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Optimal Control and the Fibonacci Sequence∗

Thomas von Brasch† Johan Byström‡ Lars Petter Lystad§

Communicated by F. Giannessi

Abstract

We bridge mathematical number theory with that of optimal control and show that a generalised

Fibonacci sequence enters the control function of finite horizon dynamic optimisation problems with

one state and one control variable. In particular, we show that the recursive expression describing

the first-order approximation of the control function can be written in terms of a generalised Fibonacci

sequence, when restricting the final state to equal the steady-state of the system. Further, by deriving the

solution to this sequence, we are able to write the first-order approximation of optimal control explicitly.

Our procedure is illustrated in an example often referred to as the Brock-Mirman economic growth model.

Keywords: Brock-Mirman model, Fibonacci sequence, Golden ratio, Mathematical number theory,

Optimal control.

AMS: 11B39, 93C55, 37N40, 49N10.

1 Introduction

Approximating optimal control problems has a long history and dates at least back to McReynolds ?.

Lystad ? and Magill ?? are early applications of the first-order approximation within economics. A good

account of how the technique has been used in economics can be found in Judd ?. Recently, this method of

approximation has been extended to also handle stochastic rational expectation models with forward looking

variables; see, e.g., Levine et al. ? and Benigno and Woodford ?.

The field of bridging optimal control and number theory via the Fibonacci sequence is relatively new.

Benavoli et al. ? show the relationship between the Fibonacci sequence and the Kalman filter with a
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simple structure of the plant model. Capponi et al. ? derive a similar result in a continuous time setting.

Donoghue ? shows a linkage between the Kalman filter, the linear quadratic control problem and a Fibonacci

system defined by adding a control input to the recursion relation generating the Fibonacci numbers. Byström

et al. ? derive a relationship between linear quadratic problems and a generalised Fibonacci sequence. We

build upon and extend these results for control problems in a generalised form.

The main contribution of this article is to bridge the area of mathematical number theory with that of

optimal control. This is done by using a generalised Fibonacci sequence for solving finite horizon dynamic

optimisation problems with one state and one control variable. The solution method proposed reveals im-

portant properties of the optimal control problem. In particular, we show how the first-order approximation

of the optimal control function can be written in terms of these generalised Fibonacci numbers. Further, by

developing the explicit solution of the generalised Fibonacci sequence, we are able to provide a non-recursive

solution of the first-order approximation.

The structure of the paper is as follows. In Section ??, the optimal control problem is defined and

the expression describing the first-order approximation of the optimal control is stated. In Section ??,

we contribute to the literature by developing the linkage between the optimal control function and the

Fibonacci sequence. To illustrate our procedure, we show how the method can be applied to the Brock-

Mirman economic growth model. We derive explicit solutions to the generalised Fibonacci numbers in

Section ??, which further enables us to write the first-order approximation of optimal control explicitly. The

last section contains a summary and concluding remarks.

2 The Optimal Control Problem

The deterministic optimal control problem consists of minimising an objective function subject to the process

describing the evolution of the state variable, given a restriction on the terminal state variable. 1 For

0 ≤ t ≤ T − 1, we define the objective function

T−1∑

t=0

βtf(xt, ut), (1)

where 0 < β ≤ 1 is a discount factor, xt ∈ R represents a state variable and ut ∈ R denotes the control

variable. Further, it is assumed that standard regularity conditions hold, i.e., the criterion function f is

sufficiently smooth and convex and policies, that are feasible, lie within a compact and convex set. More

specific, we will from now on assume that f is twice differentiable and that the Hessian of f is positive

1The optimal control problem has been widely used within the field of economics; see e.g., Ljungqvist and Sargent ?.
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definite. The evolution of the state variable is described by the discrete time system

xt+1 := Axt + But, t = 0, 1, ..., T − 1, (2)

for a given initial condition x0. We assume the existence of a control, which ensures that the state never

changes. We refer to such a control as a steady-state control and denote it ū and, correspondingly, we denote

the steady-state x̄. The final state of the discrete time system (??) is restricted to be the steady-state

xT = x̄. (3)

From this it follows that a steady-state is characterised by two properties. First, the state is constant and

thus time invariant. Second, the steady-state control is optimal, i.e., given that the system starts out at the

steady-state, it is optimal to remain at the steady-state through all time periods. The assumption that there

exists a steady-state is both necessary and sufficient in order to use the generalised Fibonacci sequence to

write the first-order approximation of optimal control explicitly.

The optimal control problem is therefore, the problem of minimising the objective function (??) subject

to both the transition function (??) and the fixed final state (??).

Even though the optimal control problem is deterministic, the approach used in this article can be

generalised to handle stochastic control problems; see, e.g., Levine et al. ? and Benigno and Woodford ?.

In general, it is not possible to find an explicit expression describing the optimal control function. How-

ever, it may be possible to find a recursive expression describing the first-order approximation of the optimal

control. In the following well known result, we let the second partial derivatives of the criterion function f ,

evaluated at the steady-state, be denoted by fx̄x̄ := ∂2f
∂x̄∂x̄ , fx̄ū := ∂2f

∂x̄∂ū and fūū := ∂2f
∂ū∂ū .

Theorem 2.1 Consider the optimal control problem, i.e., minimising (??) subject to (??) and (??). The

first-order approximation is given by the linear control function (for 0 ≤ t ≤ T − 1)

ut = ū − (La
t − Lb

t + f−1
ūū fx̄ū)(xt − x̄), (4)

where La
t is given by the equations

La
t := (fūū + B̃St+1B̃)−1(B̃St+1Ã), (5)

St = Ã2St+1fūū(fūū + B̃2St+1)
−1 + R̃, ST = 0, (6)
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where the second equation is known as the Riccati equation and where we have used the auxiliary variables

Ã := β1/2(A−Bf−1
ūū fx̄ū), B̃ := β1/2B and R̃ := (fx̄x̄ −fx̄ūf−1

ūū fx̄ū). The last part of the feedback coefficient

(Lb
t ) represents the linear part which ensures that the control function will drive the state to the steady-state

at the final time period

Lb
t := (fūū + B̃St+1B̃)−1B̃Wt+1P

−1
t Wt, (7)

where the two auxiliary variables Wt and Pt are given by

Wt =
(
Ã − B̃La

t

)
Wt+1, WT = 1, (8)

Pt = Pt+1 − W 2
t+1B̃

2
(
fūū + B̃2St+1

)−1

, PT = 0. (9)

Proof See Appendix ??.

3 Connecting Fibonacci with Optimal Control

The Fibonacci sequence is named after the Italian mathematician Leonardo Pisano Bigollo (1170 - c. 1250),

most commonly known as Leonardo Fibonacci. With his most important work, the book of number theory,

Liber Abaci, he spread the Hindu-Arabic numeral system to Europe. In Liber Abaci, he also introduced

what many will associate him with today, the Fibonacci sequence

{Fn}
∞
n=0 = 0, 1, 1, 2, 3, 5, 8, 13, . . . .

This sequence is characterised by the initial values 0 and 1 and each subsequent number being the sum of

the previous two. It is thus fully described by the difference equation

Fn = Fn−1 + Fn−2,

with initial values F0 = 0 and F1 = 1. The Fibonacci sequence has been connected to such diverse fields as

nature, art, geometry, architecture, music and even for the calculation of π; see, e.g., Castellanos ?. One of

the most fascinating facts is that the ratio of two consecutive numbers (Hn := Fn−1/Fn)

{Hn} = 0, 1, .5, .666..., .600, .625, .615..., .619..., .617..., .618..., . . . (10)
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converges to the inverse of the golden ratio: φ−1 := 2/(1 +
√

5) ≈ .618. The golden ratio is mathematically

interesting for a variety of reasons, e.g., it holds the property that its square is equal to φ + 1 and its inverse

is equal to the number itself minus one, i.e.,

φ−1 = φ − 1. (11)

The main contribution of this article consists in connecting a generalised Fibonacci sequence (sometimes

also denoted Lucas sequence) to optimal control theory.

Definition 3.1 (Generalised Fibonacci sequence) The generalised Fibonacci sequence is defined by the

second-order difference equation

Fn+2 = aFn+1 + bn+2Fn, (12)

with the constant coefficient a, the time varying coefficient bn+2 and with given initial values F0 = 0 and

F1 = 1.

Moreover, we define the ratio of two consecutive generalised Fibonacci numbers by

Hn := Fn−1/Fn, n = 1, 2, . . . .

Theorem 3.1 Consider the generalised Fibonacci sequence with the particular coefficients a = β1/2B and

bn+2 = fūūR̃−1Ã2, when n is even, and bn+2 = fūūR̃−1, when n is odd, where we have used the auxiliary

transformations Ã := β1/2(A − Bf−1
ūū fx̄ū) and R̃ := (fx̄x̄ − fx̄ūf−1

ūū fx̄ū). The first-order approximation in

Theorem ?? can then be written

ut = ū −




ÃH2(T−t)−1 +

Ã
(
ÃfūūR̃−1

)2(T−t−1)

F2(T−t)−1F2(T−t)
+ f−1

ūū fx̄ū




 (xt − x̄).

Proof See Appendix ??.

Corollary 3.1 If Ã2 = 1, the first-order approximation of the control function simplifies to

ut = ū −
(
ÃH2(T−t) + f−1

ūū fx̄ū

)
(xt − x̄) .

Proof See Appendix ??.
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Example 3.1 (The Brock-Mirman Economic Growth Model) Consider the standard textbook economic

growth model often referred to as the Brock-Mirman model ?2

min
{ut}

T−1
t=0

−
T−1∑

t=0

βt ln(γxα
t − ut) s.t. xt+1 = ut, xT = x̄, x0 > 0. (13)

The steady-state of this model is given by x̄ = ū = (αβγ)1/(1−α).3 Simplifying the example, we normalise the

steady-state to unity (x̄ = ū = 1) by imposing β = 1 and γ = α−1. From the transition equation, xt+1 = ut,

it follows that A = 0 and B = 1. In order to make the example particularly neat we let α = 1 − φ−1 where

φ is the golden ratio. It then follows from the criterion function f that4

fx̄x̄ = 2(1 − φ−1), fūū = 1 − φ−1, fx̄ū = −(1 − φ−1).

From these second derivatives it follows that f−1
ūū fx̄ū = −1, Ã = 1 and R̃ := fx̄x̄ − f−1

ūū f2
x̄ū = 1 − φ−1. Since

Ã = 1, we can apply Corollary ?? which yields the first-order approximation of the control function

ut = 1 −
(
H2(T−t) − 1

)
(xt − 1) . (14)

With the above choice of parameter values the sequence H is in this example given by the original set of

Fibonacci ratios H; see (??).5 In Table ?? the optimal solution is compared with the control given by

equation (??). At the initial time period, the discrepancy between the optimal control and the first-order

approximation is 0.6 %.

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

x∗
t 0.8000 0.9183 0.9681 0.9879 0.9960 1.0000

u∗
t 0.9183 0.9681 0.9879 0.9960 1.0000

ut 0.9236 0.9689 0.9880 0.9960 1.0000
H2(5−t) 0.6182 0.6190 0.6250 0.6667 1.0000

Table 1: Comparing the optimal control with the first-order approximation. The first and second row provide the
optimal solution to the Brock-Mirman model. In the third row the Fibonacci based control is presented as given by
equation (??). The sequence in the fourth row is every second element of the original set of Fibonacci ratios (??)
given in reverse.

2See Appendix ?? for some narrative details on this model.
3See Appendix ??.
4See Appendix ??.
5See Appendix ??.
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4 An Explicit Solution of the Control Function in Theorem ??

In order to find an explicit solution of the control function in Theorem ??, we observe that the undetermined

expressions in the control function consist of even and odd indexed generalised Fibonacci numbers only, i.e.;

the sequence

H2(T−t)−1 = F2(T−t−1)/F2(T−t)−1,

has even-indexed Fibonacci numbers in the numerator and odd-indexed numbers in the denominator. The

problem of finding an explicit solution of the control function is thus reduced to finding an explicit solution

of the odd and even indexed Fibonacci sequence. With this goal in mind, we note that the generalised

Fibonacci sequence can be written

Fn+2 = aFn+1 + bn+2Fn

= a(aFn + bn+1Fn−1) + bn+2Fn

= (a2 + bn+2 + bn+1)Fn − bnbn+1Fn−2.

Using the particular coefficient values a = B̃ and bn+2 = fūūR̃−1Ã2, when n is even, and bn+2 = fūūR̃−1,

when n is odd, yields

Fn+2 = (B̃2 + fūūR̃−1(Ã2 + 1))Fn − f2
ūūR̃−2Ã2Fn−2. (15)

Even though the Fibonacci sequence under consideration has time varying coefficients (bn+2), the sequence

describing every second generalised Fibonacci number (??) has constant coefficients, see also Byström et al. ?.

Since a second-order difference equation with constant coefficients can be written in the form of (??), the

solution to (??) is well known. Given the auxiliary parameters

c1 :=
√

B̃2 + fūūR̃−1(1 − Ã)2, c2 := fūūR̃−1Ã, r1,2 := (c1 ±
√

c2
1 + 4c2)/2, (16)
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the explicit expressions for the Fibonacci sequences entering the control function are given by6

F2(T−t−1) = B̃
r
2(T−t−1)
1 − r

2(T−t−1)
2

r2
1 − r2

2

, (17)

F2(T−t) = B̃
r
2(T−t)
1 − r

2(T−t)
2

r2
1 − r2

2

, (18)

F2(T−t)−1 =
(r1 + Ãr2)r

2(T−t)−1
1 − (r2 + Ãr1)r

2(T−t)−1
2

r2
1 − r2

2

. (19)

Inserting these expressions into Theorem ?? and Corollary ?? yields the following results:

Corollary 4.1 The explicit solution of the control function given in Theorem ?? is given by

ut = ū −

(

ÃB̃
r
2(T−t−1)
1 − r

2(T−t−1)
2

(r1 + Ãr2)r
2(T−t)−1
1 − (r2 + Ãr1)r

2(T−t)−1
2

+ ÃB̃−1
(r2

1 − r2
2)

2
(
ÃfūūR̃−1

)2(T−t−1)

(
r1 + Ãr2)r

2(T−t)−1
1 − (r2 + Ãr1)r

2(T−t)−1
2

)(
r
2(T−t)
1 − r

2(T−t)
2

)

+ f−1
ūū fx̄ū

)

(xt − x̄).

Corollary 4.2 The explicit solution of the control function given in Corollary ?? is given by

ut = ū −

(

ÃB̃−1 (r1 + Ãr2)r
2(T−t)−1
1 − (r2 + Ãr1)r

2(T−t)−1
2

r
2(T−t)
1 − r

2(T−t)
2

+ f−1
ūū fx̄ū

)

(xt − x̄).

Example 4.1 (The Brock-Mirman Economic Growth Model Continued) The analytical solution describing

the first-order approximation of the control function in the Brock-Mirman model is given directly from

Corollary ??. Since from (??) we have c1 = c2 = 1, the roots of the characteristic equation are given by

r1,2 =
c1 ±

√
c2
1 + 4c2

2
=

1 ±
√

5
2

.

In terms of the golden ratio, we can write the roots as r1 = φ and r2 = 1 − φ = −φ−1. By inserting the

relationships Ã = B̃ = −f−1
ūū fx̄ū = x̄ = ū = 1 into Corollary ?? yields the explicit expression

ut = 1 −

(
φ2(T−t)−1 + φ1−2(T−t)

φ2(T−t) + φ−2(T−t)
− 1

)

(xt − 1).

6See Appendix ??.
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5 Conclusion

In this article, we have shown how to use a generalised Fibonacci sequence for solving finite horizon dynamic

optimisation problems. The solution method proposed has revealed important properties of the optimal

control problem. In particular, we have shown how the first-order approximation of the optimal control

function can be written in terms of these generalised Fibonacci numbers. Further, by developing the explicit

solution of the generalised Fibonacci sequence, we could obtain a non-recursive solution of the first-order

approximation. The procedure has been illustrated with the Brock-Mirman economic model. On a general

level, we have thus bridged the area of mathematical number theory with that of optimal control.
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6 Appendix

6.1 Proof: Theorem ??

We assume that standard regularity conditions of the optimal control problem hold, i.e., the criterion function

f is sufficiently smooth and convex and policies, that are feasible, lie within a compact and convex set. More

specific, we will from now on assume that f is twice differentiable and that the Hessian of f is positive

definite. With these premises, we derive the first-order approximation of the control function by applying

the perturbation control technique, as outlined in e.g., Section 4.6 in Lewis et al. ?.

The Lagrangian (L) of the optimal control problem becomes

L := μT+1(xT − x̄) +
T−1∑

t=0

(
βtf(xt, ut) + λt+1(Axt + But − xt+1)

)
, (20)

where μT+1 and λt+1 represent Lagrangian multipliers. A necessary condition for optimality is that the

first variation of the Lagrangian is zero. In particular, the first variation of the Lagrangian evaluated at the

steady-state is zero. An optimal control minimising the Lagrangian (??) can thus be approximated by an

incremental control minimising the second variation

d2L = dμT+1dxT +
1
2

T−1∑

t=0

( βt(dxtfx̄x̄ dxt + dutfūūdut + 2dutfx̄ūdxt)

+ 2dλt+1(Adxt + Bdut − dxt+1) ) ,

where increments are made around the steady-state, i.e., dut := ut − ū and dxt := xt − x̄, and where e.g.,

the second partial derivative of f with respect to xt, evaluated at the steady-state, is denoted by fx̄x̄. This

latter problem is recognised as the Lagrangian of the auxiliary discounted linear quadratic problem (DLQP)

(DLQP) min
{dut}

T−1
t=0

1
2

T−1∑

t=0

βt (dxtfx̄x̄dxt + dutfūūdut + 2dutfx̄ūdxt)

s.t. dxt+1 = Adxt + Bdut, dxT = 0, (21)

where dλt+1 and dμT+1 represent the multipliers associated with the constraints (??). In order to simplify

notation, we note the following identity (assuming f−1
ūū exists)

dxtfx̄x̄dxt + dutfūūdut + 2dutfx̄ūdxt

= dxt(fx̄x̄ − fx̄ūf−1
ūū fx̄ū)dxt + (dut + f−1

ūū fx̄ūdxt)fūū(dut + f−1
ūū fx̄ūdxt).
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Defining dũt := (dut + f−1
ūū fx̄ūdxt) and R̃ := (fx̄x̄ − fx̄ūf−1

ūū fx̄ū), the objective function in the problem

(DLQP) is equivalent to

1
2

T−1∑

t=0

βt
(
dxtR̃dxt + dũtfūūdũt

)
. (22)

The constraint can be altered correspondingly. Inserting dut = dũt − f−1
ūū fx̄ūdxt into (??) gives

dxt+1 = (A − Bf−1
ūū fx̄ū)dxt + Bdũt. (23)

In order to convert the problem to one without discounting, we define the variables x̃t := βt/2dxt and

ũt := βt/2dũt. Substituting these newly defined variables into (??) and (??) yields the linear quadratic

problem

(LQP) min
{ũt}

T−1
t=0

1
2

T−1∑

t=0

(
x̃tR̃x̃t + ũtfūūũt

)

s.t. x̃t+1 = Ãx̃t + B̃ũt, x̃T = 0, (24)

where Ã := β1/2(A − Bf−1
ūū fx̄ū) and B̃ := β1/2B. Variables with a tilde are in the problem (LQP) thus

transformed from the problem (DLQP). As a result, the problem of finding the optimal plan that minimises

the problem (LQP) is equivalent to finding the optimal plan which minimises the problem (DLQP) using

the appropriate transformations. The problem (LQP) is well known and its solution is given by7

ũt = −(La
t − Lb

t )x̃t. (25)

This control function describes the optimal control to the linear quadratic problem as a linear function of

the state variable. The time varying coefficient in front of the state variable consists of two parts. The first

part (La
t ) is the feedback equation of a linear quadratic problem when there is no restriction on the final

state, i.e., x̃T is free to vary. It is determined by equations (??) and (??). The last part of the feedback

coefficient (Lb
t ) represents the linear part which ensures that the control function will drive the state to zero

at the final time period and is determined by equations (??), (??) and (??).

We have now developed a linkage between the first-order approximation of the control function and

a linear quadratic problem via a set of transformations. Having found a recursive solution of the linear

quadratic problem we can back out the first-order approximation of the general problem by applying the set

of transformations in reverse.
7See Appendix 6.3 in von Brasch et al. ?. For a textbook derivation see Section 4.5 in Lewis et al. ?.
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The optimal solution to the problem (LQP) is given by ũt = −(La
t − Lb

t )x̃t. Using the definitions

ũt := βt/2dũt and x̃t := βt/2dxt yields

dũt = −(La
t − Lb

t )dxt.

Further, substituting dũt := (dut + f−1
ūū fx̄ūdxt) yields the optimal control of the problem (DLQP)

dut = −(La
t − Lb

t + f−1
ūū fx̄ū)dxt.

Since increments are made around the steady-state, dut := ut − ū and dxt := xt − x̄, the first-order approx-

imated control function of the optimal control problem can be expressed by

ut = ū − (La
t − Lb

t + f−1
ūū fx̄ū)(xt − x̄), (26)

where La
t and Lb

t are given by (??) - (??). This linearised control function ensures that the state reach the

steady-state in the final period, i.e., restriction (??) holds also for this control function.8

6.2 Proof: Theorem ??

The first-order approximation (??) consists of two sequences La
t and Lb

t . We show the linkage between the

generalised Fibonacci sequence and these sequences separately.

6.2.1 Fibonacci and Optimal Control: La
t

First, we note that the ratio of Fibonacci numbers, Hn = Fn−1/Fn, can also be generated by

Hn+2 =
a + bn+1Hn

a2 + bn+2 + abn+1Hn
, (27)

with initial value H1 = 0. Further, combining (??) with (??) we can write St+1 = fūūÃB̃−1La
t+1 + R̃, which

when inserted into (??) yields

Ã−1La
t =

B̃ + fūūR̃−1Ã2(Ã−1La
t+1)

B̃2 + fūūR̃−1 + B̃fūūR̃−1Ã2(Ã−1La
t+1)

. (28)

Comparing (??) with (??) we note that using the particular values a = B̃ and bn+2 = fūūR̃−1Ã2, when

n is even, and bn+2 = fūūR̃−1, when n is odd, makes (??) identical with the sequence of the transformed

8See Appendix 6.4 in von Brasch et al. ?.
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feedback (??) with appropriate change of index. The sequence Ã−1La
t runs backward from an initial value

at time t = T − 1. If we make the index change n = 2(T − t) − 1, the sequence Hn = H2(T−t)−1 begins at

the initial value H1 = 0. Since from (??) the initial value of the feedback equation is zero, and consequently

Ã−1LT−1 = 0, we have derived the following relationship

La
t = ÃH2(T−t)−1, 0 ≤ t ≤ T − 1. (29)

6.2.2 Fibonacci and Optimal Control: Lb
t

In order to derive the relationship between the second part of the control function (Lb
t ) and the generalised

Fibonacci sequence, we note that the inverse of (??) can be written

H−1
n+2 =

(a2 + bn+2)H−1
n + abn+1

aH−1
n + bn+1

. (30)

Multiplying the Riccati equation (??) by (B̃R̃−1) yields

(B̃R̃−1St) =
(B̃2 + fūūR−1Ã2)(B̃R̃−1St+1) + BR̃−1fūū

B̃(B̃R̃−1St+1) + R̃−1fūū

. (31)

We note that the same choice of coefficients as in Section ?? makes the sequence (??) identical to the

sequence (??), i.e., a = B̃ and bn+2 = fūūR̃−1Ã2, when n is even, and bn+2 = fūūR̃−1, when n is odd.

The sequence (B̃R̃−1St) runs backward from time (t = T ) with an initial condition which follows from the

Riccati equation (B̃R̃−1ST ) = 0. Since F0/F−1 = 0, we define H−1
0 := 0, even though H0 is undefined.

This gives the following relationship between the solution of the Riccati equation and the ratio of Fibonacci

sequences, for 0 ≤ t ≤ T,

St = R̃B̃−1H−1
2(T−t). (32)

Further, we note that from (??) and (??)

WT−1 = Ã
(
1 − B̃H1

)
WT = Ã,

PT−1 = PT −
W 2

T B̃2

fūū + B̃2ST

= −
B̃2

fūū
,

13



hence the initial condition Lb
T−1 is, from (??)

Lb
T−1 =

(
fūū + B̃2ST

)−1

B̃WT P−1
T−1WT−1 = −

ÃB̃

fūū
B̃2

fūū

= −
Ã

B̃
.

For k = 0, 1, 2, 3, . . . , we can rewrite the sequence of generalised Fibonacci numbers (Fn)

F2k+2 = B̃F2k+1 +
Ã2fūū

R̃
F2k, F0 = 0, F1 = 1, (33)

F2k+1 = B̃F2k +
fūū

R̃
F2k−1, F0 = 0, F−1 =

R̃

fūū
. (34)

With these premises, we want to show that also the second feedback coefficient can be explicitly expressed

in terms of generalised Fibonacci numbers; more specific, we have that

WT−k =

(
Ãfūū

R̃

)k−1
Ã

F2k−1
, k = 0, 1, 2, . . . , T, (35)

PT−k = −
B̃

fūū
H−1

2k , k = 0, 1, 2, . . . , T, (36)

Lb
T−k = −

(
Ãfūū

R̃

)2(k−1)
Ã

F2k−1F2k
, k = 1, 2, . . . , T. (37)

To this end, we use the principle of induction. Having in mind that

F−1 =
R̃

fuu
,

H−1
0 = 0,

we see that the initial conditions are satisfied since

WT =

(
Ãfūū

R̃

)−1
Ã
R̃

fūū

= 1,

PT = −
B̃

fūū
H−1

0 = 0,

Lb
T−1 = −

(
Ãfūū

R̃

)0
Ã

F1F2
= −

Ã

B̃
. (38)
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In the following, we show that if the expressions (?? - ??) are true for k = p, then they are also true for

k = p + 1. Indeed, equation (??) with (??) yields that

WT−(p+1) = Ã
(
1 − B̃H2p+1

)
WT−p = Ã2

(
Ãfūū

R̃

)p−1(

1 − B̃
F2p

F2p+1

)
1

F2p−1

=

(
Ãfūū

R̃

)p
R̃

fūū

F2p+1 − B̃F2p

F2p−1

Ã

F2p+1
=

(
Ãfūū

R̃

)p
Ã

F2(p+1)−1
,

where the last equality follows from (??). Moreover, equation (??) with (??) yields that

PT−(p+1) = PT−p − B̃2W 2
T−p

(
fuu + R̃B̃H−1

2p

)−1

= −
B̃

fūū
H−1

2p −

(
Ãfūū

R̃

)2(p−1)
B̃2Ã2

F2
2p−1

(
fūū + R̃B̃

F2p

F2p−1

)

= −
B̃

fūū



 F2p

F2p−1
+

(
Ãfūū

R̃

)2p−1
ÃB̃

F2p−1F2p+1





= −
B̃

fūū

(
F2p

F2p−1
+

F2p+2F2p−1 −F2pF2p+1

F2p−1F2p+1

)

= −
B̃

fūū

F2(p+1)

F2p+1
= −

B̃

fūū
H−1

2(p+1),

where we have used the relation (??), corresponding to d’Ocagne’s identity for regular Fibonacci numbers.

Hence expressions (??) and (??) follow by the induction principle. Finally, expression (??) together with

(??) for k = 2, 3, . . . , T, gives

Lb
T−k =

(
fūū + R̃B̃H−1

2(k−1)

)−1

B̃WT−(k−1)P
−1
T−kWT−k

= −
B̃
(

Ãfūū

R̃

)k−2

Ã
(

Ãfūū

R̃

)k−1

Ã

B̃
fūū

H−1
2k

(
fuu + R̃B̃

F2(k−1)

F2k−3

)
F2k−3F2k−1

= −
fūūÃ2

(
Ãfūū

R̃

)2k−3

F2k

(
fūūF2k−3 + R̃B̃F2(k−1)

) =

(
Ãfūū

R̃

)2(k−1)
Ã

F2kF2k−1
,

where the last equality follows from (??).

In proving the explicit expression for PT−k, we used the identity

F2k+2F2k−1 −F2kF2k+1 = ÃB̃

(
Ãfūū

R̃

)2k−1

, k = 0, 1, 2, . . . . (39)
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This identity is also proved by using induction. First, we note that the initial condition is satisfied since

F2F−1 −F0F1 = B̃
R̃

fuu
− 0 ∙ 1 = ÃB̃

(
Ãfūū

R̃

)−1

.

Now, let us assume that the identity is true for k = p, that is,

F2p+2F2p−1 −F2pF2p+1 = ÃB̃

(
Ãfūū

R̃

)2p−1

.

The proof is complete if we can show that it also holds for k = p + 1. Indeed,

F2p+4F2p+1 −F2p+2F2p+3

=

(

B̃F2p+3 +
Ã2fūū

R̃
F2p+2

)

F2p+1 −

(

B̃F2p+1 +
Ã2fūū

R̃
F2p

)

F2p+3

=
Ã2fūū

R̃
(F2p+2F2p+1 −F2pF2p+3)

=
Ã2fūū

R̃

(

F2p+2

(

B̃F2p +
fūū

R̃
F2p−1

)

−F2p

(

B̃F2p+2 +
fūū

R̃
F2p+1

))

=
Ã2f2

ūū

R̃2
(F2p+2F2p−1 −F2pF2p+1) = ÃB̃

(
Ãfūū

R̃

)2p+1

,

where the last equality follows from the induction assumption. Changing index, we have thus shown how

the Fibonacci sequence enters the second feedback term

Lb
t = −

Ã
(
ÃfūūR̃−1

)2(T−t−1)

F2(T−t)−1F2(T−t)
, 0 ≤ t ≤ T − 1. (40)

6.3 Proof: Corollary ??

Since

La
T−k = ÃH2k−1,

Lb
T−k = −

(
Ãfuu

R̃

)2(k−1)
Ã

F2k−1F2k
,

the control function

ũT−k = −
(
La

T−k − Lb
T−k

)
x̃T−k,
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can be simplified when Ã2 = 1. First, note that

La
T−k − Lb

T−k = Ã




H2k−1 +

(
Ãfuu

R̃

)2(k−1)

F2k−1F2k






= Ã
F2k−2F2k+

(
Ã2
)k−1 (

Ãfuu

R̃

)2(k−1)

F2k−1F2k
.

If we let Ã2 = 1, we then get that

La
T−k − Lb

T−k = Ã
F2

2k−1

F2k−1F2k
= ÃH2k,

by noting that

F2
2k−1 −F2k−2F2k=

(
fuu

R̃

)2(k−1)

, k = 1, 2, 3, . . . ,

which follows from setting n = 2k − 1 in the identity

F2
n −Fn−1Fn+1=

(

−
fuu

R̃

)n−1

, n = 1, 2, 3, . . . . (41)

This identity is proved by using induction. First, we note that the initial condition is satisfied since

F2
1 −F0F2 = 1 =

(

−
fuu

R̃

)0

.

Now, let us assume that the identity is true for n = p, that is,

F2
p −Fp−1Fp+1 =

(

−
fuu

R̃

)p−1

.

The proof is complete if we can show that it then also holds for n = p + 1. Indeed, by using Ã2 = 1, we get

F2
p+1 −FpFp+2 =

(

B̃Fp +
fuu

R̃
Fp−1

)

Fp+1 −

(

B̃Fp+1 +
fuu

R̃
Fp

)

Fp

=
fuu

R̃

(
Fp+1Fp−1 −F2

p

)
=

(

−
fuu

R̃

)(

−
fuu

R̃

)p−1

=

(

−
fuu

R̃

)p

,

where the penultimate equality follows from the induction assumption.

Remark 6.1 Identity (??) is a generalisation of Cassini’s identity

F 2
n − Fn−1Fn+1=(−1)n−1

, n = 1, 2, 3, . . . ,
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for regular Fibonacci numbers.

Hence in this special case, we have that

ũT−k = −
(
La

T−k − Lb
T−k

)
x̃T−k = −ÃH2kx̃T−k,

or

ũt = −
(
La

t − Lb
t

)
x̃t = −ÃH2(T−t)x̃t.

6.4 Example: Narrative Details on the Brock-Mirman Model

The Brock-Mirman model considers a representative household maximising utility subject to economic con-

straints.9 In particular, it considers an economy where the total amount of goods (yt) is produced using

capital (xt) as input in the production process, i.e.,

yt = γxα
t , (42)

where γ > 0 and 0 < α < 1. In a closed economy, what is produced in a given year must either be consumed

(ct) or invested (ut) as given by the national accounts identity

yt = ct + ut. (43)

Further, if we make the simplifying assumption that capital fully depreciates, the consecutive level of capital

will equal current investments, i.e.,

xt+1 = ut. (44)

Given an initial level of capital (x0), the objective of the representative household is to maximise a discounted

(0 < β < 1) sum of utilities

T−1∑

t=0

βt ln(ct), (45)

9A representative household refers to an economy where the demand side can be represented as if there were a single
household making the aggregate consumption and saving decisions.
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subject to the three economic constraints (??) - (??) and subject to capital reaching the steady-state value

in the final time period

xT = x̄. (46)

The form of the Brock-Mirman model as given in the main text follows by inserting both the production

function (??) and the national accounts identity (??) into the objective function (??). More details on the

Brock-Mirman model can be found in Section 3.1.2 in Ljungqvist and Sargent ?.

6.5 Example: Deriving the Steady-State

In this section, we derive the steady-state of the Brock-Mirman model. Define the Hamiltonian

H := −βt ln(γxα
t − ut) + λt+1ut,

where λt+1 is the multiplier. The first-order conditions are10

Hut = 0 ⇒ −βt(γxα
t − ut)

−1 = λt+1,

λt = Hxt ⇒ λt = −βtαγxα−1
t (γxα

t − ut)
−1.

Combining these first-order conditions, letting ct = γxα
t − ut, yields the Euler-Lagrange equation

ct+1 = ctβαγxα−1
t+1 .

At the steady-state, both the control and the state remains unchanged, c̄ = ct = ct+1 and x̄ = xt = xt+1.

The Euler equation can thus be solved to yield

x̄ = (αβγ)1/(1−α).

Further, the steady-state levels of investment and consumption are given by

ū = x̄, c̄ = γx̄α − x̄.

10See Section 12.4 in Sydsaeter et al. ?.
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6.6 Example: Second Derivatives

In this section, we provide the second derivatives of the criterion function evaluated at the steady state. In

particular, we have

fx̄x̄ = α2γ2c̄(−2)x̄2(α−1) + α(1 − α)γc̄(−1)x̄(α−2),

fūū = c̄(−2),

fx̄ū = −αγc̄(−2)x̄α−1.

From Appendix ??, c̄ = (1 − α)α−1 when imposing the restrictions β = 1 and γ = α−1. Also inserting the

normalisation x̄ = 1 and α = 1 − φ−1 yields the results given in the main text

fx̄x̄ = 2(1 − φ−1), fūū = 1 − φ−1, fx̄ū = −(1 − φ−1).

In order to derive fx̄x̄ we have used the property

α(1 − α)−2 = (1 − φ−1)φ2 = (φ − 1)φ = 1.

where the last equality follows from applying (??).

6.7 Example: Generalised Fibonacci Sequence

In this section, we illustrate that the Fibonacci sequence entering the control function of the Brock-Mirman

model is the original Fibonacci sequence. The generalised Fibonacci sequence is in this example defined by

Fn+2 = aFn+1 + bn+2Fn, F0 = 0, F1 = 1,

with the particular coefficients a = β1/2B and bn+2 = fūū(fx̄x̄ − fx̄ūf−1
ūū fx̄ū)−1β(A − Bf−1

ūū fx̄ū)2, when n

is even, and bn+2 = fūū(fx̄x̄ − f−1
ūū f2

x̄ū)−1, when n is odd. It follows immediately that a = 1. To find the

expression for bn+2 we need the second derivatives of the criterion function. From Appendix ?? it follows

that f−1
ūū fx̄ū = −1 and fx̄x̄ − f−1

ūū f2
x̄ū = (1 − φ−1). Using the parameter values A = 0 and β = B = 1 yields

bn+2 = 1.
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6.8 Section ??: Explicit Solutions of Odd and Even Indexed Fibonacci Sequences

Since (??) has constant coefficients there is an explicit solution describing this sequence. Consider the

recurrence equation

gn+2 = c1gn+1 + c2gn (47)

= c1(c1gn + c2gn−1) + c2gn

= (c2
1 + c2)gn + c1c2(c

−1
1 (gn − c2gn−2))

= (c2
1 + 2c2)gn − c2

2gn−2. (48)

We note that (??) describes the sequence (??) when coefficients are matched, i.e.,

c1 =
√

B̃2 + fūūR̃−1(1 − Ã)2, c2 = fūūR̃−1Ã. (49)

The general solution to the sequence gn is well known and depends on whether the characteristic equation

r2 = c1r + c2 has two distinct real roots, one real double root or a pair of complex conjugate roots. Due to

the assumption of a positive definite Hessian of f in the optimal control problem, it is only the real distinct

roots which are relevant, i.e., r1,2 = (c1 ±
√

c2
1 + 4c2)/2.11 Given two initial values, the general solution is

then given by

gn = Grn
1 + Krn

2 , (50)

where G and K are constants to be determined from the initial conditions. These initial conditions depend

on whether we are considering the odd or even indexed Fibonacci sequence.

Let ge
n denote the solution to equation (??) with initial values corresponding to even indexed Fibonacci

numbers. For example, consider the initial value of the sequence F2(T−t−1) when time is running backwards

from t = T − 1, i.e., ge
0 = F0 and ge

2 = F2. Given these initial conditions, solving for the constants G and K

in (??), gives the solution12

ge
n = B̃

rn
1 − rn

2

r2
1 − r2

2

.

In terms of the Fibonacci sequence, ge
n = Fn when n is even. The explicit expressions for the even indexed

11See Appendix ??.
12See Appendix ??.
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Fibonacci sequences entering the control function are then given by

F2(T−t−1) = ge
2(T−t−1) = B̃

r
2(T−t−1)
1 − r

2(T−t−1)
2

r2
1 − r2

2

, (51)

F2(T−t) = ge
2(T−t) = B̃

r
2(T−t)
1 − r

2(T−t)
2

r2
1 − r2

2

. (52)

Correspondingly, we let go
n denote the solution to equation (??) with initial values corresponding to the initial

value of the odd indexed Fibonacci numbers, i.e., go
1 = F1 and go

−1 = F−1. Given these initial conditions,

solving for the constants G and K in (??), gives the solution13

go
n =

(r1 + Ãr2)rn
1 − (r2 + Ãr1)rn

2

r2
1 − r2

2

.

Since go
n = Fn when n is odd, the explicit solution of the odd indexed Fibonacci sequence is then given by

F2(T−t)−1 =
(r1 + Ãr2)r

2(T−t)−1
1 − (r2 + Ãr1)r

2(T−t)−1
2

r2
1 − r2

2

. (53)

6.9 Section ??: Both Roots Are Real and Distinct

This section shows that both roots of the characteristic equation corresponding to the solution of every

second generalised Fibonacci sequence are real and distinct due to the assumption of a positive definite

Hessian of f . The general solution to the sequence

gn+2 = c1gn+1 + c2gn,

is well known and depends on whether the characteristic equation r2 = c1r + c2 has two distinct real roots,

one real double root or a pair of complex conjugate roots. Due to the assumption of a positive definite

Hessian of the criterion function f in the optimal control problem, we show that it is only the real and

distinct roots which are relevant, i.e., c2
1 +4c2 > 0. Indeed, given the expressions for c1 and c2 it follows that

c2
1 + 4c2 = B̃2 +

fūū

R̃

(
1 − Ã

)2

+ 4
fūū

R̃
Ã = B̃2 +

fūū

R̃

(
1 + Ã

)2

> 0,

if fūū

R̃
> 0. This holds since

fūū

R̃
=

fūū

fx̄x̄ − fx̄ūf−1
ūū fx̄ū

=
f2

ūū

fūūfx̄x̄ − f2
x̄ū

> 0,

13See Appendix ??.
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which is positive from the positive definiteness of the Hessian, implying

∣
∣
∣
∣
∣
∣
∣

fx̄x̄ fx̄ū

fx̄ū fūū

∣
∣
∣
∣
∣
∣
∣
= fūūfx̄x̄ − f2

x̄ū > 0 and fūū > 0.

6.10 Section ??: The General Solution: gn

The general solution to the difference equation

gn+2 = c1gn+1 + c2gn, (54)

when both roots of the characteristic equation r2 = c1r + c2 are real and distinct, is given by

gn = Grn
1 + Krn

2 , (55)

where the constants G and K are determined by initial conditions. We consider the case of even and odd

indexed Fibonacci sequences separately, i.e., we find the sequences ge
n = Fn when n is even and go

n = Fn

when n is odd.14

6.10.1 Section ??: The Even Indexed Sequence: ge
n

From the generalised Fibonacci sequence, ge
0 = F0 = 0, and

ge
2 = F2 = a2F1 + b2F0 = a2 = B̃,

which, when inserted into (??), gives the initial condition

ge
1 = c−1

1 (ge
2 − c2g

e
0) = c−1

1 ge
2 =

B̃

r1 + r2
,

where we have used the property c1 = r1 + r2. From the general solution (??) we get

ge
0 = 0 = Ger0

1 + Ker0
2 ⇒ Ge = −Ke.

14The superscript e emphasise that the sequence relates to the even indexed Fibonacci sequence (ge, Ge and Ke) while the
superscript o refers to the odd indexed sequence.
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Inserting this result when applying the second initial condition ge
1 yields

ge
1 = Ger1 + Ker2 = Ke(r2 − r1) =

B̃

r1 + r2
.

Together, this implies

Ge =
B̃

r2
1 − r2

2

, Ke = −
B̃

r2
1 − r2

2

.

Using these results in the general solution (??) gives

ge
n = B̃

rn
1 − rn

2

r2
1 − r2

2

.

Remark 6.2 Note that r2
1 − r2

2 = c1

√
c2
1 + 4c2 > 0.

6.10.2 Section ??: The Odd Indexed Sequence: go
n

From the generalised Fibonacci sequence, go
1 = F1 = 1 and go

−1 = F−1 = R̃f−1
ūū , which gives

go
0 = (1 − Ã)c−1

1 ,

when inserted into (??) and applying the matched coefficient c2 = fūūR̃−1Ã. In order to determine Go and

Ko we use the initial values go
0 and go

1. From the general solution (??) we get

go
0 = (1 − Ã)c−1

1 = Gor0
1 + Kor0

2,

or

Go = (1 − Ã)c−1
1 − Ko. (56)

From the other initial condition, we get

go
1 = Gor1 + Kor2 = 1,

which, when inserting (??) and using the relation c1 = r1 + r2, yields

Ko = −
r2 + Ãr1

r2
1 − r2

2

.
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Inserting this result back into (??) gives

Go =
r1 + Ãr2

r2
1 − r2

2

.

Using these results in the general solution (??) gives

go
n = Gorn

1 + Korn
2 =

(r1 + Ãr2)rn
1 − (r2 + Ãr1)rn

2

r2
1 − r2

2

.
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