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Abstract

The Altham statistic is often used to calculate intergenerational associations in occupa-
tions in studies of historical social mobility. This paper presents a method to incorporate
individual covariates into such estimates of social mobility, and to construct corresponding
confidence intervals. The method is applied to an intergenerational sample of Norwegian
data, showing that estimates of intergenerational mobility are robust to the inclusion of
controls for father’s and son’s age.
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1 Introduction

The Altham statistic (Altham, 1970; Altham & Ferrie, 2007) sees increasing use as an indicator

of intergenerational occupational mobility in the historical economics literature (Long & Ferrie,

2007, 2013; Boberg-Fazlic & Sharp, 2013; Azam, 2013; Ferrie, 2005; Long, 2013). In such histor-

ical studies, based on census records or family reconstitution data, income data is usually not

available, while data on occupation or social class does exist.1

The statistic is constructed from matrices tabulating fathers’ and sons’ occupations, using

two-way odds ratios. Following the literature, we index father’s occupations by i and l, and son’s

occupations by j and m, and let pij denote the probability of a child obtaining an occupation

j given father’s occupation i. The two-way odds ratio Θijlm then compares the probabilities of

two sons’ occupations, given two fathers’ occupations:

Θijlm = log

(
pij/pim
plj/plm

)
(1)

∗Statistics Norway, Research Department. I am grateful to Manudeep Bhuller, Terje Skjerpen and an anony-
mous referee for helpful comments. Support from the Norwegian Research Council is acknowledged.

1The Altham statistic does not depend on an unambiguous ordering of occupations or social classes. In
situations where such an ordering is available, other tools can be used that take advantage of this additional
information.

1



The Altham statistic d(P, J) is defined as the square root of the sum of the squared deviations

of two-way odds ratios from a hypothetical “full mobility” setting where said odds ratios are zero:2

d(P, J) =

 N∑
i=1

N∑
j=1

N∑
l=1

N∑
m=1

[Θijlm]
2

1/2

(2)

where N refers to the number of occupation categories.3

In studies of intergenerational mobility using income data such as Solon (1992), a common

approach is to regress son’s (log) income on father’s (log) income to obtain an estimate of the

intergenerational association parameter. Further information on individuals can be incorporated

in the regression to study intergenerational mobility “net of” covariates, for example to account

for an age profile in income.4

The purpose of this note is to similarly extend the calculation of the Altham statistic d(P, J)

to adjust for covariates, giving a summary statistic of mobility net of these characteristics. This

method will be applied to occupational mobility between fathers and sons in Norway between

1960 and 1980, controlling for the age composition in different occupation categories.

2 Modelling mobility

To study occupational choice with control variables, we use the canonical multinomial logit

model (see Agresti (2002, p. 268) for a general description of multinomial logit models) where

the child’s occupation is the outcome. We consider a set of N occupations and set the first as

the reference outcome. We denote occupation by o, let superscript f denote parent and s child,

index individuals by q, and estimate a system of N − 1 equations for son’s occupation, indexed

by k:

log

(
Pr(osq = k)

Pr(osq = 1)

)
= αk + β′

kDq + γ′
kXq k = 2, 3, ..., N (3)

where Dq = {D2,q, D3,q, ..., DN,q} is a vector of dummy variables where Dz,q = 1 if father’s

2The above papers use the statistic in two settings: for comparison of two different mobility matrices d(P,Q)
and for comparing a mobility matrix to a hypothetical matrix of full mobility d(P, J). For brevity, this article
only deals with the second setting.

3For simplicity, an equal number of father’s and son’s occupations are considered throughout this paper, though
the result is generalizable to the case where these are different.

4Formally, for father’s log income yf and son’s log income ys, indexing individuals by q, we have

ysq = α+ βOLSyfq + γ′Xq + εi

As explained by Solon (1992), an estimator of social mobility based on βOLS has inherent biases and methods
using instrumental variables or average income over several years should be preferred. However, in studies of
historical data such methods are frequently not feasible because of data limitations. Moreover, occupations are
more stable over the life cycle than income.
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occupation is z and Dz,q = 0 otherwise. βk and γk are parameter vectors; we use βi
k to refer to

the ith element of βk. For the sake of completeness, we also define parameters for the reference

group, with α1 set to zero and β′
1 and γ′

1 as vectors of zeros. Estimated probability ratios do

not depend on the choice of reference category.

From Equation (3), we have, for the example of comparing the probability of a son getting

occupations 3 vs. 4, given that the father holds occupation 2 and the son is 30 years old, with a

dummy variable specification for son’s age:

log

(
Pr(osq = 3|ofq = 2)

Pr(osq = 4|ofq = 2)

)
= (α3 − α4) + (β2

3 − β2
4) + (γ303 − γ304 ) (4)

When there are no control variables Xq, it can be shown that the estimation procedure yields

the raw probabilities (
̂

Pr(osq = j|ofq = i) = pij).
5

The setup of the multinomial logit model in Equation (3) makes the estimated odds ratios

invariant across subgroups defined by control variables. To see this, insert for the probabilities

in (1) from (4) to get

Θijlm = (βi
j − βi

m)− (βl
j − βl

m) (5)

For any set of covariates Xq, including the empty one, the expression for d(P, J) as expressed

by parameters estimated with multinomial logit as in Equation (3) remains

d̂(P, J) =

 N∑
i=1

N∑
j=1

N∑
l=1

N∑
m=1

[
(β̂i

j − β̂i
m)− (β̂l

j − β̂l
m)
]21/2

(6)

Equation (6) can then be used as a basis for calculating intergenerational occupational mo-

bility while controlling for age structure or other covariates. Further, the parameters γ′
k give

information on the relationship between covariates and occupation outcomes.

Using the standard errors of the estimated coefficients from Equation (3), we can also con-

struct confidence intervals for the estimates of the probabilities as well as the estimate of overall

mobility.6

5See Appendix for proof.
6The confidence intervals are constructed using a bootstrap technique based on the covariance matrix from

the logit estimation. See the Appendix for details.
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3 Application

As an application, the methodology is used on an intergenerational transition matrix constructed

from the Norwegian censuses of 1960 and 1980. Occupations are coded into four categories similar

to those used by Long & Ferrie (2013); see Modalsli (2015) for further details. We restrict the

sample to the native-born male population between 30 and 60 years of age in 1980, for which

the father’s identity is known and the father is between 30 and 60 years old in 1960, and use

occupations reported in 1960 for fathers and 1980 for sons. The total sample population is

201,289 individuals, and the aggregate transition matrix is shown in Table 1.

Father’s Son’s occupation
occupation W F S U Total
White collar (W) 32,005 476 10,448 1,117 44,046

72.7% 1.1% 23.7% 2.5%

Farmer (F) 11,215 9,878 17,484 2,588 41,165
27.2% 24.0% 42.5% 6.3%

Manual, skilled (S) 37,178 898 51,426 3,776 93,278
39.9% 1.0% 55.1% 4.0%

Manual, unskilled (U) 6,391 527 11,664 4,218 22,800
28.0% 2.3% 51.2% 18.5%

Total 86,789 11,779 91,022 11,699 201,289

Table 1: Father-son occupation transition matrix (cell count and row percentage), Norway, 1960-
1980

Included in X d(P, J) Interval
No controls (reference) 22.3 ( 22.1 - 22.6)

Son’s age (dummy variable) 22.0 ( 21.8 - 22.3)

Father’s age (dummy variable) 21.9 ( 21.6 - 22.2)

Father’s and son’s age (dummy variables) 21.9 ( 21.7 - 22.2)

Father’s and son’s age (linear) 22.0 ( 21.7 - 22.2)

Father’s and son’s age (quadratic) 21.9 ( 21.6 - 22.2)

Table 2: Estimates of intergenerational occupational mobility (Norway 1960-1980) when control-
ling for age composition

The Altham statistic calculated from Table 1 using (2) is 22.3. We proceed to calculate the

Altham statistic using covariates for father’s and son’s age using (3) and (6); the results are

reported in Table 2. It is evident that the change in the Altham statistic from inclusion of age

controls is only moderate, and that all 95% confidence intervals overlap.

While the estimate of intergenerational mobility in society as a whole does not change much

when age controls are included, there can be substantial age variation in specific transition

probabilities. This is illustrated in Figure 1, where transition probabilities are estimated with

a model using dummies for father’s occupation and son’s age (the second line in Table 2) using

the parameters obtained from Equation (3). The confidence bands are constructed using the
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Figure 1: Predicted probability of son’s occupation in 1980 (using (3)), given son’s age in 1980
and father’s occupation in 1960. 95% confidence intervals.
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same method as for the intervals on the Altham statistic. It is evident from the figure that

some occupations experience age variation in probabilities. Notably, older sons are more likely

to be farmers, while younger sons are more likely to be white-collar workers. Because of missing

family information for older cohorts, there are fewer individuals in the upper end of the age

range, leading to less precise estimates for these ages.

The approach used here imposes some restrictions on the covariates. While a given age

dummy can affect the probabilities of sons’ occupations separately, the interaction with father’s

occupation only happens through a multiplicative (log-additive) interaction with the relevant β

parameter.

4 Concluding comments

This paper has illustrated an approach for incorporating individual covariates into the Altham

statistic commonly used to examine intergenerational mobility in historical samples. In the

application used here, estimated mobility changes only moderately when controls are included,

though specific transition probabilities are heterogeneous across age groups.

The approach can be extended to control for other types of covariates, such as the effect of

regional characteristics or the occupation of other family members on occupational outcomes.

As the availability of large historical data sets increases, there is likely to be further scope for

the inclusion of covariates in historical analyses of intergenerational mobility.

A Appendix

Closed form of multinomial logit with no covariates

This section shows that the maximum likelihood estimate of d(P, J) obtained using the multi-

nomial logit model is equal to the expression given in Equations (1-2)

From Agresti (2002, p. 273), with population shares of son’s occupation denoted π, individ-

uals indexed by q and total population size Q:

L = log

Q∏
q=1

(
K∏

k=1

πk(xq)yqk

)
=

Q∑
q=1

(
K∑

k=1

yqk(αk + β
′

kxq)− log

[
1 +

K∑
k=1

exp(αk + β
′

kxq)

])
(7)

Here k indexes equation, that is, son’s occupation, while x indexes individual covariates, that

is, father’s occupation. We can interpret L as the weighted sum of the contributions of all N2

cells in the transition matrix
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L =

N∑
i=1

N∑
j=1

QijLij (8)

Consider an individual where the father has occupation i and the son has occupation j. In

this case yqj = 1 and all other yq’s are zero. Moreover, the vector β
′

kxq becomes βi
q. For this

individual we then have the contribution term

Lij = (αj + βi
j)− log

[
1 +

K∑
k=1

exp(αk + βi
k)

]
(9)

Summing all the contributions, we get

L =

N∑
i=1

N∑
j=1

(
Qij(αj + βi

j)
)
−

N∑
i=1

(
Mi log

[
1 +

K∑
k=1

exp(αk + βi
k)

])
(10)

where Mi =
∑N

j=1Qij .

Maximizing L with respect to N+N2 parameters (the αs and βs, respectively) and reordering

the first order conditions gives the system

N∑
z=1

Mz exp(α̂j + β̂z
j )

1 +
∑K

k=1 exp(α̂k + β̂z
k)

=

N∑
q=1

Qqj (11)

exp(α̂j + β̂i
j)

1 +
∑K

k=1 exp(α̂k + β̂z
k)

=
Qij∑N

w=1Qiw

(12)

To identify the system, we set α̂1 = 0, β̂1
j = 0 for all j, β̂i

1 = 0 for all i. A total of 10

restrictions gives 20 free parameters to identify. We then insert from (12,j = 1) into (12,j > 1)

to identify the remaining α parameters. Further insertion gets the expression for the βs and we

obtain (for j > 1 and i > 1):

α̂j = log(N1j/N11) (13)

β̂i
j = log(Nij/Ni1)− log(N1j/N11) = log

(
Nij/Ni1

N1j/N11

)
(14)

Inserting for the predicted probabilities in the multinomial logit model gives
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̂
Pr(osq = j|ofq = i) =

exp(α̂j + β̂i
j)

1 +
∑K

k=1 exp(α̂k + β̂i
k)

(15)

=
Nij∑N

w=1Qiw

(16)

which are the empirical probabilities of son’s occupation given father’s occupation.

Confidence intervals

To estimate confidence intervals for d̂(P, J), a parametric bootstrapping technique is used. The

coefficient estimates and covariance matrix from Stata’s mlogit command is used to draw pa-

rameter values 1000 times using Stata’s drawnorm command. The values of the set of βs for

each of the 1000 iterations are then used to calculate an Altham statistic. These are sorted

increasingly, and the 25th and 975th values are used as an upper and lower bound for the 95%

confidence intervals presented in Table 2.

The confidence bands in Figure 1 are constructed in a similar way, using the values from the

draws of the γ parameters.

It should be noted that the significance tests in Altham & Ferrie (2007) and Long & Ferrie

(2013) use a chi-square test based on a generalized linear model, as described in Agresti (2002,

chapter 4.5), a different approach than the one used here to obtain confidence intervals.
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