = τ(pt−1 − ψulct−1 − (1 − ψ)uict−1) + τ 1Δpt−1 + τ 2Δpt−2 + φ′Dt + ε1t,

where φ = (φ1, . . . , φ10) are the coefficients of the seasonal dummies, the other six dum-

mies and the constant. Note that there are four restrictions involved as the coefficients

of Δulct−1, Δuict−1, Δulct−2 and Δuict−2 are constrained to zero. The conditional part

involves an unrestricted regression of (Δulct, Δuict)
′ on Δpt, (pt−1 − ψulct−1 − (1 −

ψ)uict−1), Δpt−1, Δulct−1, Δuict−1, Δpt−2, Δulct−2, Δuict−2, 1 and the seasonal dum-

mies and the impulse dummies.

For fixed values of ψ the numerical value of the likelihood can therefore be eval-

uated. Hence the maximum likelihood estimate of ψ can be determined. Once this is
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given, the estimates for τ , τ 1 and τ 2 can be found by ordinary least squares (OLS) from

the marginal part with the estimate of ψ, and the semi-structural parameters γf , γb

and λ computed.
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Appendix 3

In the following, we present some details about the minimum distance approach

used in the test of the restrictions c′1A1 + c′0 = 0. It is convenient to rewrite the

restrictions as B(ν)θ + h = 0 where B(ν) is a 3× 2 matrix depending on constants and

the parameters ν of the autoregressive model, θ = (γf , λ)′ and h is a vector where the

elements are known constants.

In the alternative equilibrium correction parameterisation, the VAR model may

be written as

ΔXt = ΠXt−1 + Γ1ΔXt−1 + Γ2ΔXt−2 + Φ0Dt + Φ1 + εt,

where Π = A1 + A2 + A3 − I = αβ ′, Γ1 = −A2 − A3 and Γ2 = −A3. Thus, A1 =

Π+I−A1−A2 = Π+I+Γ1. In particular, due to the super-consistency, the parameters in

the cointegration vector, i.e. β = (1,−ψ1,−ψ2)
′ , where ψ1 +ψ2 = 1, can be considered

as known. In this case ν corresponds to α = {αi}3
i=1, Γ1 = {γ1,ij}

3
i,j=1, Γ2 = {γ2,ij}

3
i,j=1,

and

B(ν)θ + h =









α1 + γ1,11 −1

−α1ψ1 + γ1,12 ψ1

−α2ψ2 + γ1,13 ψ2














γf

λ




+









−1

0

0









.

If ν̂ is the usual estimator for ν, as in Johansen (1995), the minimum distance estimator

for θ(ν) can be expressed as θ̂(ν̂) = [B(ν̂)′B(ν̂)]−1B(ν̂)′h.

From theorem 13.5 in Johansen (1995), it follows that
√

T (ν̂ − ν) is approxi-

mately multivariate Gaussian. Under the restriction that B(ν)θ + h = 0, one may

write
√

T (B(ν̂)θ̂(ν̂) + h) =
√

T (B(ν̂)θ̂(ν̂) + h−B(ν)θ − h) =
√

T [(B(ν̂)−B(ν))θ̂(ν̂) +

B(ν)(θ̂(ν̂)− θ)]. From the δ-method, it follows that
√

T (θ̂(ν̂)− θ) has the same asymp-

totic distribution as ∂B(ν)
∂ν

|ν=ν̂(ν̂ − ν). Thus, both terms in
√

T (B(ν̂)θ̂(ν̂) + h) may be

expressed by
√

T (ν̂ − ν), and the sum is therefore also asymptotically Gaussian. If the

covariance matrix is estimated by plugging in the estimates for the unknown parame-

ters, a test statistic for the null hypothesis c′1A1 + c′0 = 0 can be found. The asymptotic

39



distribution is χ2 with one degree of freedom.
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Appendix 4

P : The official consumer price index (2002 = 1). Source: Statistics Norway.

UIC: Unit import costs proxied by the implicit deflator of total imports (2002 = 1).

Source: Statistics Norway, the Quarterly National Accounts.

ULC: Unit labour costs proxied by Y WP/QP , where Y WP and QP are total labour

costs and value added in the private mainland economy, respectively. Source: Statistics

Norway, the Quarterly National Accounts.

D84Q1: Impulse dummy used to account for a large residual in the ulct-equation of the

VAR. Equals unity in the first quarter of 1984, zero otherwise.

D86Q3: Impulse dummy used to control for the 12 per cent devaluation of the Norwegian

currency in May 1986. Equals unity in the third quarter of 1986, zero otherwise.

D96Q1: Impulse dummy used to control for the reduction in indirect tax rates during

the first quarter of 1996. Equals unity in the first quarter of 1996, zero otherwise.

D01Q3: Impulse dummy used to control for the drop in the VAT rate on food from 24

per cent to 12 per cent in July 2001. Equals unity in the third quarter of 2001, zero

otherwise.

D03Q1: Impulse dummy used to control for the large increase in electricity prices during

the first quarter of 2003. Equals unity in the first quarter of 2003, zero otherwise.

D03Q2: Impulse dummy used to control for the large decrease in electricity prices

during the second quarter of 2003. Equals unity in the second quarter of 2003, zero

otherwise.

D07Q1: Impulse dummy used to control for the large decrease in electricity prices during

the first quarter of 2007. Equals unity in the first quarter of 2007, zero otherwise.
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