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1. Introduction

Multidimensional poverty and inequality is not a new topic in eco-
nomics, but the extent of the literature has been rather modest until
the recent 10-15 years where most papers have considered cases with
continuous variables. In this paper, we focus on situations where the
multiple attributes in which an individual can be deprived are repre-
sented by dichotomized variables. The number of dimensions for
which each individual suffers from deprivation may therefore be sum-
marized in a “deprivation count” (see Atkinson, 2003)." The purpose
of this paper is not to discuss the justification for counting the depriva-
tion indicators; we take it for granted by referring to the extensive prac-
tice of statistical agencies to publish such data; normally summarized by

* Corresponding author at: Department of Social Statistics, Statistics Norway, P.O.B.
8231 Dep., N-0033 Oslo, Norway.
E-mail addresses: rolf.aaberge@ssb.no (R. Aaberge), eugenio.peluso@liser.lu
(E. Peluso).
T Bossert et al. (2013) and Lasso de La Vega and Urrutia (2011) provide alternative ax-
iomatic foundations of deprivation measures for multidimensional distributions of dichot-
omized variables.
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three summary measures: The proportion of people suffering from at
least one deprivation indicator, the proportion of people suffering
from all deprivation indicators and the average number of deprivations
in the population. The importance of collecting such data has also been
emphasized by the European Union as part of the European 2020
Agenda measures. Therefore, EUROSTAT (the Statistical Agency of the
EU) collects counting data on a regular basis, as part of the EU-SILC
microdata on level of living. These facts form a motivating background
for investigating deprivation count distributions.

Being deprived on a single dimension could result from the combi-
nation of a threshold and a continuous or discrete variable (e.g. income
below the poverty line or fewer than a specific number of healthy days
for a year). In what follows, it is supposed that available data only con-
tain information on whether an individual is deprived or not in each di-
mension; the variables are dichotomous. This simplification allows us to
delve into the question of how to measure (overall) deprivation in a
country. As for the analysis of poverty in multidimensional distributions
of continuous variables, the order of aggregation is of crucial importance
for the measurement of deprivation in count distributions. Data limita-
tions might in some cases only allow to first aggregate across

0047-2727/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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individuals for each dimension and next aggregate the dimension-
specific proportions into an overall measure of deprivation (or poverty).
The Human Poverty Index (HPI) is a prominent example of this
approach.? However, when data provide information on all dimensions
for the same individuals it is more attractive to employ the opposite
order of aggregation. Otherwise, essential information about the associ-
ation between deprivation indicators would have been lost.? First, by
aggregating across dimensions for every individual, a “deprivation
count” representing the number of dimensions for which the individual
suffers from deprivation is identified. Second, by aggregating across in-
dividuals, we obtain a count distribution, which will form the informa-
tional basis of the methods introduced in this paper.

Atkinson's (2003) illuminating discussion on the relationship be-
tween social welfare, measurement of deprivation and association be-
tween different attributes has formed the motivation and inspiration
for this paper.* However, as opposed to the methods discussed by
Atkinson (2003), which can be justified by the “primal independence
axiom” of the expected utility theory,” the methods proposed in this
paper rely on an alternative independence axiom called the “dual inde-
pendence axiom” by Yaari (1986). The dual independence Axiom in
combination with some standard axioms is shown to characterize a
general family of deprivation measures. These measures are obtained
by aggregating a transformation of the count distribution function
over the range of counts and are moreover shown to admit a linear de-
composition with respect to the mean and dispersion of deprivation
counts, where the choice of the dispersion measure depends on the
preferences of a social planner. More precisely, the functional form of
the dispersion measure (i.e. preference function) reveals whether the
concern of the social planner is turned towards those people suffering
from deprivation on all dimensions (convex “preference” function) or
those suffering from at least one dimension (concave “preference” func-
tion). This distinction is also demonstrated to be captured by two alter-
native partial orders; second-degree upward and downward count
distribution dominance, which refine the trivial ranking of deprivation
count distributions provided by Pareto dominance (or first-degree sto-
chastic dominance).

A normative justification of the dominance criteria is provided by
combining a correlation increasing rearrangement (see e.g. Atkinson
and Bourguignon, 1982; Tsui, 1999; Bourguignon and Chakravarty,
2003 and Aaberge and Brandolini, 2015) with an alternative rearrange-
ment called count neutral rearrangement. Count neutral rearrangement
is a rearrangement that does not affect the deprivation count of individ-
uals; it solely affects the allocation of deprivations between dimensions.
As is demonstrated in this paper, the combination of correlation increas-
ing rearrangement and count neutral rearrangement can also be used to
justify the division of the general family of dual deprivation measures
into two subfamilies, determined by whether the preference function
of the social planner is convex or concave.

The common approach for measuring multidimensional deprivation
in the literature is to use cut-off measures defined by the proportion of
individuals suffering from z or more dimensions for some cut-off z (e.g.
Guio et al,, 2017). An essential difference between the cut-off approach
used by Guio et al. (2017) and our approach is due to different informa-
tional basis. Our methods rely on the entire deprivation count distribu-
tion, whereas the cut-off methods ignore information from the left tail
of the count distributions. Moreover, we have introduced methods
that differ in their sensitivity to changes that take place in the lower,
the central and the upper tail of the count distribution. Thus, an

2 See Anand and Sen (1997).

3 The importance of accounting for the association between dimensions in analyses of
multidimensional inequality and poverty has been underlined by e.g. Atkinson and Bour-
guignon (1982), Tsui (1999), Atkinson (2003 ), Bourguignon and Chakravarty (2003) and
Alkire and Foster (2011).

4 See also Duclos et al. (2006).

> The primal approach has been considered by Alkire and Foster (2011) and Aaberge
and Brandolini (2014, 2015).

interesting question is whether the methods introduced in this paper
produce results that differ from those obtained by application of cut-
off measures. To compare the dual deprivation measures with cut-off
measures, we use alternative cut-off and dual deprivation measures to
assess the effects of the Great Recession on material deprivation in 30
European countries. The count data in question are defined by indica-
tors of material deprivation collected by the EU Statistics on Income
and Living Conditions (EU-SILC) project, which assess whether an indi-
vidual is suffering from material deprivation on 10 different dimensions.
We show that the dual deprivation measures provide results that differ
from the results produced by the cut-off measures in 6-24% of the
country-specific comparisons, depending on the specific chosen mea-
sure. More importantly, we show that conclusions as to whether mate-
rial deprivation increased or decreased between two years are robust to
the choice of measure in only 29% of the cases when using cut-off mea-
sures, while conclusions attained by application of dual deprivation
measures are robust in 65% of the cases for concave preference functions
and in 40% of the cases for convex preference functions.

The paper is organized as follows. Section 2 presents second-degree
upward and downward dominance criteria as suitable refinements of
first-order stochastic dominance. These criteria differ by capturing alter-
native ethical views of a social planner, who either give priority to indi-
viduals suffering from few or from many deprivations. Moreover, we
introduce a family of deprivation measures on the basis of axioms
used for justifying measures of social welfare. The deprivation measures
are shown to admit a useful decomposition with respect to the extent
and the dispersion of deprivation counts. Section 3 introduces associa-
tion rearrangement principles, which are shown to justify second-
degree upward and downward dominance and two subfamilies of
dual deprivation measures as criteria for ranking deprivation count dis-
tributions. Section 4 provides an application of the introduced methods
to assess the effect of the Great Recession on material deprivation in 30
European countries, comparing the dual deprivation measures with cut-
off measures commonly used in the literature. Section 5 provides a sum-
mary of the paper and a discussion of possible developments.

2. Ranking distributions of deprivation counts

We consider a situation where individuals might suffer from r differ-
ent dimensions of deprivation. Let X; be equal to 1 if an individual suffers
from deprivation in dimension i and O otherwise. Moreover, let X
= Y"I_; X; be a random variable with cumulative distribution function
F and mean g, and let F~! denote the left inverse of F, i.e. F~(t) = inf
{k: F(k)>t}. Thus, X = 1 means that the individual suffers from one dep-
rivation, X = 2 means that the individual suffers from two deprivations,
etc. We call X the deprivation count and F the deprivation count distri-
bution. Furthermore, let g, = Pr (X = k) which yields

k

F(k)=> "gq;, k=0,1,2....r (2.1
j=0

with meanpt = 37}_; kq,. Note that the mean admits the following alter-
native expression®

p=r—> F(k). (22)

To anticipate the results of Section 2.2, note that expression (2.2) re-
veals the basic structure of the dual approach: Replacing F in Eq. (2.2)
with a transformation of F, say I'(F), corresponds to replace the mean
with an “equally distributed equivalent number of deprivations”,

® Infactu =Y kg = 1= Yjo(r—k)qy = r—[rgo + (r—=1)q; + - + gy =1~

Sico XK 0 a5 =r— g Flk).
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which will depend on the normative judgements captured by the shape
of the “preference” function I

2.1. Partial orders

As for distributions of continuous variables (like income) com-
parisons of count distributions can be achieved by employment of
appropriate dominance criteria. The condition of first-degree domi-
nance, i.e. F1(k) > F,(k) forallk =0, 1, 2, ..., r — 1 and the inequality
holds strictly for some k, justifies the claim that F; exhibits less depriva-
tion than F,.

To deal with situations where deprivation count distributions inter-
sect, weaker dominance criteria than first-degree dominance are called
for. As will be demonstrated below, it will be useful to make a distinc-
tion between aggregating across count distributions from below and
from above.” We first introduce the “second-degree downward domi-
nance” criterion.

Definition 2.1A. A deprivation count distribution F; is said to second-
degree downward dominate a deprivation count distribution F, if

r—1 r—1
> Fi(k)2 Y Fa(k) for s=0,1,...,r—1
k=s k=s

and the inequality holds strictly for some s.

A social planner who implements second-degree downward count
distribution dominance is especially concerned with those people who
suffer from deprivation on many dimensions. However, an alternative
ranking criterion that focuses attention on those who suffer from depri-
vation on few dimensions can be obtained by aggregating the depriva-
tion count distribution from below.

Definition 2.1B. A deprivation count distribution Fj is said to second-
degree upward dominate a deprivation count distribution F, if

S S
> Fi(k)2 Y Fa(k) for s=0,1,...,r—1,
k=0 k=0

and the inequality holds strictly for some s.

Note that second-degree downward as well as upward count distri-
bution dominance preserves first-degree dominance since first-degree
dominance implies second-degree downward and upward dominance.

The following example illustrates the difference between the two
principles: Consider two counting distributions F; and F,. In distribution
Fy, individual i suffers from h deprivations and individual j from [ (I < h)
deprivations. In distribution F,, individual i suffers from h + 1 depriva-
tions and individual j from [ — 1 deprivations. The remaining individuals
have identical status in F; and F. A social planner who supports the con-
dition of second-degree downward count distribution dominance will
consider F; to be preferable to F,. By contrast, a social planner who sup-
ports the condition of second-degree upward count distribution domi-
nance will prefer F, to F;. Thus, for a fixed number of deprivations,
second-degree downward dominance will rank the distribution with
the lowest proportion suffering from all dimensions as more favourable
then the distribution with the lowest proportion suffering from at least
one dimension, whereas second-degree upward dominance provides a
reverse ranking. Note that the criteria of second-degree downward
and upward dominance are related to what Atkinson (2003) denotes
the “intersection” and “union” approaches in multidimensional poverty
assessment, which corresponds to the proportions of people suffering

7 Note that aggregating income distributions from above does not make sense since it
conflicts with Pigou-Dalton's principle of transfers (see Aaberge, 2009).

from deprivation on all dimensions and those that suffer from at least
one dimension. The normative justification of using either second-
degree downward or upward dominance is discussed in Section 3.

2.2. Complete orderings — the dual approach

Since both second-degree downward and second-degree upward
dominance in many cases will fail to provide complete rankings of dep-
rivation count distributions, it will be helpful to introduce summary
measures of deprivation.

Let F denote the family of deprivation count distributions. An order-
ing defined on Fis a relation 3>, which will be assumed to be continuous,
transitive and complete and consequently can be represented by an in-
creasing and continuous preference functional (see Debreu, 1964). To
make the ordering relation 3> empirically relevant, we rely on the fol-
lowing independence condition®:

Axiom. (Dualindependence). Let F;, F> and F3 be members of F and let o« €
[0,1]. Then F; > F, implies (oFy ' + (1 — a)F3 )™ ' % (o ' + (1 — @)
F3_ 1 ) — 1.

This axiom requires that the ordering of distributions is invariant
with respect to certain changes in the distributions being compared. If
F, is weakly preferred to F,, then the dual independence Axiom states
that any mixture on Fi ! is weakly preferred to the corresponding mix-
ture on F; . The intuition is that identical mixing interventions on the
inverse distribution functions being compared do not affect the ranking
of distributions. Alternatively, one could invoke the primal indepen-
dence axiom of Atkinson (1970), giving an expected utility representa-
tion of preferences. This axiom requires the preference ordering to be
invariant with respect to identical mixing of the distribution functions
being compared.

To illustrate the averaging operation associated with the dual inde-
pendence Axiom, let us consider the problem of ranking distributions of
couples obtained by matching men and women with the same rank in
the male and female deprivation count distributions (i.e. the most de-
prived man is matched with the most deprived woman, the second de-
prived man with the second deprived woman, and so on). Dual
independence means that, given any initial distribution F3 of deprivation
for the female population, if for the male population, distribution F; is
deemed to contain less deprivation than distribution F,, this judgement
is not affected by the matching with female distribution F. The dual inde-
pendence Axiom requires that this property holds regardless of the initial
patterns of deprivation and of the weights associated to male and female
deprivation counts when forming the couple distribution.

Theorem 2.1. A preference relation 3> on F satisfies continuity, transitivity,
completeness and dual independence if and only if there exists a continuous
and non-decreasing real function I defined on the unit interval, such that
forall F, F, €F,

r—1 r—1

FirFye > T(Fi (k)2 > T(F(k))

k=0 k=0

Moreover, I'is unique up to a positive affine transformation.

Proof: See Appendix A.

8 The dual independence Axiom was introduced by Yaari (1987) as an alternative to the
independence axiom of the expected utility theory for choice under uncertainty. Weymark
(1981) denoted this axiom Weak Independence of Income Source and used it to justify
rank-dependent measures of inequality.
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Theorem 2.1 provides a theoretical justification for the following
family of social evaluation functions,

Wr(F) = T(F(k)), (2.3)

where I is a non-negative and non-decreasing continuous function that
represents the preferences of the social planner, where the distribution
that produces the largest Wr(F) is the most favourable one. Thus, the so-
cial evaluation function Wr(F) provides a normative justification of the
following family of deprivation measures,’

[(F(k)), (24)

where I'(0) = 0 and I'(1) = 1 for normalization purposes. Since F de-
notes the distribution of the deprivation count, Dr(F) can be considered
as a summary measure of deprivation exhibited by the distribution F.
The social planner considers the distribution F that minimizes Dr(F) to
be the most favourable among those being compared, where Dr(F) =
0 if and only if go = 1. The maximum value r for Dy(F) is attained
when ¢, = 1. Comparing Egs. (2.4) and (2.2), it follows that Dr(F) = u
when I'(t) = t and p < Dr(F) < r when T is convex, and 0 < Dr(F) < u
when I is concave. Notice that while income gives people consumption
opportunities, deprivations are bad conditions that people would like to
escape. Therefore, it makes sense to allow the preference function I' of
the social evaluation function defined by Eq. (2.4) to be convex as well
as concave, whereas it is required to be concave when used as a welfare
function for evaluating income distributions (consistent with Pigou-
Dalton's principle of transfers). The convex and concave shape of T is as-
sociated with the distinction between the intersection and union ap-
proaches for measuring deprivation/poverty (see Atkinson et al., 2002
and Atkinson, 2003). An ethical view in favour of the union approach
cares about the proportion of people who suffer from at least one di-
mension of deprivation (1 — qg), whereas the intersection approach fo-
cuses attention on the proportion of people deprived on all dimensions
(qr). By choosing

I‘(t):{i

we get Dr(F) = 1 — qo, which means that the proportion that suffers
from at least one dimension can be considered as a limiting case of the
Dr-family of measures of deprivation for concave I'. The following alter-
native specification of the preference function,

{0 if t1—q
r(t)_{t if 1—qr<t5r1

if t<qo
if qo<t<1 (25)

(26)

yields Dr(F) = r — 1 + g, which means that the proportion that suffers
from all dimensions represents a limiting case of the Dr-family of depri-
vation measures for convex I'. Although the proportions suffering from
at least one dimension and all dimensions do not belong to the Dr-
family (which is generated by continuous I functions) these deprivation
measures can be approximated within this class (see Le Breton and
Peluso, 2010 for general approximation results).

2.3. Decomposition of the dual deprivation measures

As are well-known, the social welfare functions derived from the ex-
pected and rank-dependent utility theories, called primal and dual ap-
proaches below, allow for a multiplicative decomposition with respect

9 Itis shown in the appendix that the social welfare functions Wy and the associated Dy-
measures satisfy the dual independence Axiom and fail to satisfy the primal independence
axiom.

to the mean and the inequality of income distributions.'® The depriva-
tion measures defined by Eq. (2.4) are shown to possess a similar prop-
erty by admitting an additive decomposition with respect to the mean
and the dispersion of the deprivation count distributions. Since disper-
sion plays a crucial role in the decomposition of the deprivation mea-
sures it will be helpful to clarify what is meant by measures of
dispersion. The standard measure of dispersion of a distribution func-
tion is the variance, which measures how far observations are spread
out by the squared deviation of observations from the mean. Alterna-
tively, a measure of dispersion can be derived from the variance of the
empirical distribution function F,(x) (the non-parametric estimator of
the cumulative distribution function), which is given by vary/nF,(x) =
F(x)(1—F(x)). Thus, the sum (integral) of F(x)(1 — F(x)) across the
range of F emerges as an appropriate alternative to the variance as a
measure of dispersion of the cumulative distribution function F. The
measure [F(x)(1 — F(x))dx is called Gini's mean difference in the eco-
nomic literature.'! Gini's mean difference as well as the variance has
symmetric properties in the sense that they treat a right skewed distri-
bution and its left skewed mirror image as equally dispersed. However,
when concern is turned to distributions that are either skewed to the
left or to the right it will be useful to complement the information pro-
vided by the Gini's mean difference with measures of dispersion that are
particularly sensitive to left- or right-spread tails.!? To this end, we in-
troduce the following family of dispersion measures,

> [F(k)=T(F(k))] when T is convex
Ar(F) =4 9 (2.7)

> [[(F(k))—F(k)] when T is concave,
k=0

where Ar(F) can be considered as a right-spread measure of dispersion
(or tail-heaviness) when T is convex and as a left-spread measure when
I'is concave. Inserting for the convex function I'(t) = t* and the concave
function, I'(t) = 2t — ? in Eq. (2.7) yields Gini's mean difference (with
negative sign in the concave case). Note that distributions that are
skewed to the right (left) has a mean that typically is larger (smaller)
than its median and are characterized by accumulation of observations
towards the left (right) with a tail stretching towards the right (left).
Distributions of income and wealth are typically skewed to the right.
Inserting Eq. (2.7) in Eq. (2.4) yields

W+ Ar(F) when T is convex

Dr(F) = {u—Ar(F) when T is concave (28)

Thus, we may identify the contribution to Dy from the average num-
ber of deprivations p1and the dispersion of deprivations across the pop-
ulation. Expression (2.8) shows that a social planner with preference
function I'(t) = t will only be concerned with reducing the mean num-
ber of deprivations, whereas a social planner who is also concerned with
the dispersion of deprivations across the population will employ a mea-
sure Dr where I'is either convex or concave. When I'is convex, the social
planner pays more attention to people who suffer from many depriva-
tions than to people who suffer from few deprivations. By contrast,
when the social planner uses the criterion Dy with a concave T, s/he is
more concerned with the number of people who are deprived on one
or more dimensions. Therefore, the dispersion measure is subtracted
from the mean in the definition of the deprivation measure Dy for

10 See Atkinson's (1970) discussion of the equally distributed equivalent income for the
primal case and Yaari (1988) for the dual case. Weymark (2006) discusses an extension to
measurement of multidimensional inequality for the dual case.

' Gini's mean difference was originally introduced by von Andrae (1872) and Helmert
(1876) as a more robust measure of dispersion than the variance.

12 See e.g. Fernandez-Ponce et al. (1998) and Shaked and Shanthikumar (1998) who
provide a discussion on how to compare the right-spread variability of distribution
functions.
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concave T; the larger accumulation at the left tail the larger is the disper-
sion measure for concave I' and the lower is the level of deprivation.

2.4. The Lorenz family of deprivation measures

To summarize the information of the location and the shape of a cu-
mulative distribution function it is common to use the mean together
with a few additional moments of the distribution function (second,
third and fourth order moments, which provide information on spread,
skewness and kurtosis). However, since a distribution function defined
on the positive half line is uniquely determined by its mean and Lorenz
curve, it is attractive to combine the mean with a few moments of the
Lorenz curve. To this end, Aaberge (2000) introduced the Lorenz family
of inequality measures defined by

Jill) =—— (2.9)
and

B,-(F):/F(x)(]—#(x))dx, i=1,2,.., (2.10)

where J; was shown to be uniquely determined by the i order moment
of the Lorenz curve (L) associated with F.'®> Thus, since J;, J> and J5 are
uniquely determined by the first, the second and the third moments
of the Lorenz curve, they will jointly make up a fairly good summary
of the Lorenz curve, which means that the mean ptand By, B, and Bs nor-
mally will provide a good description of the basic features of the distri-
bution function F.'# Now, by inserting the following specification for the
preference function in Eq. (2.7),

Ti(t) = ¢, 2.11)
we get
r—1
Ar(F)=Ay(F) =Y F(k)(1—F"(k)), i=1.2,.., (2.12)
k=0

which demonstrates that A;; = B;. By contrast, when the planner's pref-
erences are consistent with a concave I then by inserting the following
concave preference function

Ti(t) = 1—(1—t)""! (2.13)
in Eq. (2.7), we get
Ar(F) = Agi(F) = r_](1—F(I<))<1—(1—F(k))i), i=1,2,.... (214

S
I

0

Note that A; (A,;) becomes more sensitive to changes that concern
people that suffer from many (few) deprivations when i — . At the lim-
iting case, 1 + Aq; and p — Ay; coincide with respectively the intersec-
tion and the union approach. For a further discussion of sensitivity to
changes that concern the upper and lower tail of the count distribution,
we refer to Section 3.

The two alternative quadratic specifications of I lead to the well-
known Gini measure of dispersion A;(F) and the associated Gini mea-
sure of deprivation D (F)

r—1
Ay(F)=An(F) = 8y (F) = ) F(k)(1—F(k))

k=0

(2.15)

Boul(i 4+ 1) fuldL(u) — 1] = [F(x)(1 — F(x))dx
14 We refer to Aaberge (2000) for a further discussion.

and
_ [+ A (F) when T(t) =¢?
Di(F) = {u—A11(F) when T(t) = 2t—t2. (2.16)

It follows that A; is symmetric in the sense that it treats a right
skewed distribution and its left skewed mirror image as equally dis-
persed. Note that A;5 is particularly sensitive to changes that concern
those people suffering from deprivation in many dimensions, whereas
A, is particularly sensitive to changes that concern those suffering
from few dimensions. We refer to a further discussion of these proper-
ties in the next section. Thus, used together, A;, A;> and A,, might
give a good summary of the shape of the count distribution F and will
be applied in Section 4 together with g

3. Normative justification of dominance criteria and deprivation
measures

The axiomatic characterization of the family Dr of deprivation mea-
sures provides a normative justification of these measures. However,
analogous to the role played by the Pigou-Dalton principle of transfers
in measurement of income inequality, it is useful to introduce a norma-
tive principle that justifies employment of the deprivation measures Dr
and the dominance criteria introduced in Section 2.1. To this end, the
previous literature on measurement of multidimensional poverty and
inequality in distributions of continuous variables has relied on the prin-
ciple of correlation increasing transfers defined by Boland and Proschan
(1988) and applied by e.g. Tsui (1999, 2002) and Alkire and Foster
(2011), whereas Epstein and Tanny (1980) and Atkinson and
Bourguignon (1982) provided an alternative definition in terms of cor-
relation increasing perturbation which is particularly suitable for dis-
crete distributions.!® Both definitions are normally referred to as a
correlation increasing rearrangement.

To illustrate the application of a correlation increasing rearrange-
ment for distributions of deprivation counts, it will be helpful to con-
sider the two-dimensional case. To this end, we start by clarifying the
relationship between the joint distribution of the two deprivation di-
mensions X; and X5, and the associated count distribution defined in
Section 2.

Letr=2,ie.X=X; + Xz, pj = Pr((X; =1i)N (X2 =J)),pi+ = Pr (X,
=1i),and p4; = Pr (X =j).

Thus, we get the following relationship between the count distribu-
tion parameters q, = Pr (X = k), k = 1,2 and the parameters py;, i,j =
1, 2 of the multinomial distribution of the two deprivation dimensions,

o = Poo
q1 =DP1o + Po1 (3.1)
a; = P11-

As illustrated by Table 3.1 a correlation increasing rearrangement
(CIR) requires an equal increase in the number of people suffering
from two dimensions and people that are not suffering from any dimen-
sion, and a corresponding reduction in the number of people suffering
from dimension 1 and not from dimension 2 and in the number of peo-
ple suffering from dimension 2 and not from dimension 1. The equal dis-
tribution of the reduction in the number of people suffering from one
dimension is caused by the condition of fixed marginal distributions.

Definition 3.1. Consider a 2 x 2 table with parameters (poo, Po1,P10:P11)
where Y > p; = 1. The following change (poo + 6,po1 — 6,p10 — 6,P11

15 For further discussion and application of association (correlation) increasing rear-
rangements under the condition of fixed marginal distributions, we refer to Dardanoni
(1995), Tsui (1999, 2002), Bourguignon and Chakravarty (2003), Duclos et al. (2006),
Weymark (2006) and Kakwani and Silber (2008). See also Tchen (1980) who deals with
positive association (or concordance) between bivariate probability measures and
Decancq (2012) for a recent generalization of these principles and an analysis of their links
to stochastic dominance.
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Table 3.1
The correlation increasing rearrangement.
Xz
0 1
X 0 Poo + 6 Po1 — 6 Po+
1 Pio— 06 pi1+o Pi+
P+o P+1 1

Table 3.2
Mlustration of a count neutral rearrangement.
X2
0 1
X1 0 Poo Po1 — Y Po+ =7
1 P+ P11 pi+ +Y
Prot+ Y Pr1—Y 1

+ 6), with >0 (8 < 0) is said to provide a correlation increasing (de-
creasing) rearrangement.

As indicated above, we are concerned with rearrangements that af-
fect the count distribution (i.e. the parameters qo, ¢; and ¢ ). Note, how-
ever, that the count distribution solely provides information on the
number of deprivations, irrespective of whether they arise from dimen-
sion 1 or 2. To allow for mean preserving changes in the marginal distri-
butions of deprivations, we introduce the following “count neutral
rearrangements” (CNR).

Definition 3.2. Consider a 2 x 2 table with parameters (pgo, Po1,P10:P11)

where > > p; = 1 The following change (poo,po1 — ¥.P10 + ¥.P11),
where vy € [—1,1] is said to provide a count neutral rearrangement.

The CNR principle is illustrated in Table 3.2, where the parameters of
the multinomial distribution are affected by small amounts +y in such a
way as to leave the deprivation count distribution unchanged, whereas
the marginal distributions of X; and X, have changed.

The parameter vy only affects the allocation between the two dimen-
sions (X; and X3) of people that suffer from one dimension. Thus, CNR
can be interpreted as a principle of neutrality of deprivation with re-
spect to the different dimensions of deprivation.

The CNR rearrangement principle is crucial to understand the limits
of the counting approach. By aggregating across deprivation variables, it
is implicitly assumed that they are interpersonal comparable and can be
summarized by a deprivation count distribution. The count neutral rear-
rangement principle elucidates the loss of information due to this aggre-
gation process.

In the following subsection, we provide general results linking the
two alternative rearrangement principles with dual deprivation mea-
sures, mean-preserving spread and dominance criteria.

3.1. Relationship between rearrangement principles, dominance criteria
and deprivation measures

The following results provide characterizations of the relationship be-
tween second-degree downward and upward count distribution dominance
and the general family Dy of deprivation measures. Moreover, Theorems 3.1A
and 3.1B provide normative justification in terms of the two rearrangements
principles presented above and of mean preserving spread/contractions,
which are defined (on deprivation count distributions) by

Definition 3.3. Let F; and F, be members of the family F of count distri-
butions based on r deprivation indicators and where F; and F, are as-
sumed to have equal means. Then F, is said to differ from F; by a
mean preserving spread (contraction) if Ar(F2) > Ar(F;) for all convex
T (Ar(F>) < Ar(F,) for all concave T).

Note that Definition 3.3 is analogous to the mean preserving spread
for continuous distributions introduced by Rothschild and Stiglitz
(1970).

Next, let 0, and ), be subfamilies of the family of I'-functions intro-
duced in Theorem 2.1, and defined by

Q = {r - T'(£)>0,T"(£)>0 for all t€(0, 1), and ' (0) = o}

and
O, = {r . T'(£)>0,T"(£)<O0 for all t€(0,1),and I'(1) = o}.

Note that I(0) = 0 and (1) = 0 can be considered as normaliza-
tion conditions.
We can now state the following theorem.

Theorem 3.1A. Let F; and F, be members of the family F of count distribu-
tions based on r deprivation indicators and assume that F; and F, have
equal means. Then the following statements are equivalent

(i) F; second-degree downward (upward) dominates F>.

(ii) Dr(F,) < Dp(F) for allT € Q4 (for allT € Q).

(iii) F, can be obtained from F; by a sequence of correlation increasing
(decreasing) rearrangements and count neutral rearrangements.

(iv) F> can be obtained from F; by a mean preserving spread
(contraction).

We refer to Appendix A.3 for a proof. Note that the equiva-
lence between statements (i) and (ii) is true for all count distri-
butions. Moreover, by adding the condition of elementary
deprivation increases to the rearrangement principles of the pre-
vious theorem, we obtain Theorem 3.1B, which is a generalized
version of Theorem 3.1A.

Definition 3.4. Let F; and F, be members of the family F of count distri-
butions. Then F; is said to differ from F; by an elementary increase in
deprivation if F;(i) > F5(i) foranyi =0, 1,2, ...,r — 1l and F;(j) = F»
(j) for all j#i.

Theorem 3.1B. Let F; and F, be members of the family F of count distribu-
tions based on r deprivation indicators with means py and ,, and assume
that py < L. Then the following statements are equivalent.

(i) F; second-degree downward (upward) dominates F».

(ii) Dr(F;) < Dp(F) for allT € Q4 (for allT € Q).

(iii) F, can be obtained from F; by a sequence of correlation increasing
(decreasing) rearrangements, count neutral rearrangements and/
or elementary increases in deprivation.

(iv) F, can be obtained from F; by a mean preserving spread (contrac-
tion) and/or elementary increases in deprivation.

Proof: See Appendix A4.

We will complete this subsection by a short discussion of how the
Lorenz deprivation measures formed by the preference functions de-
fined by Egs. (2.11) and (2.13) respond to association rearrangements.
To this end, we rely on Aaberge (2000), who evaluates the transfer sen-
sitivity of rank-dependent measures of inequality based on Kolm's
(1976) principle of diminishing transfers and the dual counterpart in-
troduced by Mehran (1976). Both principles are used for unveiling the
ethical properties of members of the Lorenz family of deprivation mea-
sures. The Lorenz deprivation measures defined by the preference func-
tions I(t) = ! (defined by Eq. (2.11)) increase their sensitivity to
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association rearrangements in the upper tail of the count distribution as
i increases, i.e. the stronger convexity the more weight is placed on a
correlation rearrangement that takes place in the upper part of the
count deprivation, which corresponds to higher upside inequality aver-
sion of social preferences. By contrast, the Lorenz deprivation measures
defined by the preference function I;(t) = 1 — (1 — )" (defined by
Eq. (2.13)) increase their sensitivity to rearrangements in the lower
tail of the count distribution as i increases. At the limit, the measures as-
sociated with convex (concave) preference functions coincide with the
intersection (union) approach in measurement of multidimensional
poverty.

4. Changes in distributions of material deprivation in European
countries during the Great Recession

This section applies the dual deprivation measures and the domi-
nance results to assess the evolution of material deprivation in
European countries during the Great Recession. Furthermore, we
make an evaluation of whether the dual deprivation measures produce
results that differ from the results obtained by using standard cut-off
measures. To this end, we compare the EU countries (except Croatia)
plus Norway, Switzerland and Iceland from 2005 to 2012 using the indi-
cators of Material Deprivation (MD) collected by the EU Statistics on In-
come and Living Conditions (EU-SILC) project. The country-specific EU-
SILC data sets contain between 7000 and 15,000 individuals above
16 years old.'® Our unit of analysis is the individual, but we also attach
household variables. The material deprivation indicators measure
whether a person or household cannot afford:

1. to pay their mortgage or rent
to pay their utility bills
to keep their home adequately warm
to face unexpected expenses
to eat meat or proteins regularly
to go on holiday
a television set
a washing machine
. acar

10. atelephone.

The individual is only considered to be suffering from deprivation on
a specific dimension if he/she lacks the associated item because she can-
not afford it. Non-response is treated as if the individual does not suffer
from deprivation. There are very few individuals suffering from eight or
more dimensions. Thus, to account for possible measurement errors in
the proportions of individuals suffering from eight or more dimensions,
such individuals are treated as suffering from seven dimensions.!”

©ENDUEWN

4.1. The impact of the Great Recession on deprivation in European countries

The impact of the Great Recession on material deprivation for 30
European countries is assessed on the basis of the Lorenz deprivation
measures introduced in Section 2.4. In particular, we calculate the
mean level of deprivation together with the dual deprivation measures
with the convex preference functions I'(t) = £*,i = 1, 2 and the con-
cave preference functions I'(t) = 1 — (1 — t)"*!,i = 1, 2. The full empir-
ical results based on the five selected measures for each of the 30
countries between 2005 and 2012 are displayed in Fig. A.1 in the Online
appendix. We present a summary below.

16 We use version 2005-3 from 01 to 03-08, version 2006-1 from 01 to 03-08, version
2007-2 from 01 to 08-09, version 2008-6 from 01 to 03-14, version 2009-6 from 01 to
03-14, version 2010-5 from 01 to 03-14, version 2011-3 from 01 to 03-14, and version
2012-1 from 01 to 03-14 which follow 30 countries (we exclude Croatia as only 2011
and 2012 is covered).

17 This censoring of the data only affects the dominance results. Without the censoring,
first order dominance and second order downward dominance are frequently violated,
since the dominance criteria are very sensitive to the proportion suffering from the max-
imum numbers of dimensions.
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Fig. 4.1. Countries with robust trends of increasing deprivation. Note: The notation F, U
and D means that the year in the row dominates the year in the column at the first
order (F), at the second order upward (U) or at the second order downward (D).

The results show that Eastern European countries have the highest
levels of material deprivation, but they have in general been less af-
fected by the Great Recession than some Western European countries.
While Hungary and Slovenia have experienced increased deprivation,
Slovakia, Poland and Romania show decreasing deprivation trends
over time.'® A relatively stable pattern of deprivation was found in con-
tinental countries like France, Germany and Belgium, with a short-term
stronger impact in Austria. By contrast, deprivation rose in UK, Ireland,
Iceland, Luxembourg and the Netherlands, whereas Nordic countries
as Finland, Norway and Sweden together with Switzerland were almost
unaffected by the Great Recession. Finally, significant increases in mate-
rial deprivation show to have taken place in the Mediterranean Coun-
tries Greece, Italy and Spain during the Great Recession.

To evaluate the robustness of the above results, we have used dom-
inance criteria to make pairwise comparisons of count distributions in
2006, 2008, 2010 and 2012. Detailed results are provided by Fig. A.2
and discussed in the Online appendix. Fig. 4.1 shows the pattern of dep-
rivation in terms of dominance criteria evaluations for a selected group
of countries.

As demonstrated by Fig. 4.1, Luxembourg, UK, Slovenia and Hungary
had all entries below the main diagonal filled by U, which mean that
they experienced rising deprivation incidence over time for large fami-
lies of deprivation measures. Notice that we have first order dominance
of 2010 over 2012 both in Luxembourg, UK, and Slovenia uncovering a
strong and persistent effect of the Great Recession on deprivation in
these countries. It is worth noting that these results differ from those
provided by Eurostat based on the MD rate, which find “Relatively
Flat” material deprivation patterns for Luxembourg, UK and Slovenia.

4.2. Comparison with cut-off measures

It is common to use the proportion of individuals suffering in z or
more dimensions for some cut-off z as a measure of deprivation (see
e.g. Guio et al,, 2017). An alternative approach is to use the dual

18 Note that our results for Czech Republic and Bulgaria differ from those of Guio et al.
(2017). While their results show decreasing deprivation, our results reveal a U-shaped
pattern.
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Table 4.1
Kendall rank correlation between multidimensional deprivation measures.

Measure  Cut-off ~Cut-off Cut-off Dy_(3_r® Di—1—2 D¢ Dz Dg
2 3 4

Cut-off2  1.00 0.71 0.53 0.84 0.86 0.87 0.84 0.76
Cut-off 3 1.00 0.69 0.66 0.69 0.77 0.79 0.82
Cut-off 4 1.00 0.51 0.54 0.63 0.67 0.71
Di_(1-tp 1.00 0.96 0.87 0.81 0.72
Di—_(1—ep 1.00 0.90 0.85 0.76
Dy 1.00 094 0386
De 1.00 092
Dg 1.00

Note: The cut-off z measure gives the proportion of people suffering from z or more di-
mensions. For each country a multidimensional deprivation measure generates a ranking
of the years 2005-2012 showing which years had more material deprivation according to
this measure. A cell in this table shows the Kendall rank correlation between the rankings
generated by the column measure and the ranking generated by the row measure, aver-
aged over all countries.

Table 4.2
Share of year pairs satisfying different dominance criteria.

Dominance criteria Share of pairwise comparisons satisfying

different dominance criteria (%)

First order 29
Second order upward 65
Second order downward 40

Second order downward and upward 36

Note: This table shows the proportion of year pairs within the same country where the dis-
tribution of multi-dimensional deprivation in one of the years is dominating the other year
according to alternative dominance criteria.

measures of deprivation measures introduced in this paper. To assess to
what extent different deprivation measures produce different conclu-
sions regarding the evolution of material deprivation during the Great
Recession, we have performed the following exercise: For a given coun-
try, each measure provides a ranking by deprivation for all years be-
tween 2005 and 2012. We then use Kendall's rank correlation
coefficient to measure the association between the rankings given by
two alternative deprivation measures. The averages across all countries
of these rank correlations for selections of cut-off measures and depriva-
tion measures are shown in Table 4.1.

Cut-off and dual deprivation measures give quite different conclu-
sions regarding the development of material deprivation. For instance,
the Kendall rank correlation between the mean deprivation and the

-0.01 -

-0.02-

-0.03 -

1 2

Increase in proportions between 2006 and 2012

o -

N - .
i - —

proportion suffering from three or more dimensions is 0.77, which
means that the two methods will produce different conclusions regard-
ing whether material deprivation increased or decreased between two
years for 11.5% of the pairwise comparisons.

4.3. Sensitivity of results to the specific choice of deprivation measure

An even more striking result of Table 4.1 is the sensitivity of conclu-
sions with regard to the choice of specific cut-off measure. For instance,
the Kendall rank correlation between the proportion suffering from
more than one dimension and the proportion suffering more than
three dimensions is merely 0.53, which means that the two cut-off mea-
sures produced different results for 23.5% of the pairwise comparisons.

Table 4.1 shows that conclusions are less sensitive to the choice of I
function than to the choice of cut-off measure. For conclusions to be in-
sensitive to the choice of cut-off threshold it is required that one distri-
bution first-degree dominates the other. By contrast, for conclusions to
be insensitive to the convex or concave specification of I for the depri-
vation measures it is sufficient that one distribution second-degree
downward (upward) dominates the other. As shown by Table 4.2
there are only 29% of the pairwise comparisons that satisfy first-
degree dominance, while there are 40% (65%) of the comparisons that
satisfy second-degree downward (upward) dominance.

4.4. lllustration: Portugal between 2006 and 2012

To illustrate the importance of accounting for the information of the
entire count deprivation, we consider the count distributions for
Portugal in 2006 and 2012. The differences between the count distribu-
tions in 2012 and 2006 are displayed in Fig. 4.2. By comparing the pro-
portions suffering from more than one dimension, Fig. 4.2 shows that
2012 exhibits lower deprivation than 2006, whereas comparisons of
the proportions suffering from more than two dimensions shows
lower deprivation in 2006. The reason is that there is a large decrease
in the proportion of individuals suffering from two dimensions from
2006 to 2012, which compensates for the increase in the share of indi-
viduals suffering from three dimensions when one relies on cut-off
measures. By contrast, using the methods introduced in this paper,
one can easily verify that the 2012 distribution both upward and down-
ward second-degree dominates the 2006 distribution. This means that
all deprivation measures, irrespective of choice of convex or concave I,
will state that the 2012 count distribution exhibits less material depri-
vation than the 2006 distribution.

4 5 6 7

Number of dimensions that people are suffering from

Fig. 4.2. The difference between deprivation count distributions in Portugal in 2012 and 2006. Note: This figure shows the difference between 2012 and 2006 in the proportion suffering
from n dimensions, where n is ranging from 1 to 7 in Portugal. For instance, it shows that there were 3 percentage points fewer people suffering from two dimensions in 2012 than in 2006.
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5. Summary and discussion

This paper introduces an axiomatically justified family of dual (rank-
dependent) measures of multidimensional deprivation. These measures
can be decomposed into the mean and the dispersion of deprivation
counts, where the choice of the dispersion measure will depend on
the social planner's concern for deprivation incidence versus depriva-
tion severity. The normative properties of the deprivation measures
can be judged by combinations of correlation increasing and count neu-
tral rearrangements.

When applying the dual family of deprivation measures, we face
the conventional “choice of measure” problem, since it for practical
purposes normally will be convenient to restrict to a few measures
of deprivation. To provide the practitioner with easily
implementable and interpretable measures of multidimensional
deprivation, we have introduced a subfamily of the dual measures
called the Lorenz family of deprivation measures. The normative
properties of the members of the Lorenz family depend on whether
the associated preference function is convex or concave. Convexity
(concavity) means that the social planner supports the principle of
correlation increasing (decreasing) rearrangement. Moreover, as
indicated in Section 3, Kolm's (1976) principle of diminishing
transfers can be used to make further judgements of the normative
properties of measures associated with convex (concave) prefer-
ence functions, which provides helpful information for choosing a
few complementary measures of deprivation for empirical work.
However, a complete axiomatic characterization of each of these
measures, similar as Aaberge (2001) did for the Gini coefficient,
would nevertheless provide additional helpful information. We
also see several other avenues for future research. First, while this
paper has focused on material deprivation, the proposed methods
can be applied in any setting where count data are available. See
e.g. Oliveraetal. (2018), who apply our methods to measure cogni-
tive functioning inequality. Secondly, while it is straightforward to
extend Theorem 2.1 to be valid for the case of weighted dimen-
sions, it is more demanding to establish an analogous version of
Theorems 3.1A and 3.1B for distributions of weighted count data.
We leave this generalization for further research.

Acknowledgement

The project received financial support from the Research Council of
Norway (grant number 261985). We would like to thank three anony-
mous referees and the Editor for useful comments.

Appendix A. Proofs and extensions
A.1. Proof of Theorem 2.1

Since there is a one-to-one correspondence between the count
distribution F and its inverse F~!, we get that the ordering relation
> defined on the set of inverse distribution functions is equivalent
to the ordering relation defined on F. Note that Fy !(t) < F3 !(t) for
all t € [0,1]if and only if Fy(k) > F>(k) forallk =0,1,2,...,7r — 1.
Then, by replacing the primal independence axiom (defined on
the set of distribution functions) with the dual independence
Axiom (defined on the set of inverse distribution functions), Theo-
rem 2 follows directly from the expected utility theorem, where
[(t) plays the role of the utility function and the ordering represen-
tation is given by.

1
/ (OdF'(t) —
0

A.2. Independence axioms and dual measurement of deprivation

Following Yaari (1988) the dual welfare function for the distribution
F of a variable that describes loss in well-being is defined by

/r ))dx = /r (O)dF~(6) (A1)

To demonstrate that Wy satisfies the dual independence Axiom let us
assume that F; and F; are such that Wr(F;) > Wr(F,) for a non-negative
and non-decreasing function I'. By mixing the inverses of F; and F, with
the inverse of an arbitrary third distribution Fs; i.e. F; ! is replaced by
oF71(t) + (1 — a)F5 '(t) where € €[0,1],i = 1, 2, we get that

Wr (aF;‘ (0 + (1=)F5"(6)) = Wr(aFy (0 + (1-a) F3 (1)) =
/r (aFi '@+ (1—a)F3_1(t))—(aF2_1(t)+(1—a)F3‘1(t)>] (A2)

—a/F Fz())

which shows that Wr satisfies the dual independence Axiom.

The primal independence axiom requires that social preferences are
invariant with regard to mixing F; and F, with a third distribution Fs; i.e.
preferences are not affected by replacing F; and F, by oF;(t) + (1 — «)F;
(t) and aF>(t) + (1 — a)F5(t). However, Wr(F;) 2 Wr(F,) does in general

As an illustration, we will consider the following example.

Let us consider three count distributions defined by their inverses:

= a(Wr(F1)—Wr(Fy))20,

0, 0<t<.5

Fil =42, .5<t<9 (A3)
4, 9<t<1,
0, 0<t<6

=42 .6<t<8 (A4)
4, 8<t<1

and

_ 0, 0<t<5

F31(t):{4§ 5et<1 (A3)

and the following dual (F; and F,) and primal (F; and F3) mixtures of F;
and F, with F; where o = 0.5.

Table A1

Illustrations of independence axioms.
Number of deprivations 0 1 2 3 4
F 0.5 0.5 0.9 09 1
F, 0.6 0.6 0.8 0.8 1
F3 0.5 0.5 0.5 0.5 1
F; 0.5 0.5 0.5 09 1
F, 0.5 0.5 0.6 0.8 1
Fy 0.5 0.5 0.7 0.7 1
F5 0.55 0.55 0.65 0.65 1

Assume that F1> Fo; i.e. Wr(F;) 2 Wr(F;) for a non-negative and non-
decreasing function I' < 2I'(.5) + 2I(.9) > 2I'(.6) + 2I'(.8) <

I(.9)—T(.8)2I(.6)—T(.5), (A6)

which is equivalent to Wp(F;)2Wr(F,).

Next, turning to the primal independence axiom, we find that
Wr(Ff) 2 Wi(F3) <I(.70) — I(.65) > I(.55) — I(.50), which is not
equivalent to Eq. (A6). This demonstrates that Wr does not satisfy the
primal independence axiom.
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A.3. Proof of Theorem 3.1A

To make the proof more transparent the two-dimensional case (r =
2) will be considered below. However, since intersections between dis-
tributions formed by r dimensions can be described by r(r — 1)/2 differ-
ent 2 x 2 tables, the generalization to the r-dimensional case is
straightforward. More precisely, since interventions affecting two spe-
cific dimensions are described by a two-dimensional table, involvement
of several dimensions requires that the procedure demonstrated below
for the two-dimensional case is carried out stepwise for the involved
two-dimensional tables.

To simplify the proof, we relax the condition of fixed marginal distri-
butions by combining CIR with count neutral rearrangement. The com-
bined rearrangement is called “mean preserving association
rearrangement”. It is illustrated by Table A.2, where the parameters of
the multinomial distribution are affected by small amounts 6 and vy in
such a way as to leave the mean number of deprivations unchanged. It
follows from Table A.2 and Eq. (3.1) that
=Pio+Po+2p =E

(P1o—=6+7Y) + (P1o—06—7) + 2(p11 + )

which means that the mean number of deprivations has not been af-
fected by the intervention illustrated by Table 3.2, whereas the marginal
distributions of X; and X, have changed when vy # 0.

Table A.2
[llustration of a mean preserving association rearrangement.
X X2
0 1
0 Poo + 6 Po1 —6—Y Po+ — Y
1 Po—06+7y pnt+o P+ +Y
pP+ot+ Y P+1—Y 1

Definition 3.1. Consider a 2 x 2 table with parameters (pgo, Po1,P10,P11)
where ) > p; = 1. The following change (pgo + 8,Po1 — 6 — ¥,p10 — 0
+ v,P11 + ) is said to provide a mean preserving association increasing
(decreasing) rearrangement if 6 > 0 (6 < 0) where y € [—1,1.]

By applying Definition 3.1, we get that statement (iii) is equivalent
to the following statement
(iti)*  F, can be obtained from F; by a sequence of mean preserving asso-
ciation increasing (decreasing) rearrangements.

The principle of correlation increasing rearrangement can be consid-
ered as a special case of the principle of mean preserving association in-
creasing rearrangement. In this case the reduction (26) in the
proportion of those suffering from one deprivation is equally allocated
between the two indicators X; and X,. Wheny = 6 or y = — 6 the pro-
portion suffering from either dimension 1 or from dimension 2 is re-
duced by 26. This case has been considered by Aaberge and Peluso
(2012) and Aaberge and Brandolini (2015). Similarly, the count neutral
rearrangement principle coincides with the special case where 6 = 0.

We begin by proving the equivalence between statements (i) and

(iii).

Let Fy(k un and F,(k) = Zqzj, k=0,1,2

j=0 j=0

where gj; is the proportion suffering from j dimensions in distribution i.
By inserting for F; and F, in Definition 2.1A, we get that F; second-
degree downward dominates F, if and only if

iiquzi

k=i j=0 k=i j=0

k

qpjfori=0,1. (A10)

Let 6; be defined by 6; = q2; — q4;, j = 0, 1. Then it follows that the
distance between F, and F; can be described by two parameters, 6
and 6y, i.e.

—Fi(k) = Zqu un

‘ho ‘Jm =0, k=0
G20—q10 +21—q11 =00 + 01,k =1 (A11)

1-1= 0, k=2

The condition of fixed mean requires that

0 =021 +2q92—911—2q12 = q11 + 61 +2(1—q11—61—q10—60)
—q11—2(1—q11—G10) = —260—01,
which implies that 6; = — 26,. Inserting for 6; = — 26y in Eq. (A11)
yields
k k 0o k=0
Fy(k)=F1(k) = dp— Y ai;=14 —6o, k=1 (A12)
j=0 j=0 k=2,
which implies that
1
Z Z Fa(k)
k=i k=i
_ [ F1(0)=F2(0) + F1(1)=F2(1) = =6 + 6o =0, i=0 (A13)
Fi(1)=F2(1) =0, i=1

Next, assume that F; is affected by an increasing association rear-
rangement. Thus, it follows from Definition 3.1 (and Eq. (A12)) that
the distance between the resulting distribution F* and F; is given by

5, k
F'(k)—F1(k)={ —6, k=
0, k

0
1 (A14)
2,

which means that the distance of the aggregated distributions is given
by
1

: 7 —
Frogro-(t 12

k=i !

(A15)

When 6 > 0, it follows from Eqs. (A15) and (A13) by choosing F,(k)
= F*(k) that (iii) is equivalent to (i).

Next, we will prove the equivalence between (i) and (iv). As was
demonstrated above the distance between two distributions F, and F;
with equal mean can be described by Eq. (A12). Inserting for
Eq. (A12) in Eq. (2.7) when r = 2 yields

Ar(F2) — Ar(Fr) = (T(q10 + g11) — [(qio + 11 — 6o)) —
o) — I(qr0))- (A16)

It follows from Eq. (A10) and the definition of convexity that Ar(F,)
— Ar(F;) > 0 for a (non-decreasing) convex function I'(¢t) if and only if 6y
> 0, which according to Eq. (A13) means that F; second-degree down-
ward dominates F,.

What remains to be proved is the equivalence between (ii) and (iv),
which follows directly from the decomposition Eq. (2.8).

The proof for the concave case has been omitted since it is analogous
to the proof for the convex case.d0

To prove Theorem 3.1B, it is helpful to introduce the following defi-
nition and lemma.

Definition A1. Let F be a count distribution. A lower (upper) elemen-
tary deprivation increase is a decrease in F(j) where j is the lowest inte-
ger with F(j) > 0 (F(j) = 1) and F(i) is kept unchanged for i #j.

(F(q10 +
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Lemma A.1. Assume F; second-degree downward (upward) domi-
nates F, where p; < . Let F with mean py differ from F; by a lower
(upper) elementary deprivation increase with " < 1. Then F;” weakly
second-degree downward (upward) dominates F,.

Proof. Assume F; second-degree downward dominates F,. Then we
need to show that

' ()2 0! Fa(k) fori=0,1,2,...,r—1. This is trivially true
for i > j, where j is the lowest integer with F(j) > 0. For i < j, we get
from Eq. (2.2) that

Suct Fi(k) = r—wi2r—p, = 07 Fa(k) fori=0,1,2,...,r—1

The proof for upward dominance is analogous to the downward domi-
nance case.C]

A.A4. Proof of Theorem 3.1B
As for the proof of Theorem 3.1A, we consider the two-dimensional
distribution and omit the concave case since it is analogous to the proof
for the convex case. We start by proving the equivalence between
(i) and (ii).
Let Fy(k) = 23:0 qs, i=0,1,2; s=1,2, where ts = gs; + 2¢s2 is
the mean of F;. Note that statement (i) is given by
(1) g10+ q112 G20 + g1
(IN) 210 + q11 2 2q20 + q21 Which is equivalent to q;0 + q11 — (G20 +
q21) 2 420 — qo,
and that condition (II) is equivalent to p <, which follows from Eq.
(2.2).
Next, assume that statement (i) of Theorem 3.1B is true

g

Dr(Fz) — Dr(F]) >0forallT € 04
~

I(q10 + q11) — [(q20 + g21) — (I'(g20) — T(q10)) 2 O for all non-
decreasing convex I'

=

I(q10 + q11) — T(g20 + g21) 2 T(g20) — (q10) for all non-decreasing
convex I'

g

G10 + 9112920 + d21

since gy +q11— (420 + G21)2920— 10

=

zljﬂ(k)z Zl:Fz(k), i=0,1.

k=i k=i

Next, we will prove the equivalence between (i), (iii) and (iv). Proof
that (i) implies (iii) and (iv). Assume that F; second-degree downward
dominates F,. (The proof for upward dominance is similar.) Let F;" (with
mean ') be derived from F; by applying lower elementary deprivation
increases until y;" = py. By Lemma A.1, we get that F;' weakly second-
degree downward dominates F,. Thus, by Theorem 3.1A, F, can be ob-
tained from F; by a sequence of mean preserving association increasing
rearrangements (iii), and F can be obtained from F; by a mean preserv-
ing spread (iv).

Proof that (iii) and (iv) implies (i). By Theorem 3.1A, any mean pre-
serving association increasing (decreasing) rearrangement and mean
preserving spread (contraction) leads the resulting distribution to

second-degree downward (upward) dominate the original distribution.
And any elementary deprivation increase leads the resulting distribu-
tion to first order dominate the original distribution.dd
A.5. Extension to higher dimensions
Definition 3.1 can readily be extended to higher dimensions. However,
in cases of many dimensions the standard subscript notation becomes
cumbersome. Thus, we find it convenient to introduce the following
simplified subscript notation pj;,», where i and j represents the outcomes
0 and 1 of two arbitrary chosen deprivation dimensions and m repre-
sents the remaining r-2 dimensions, where m is a (r-2)-dimensional
vector of any combination of zeroes and ones.

To deal with r-dimensional counting data, we introduce the follow-
ing generalization of Definition 3.1,
Definition 3.2. Considera2 x 2 x ... x 2 table formed by r dichotomous
variables with parameters (Pjim, Pijm, Pjim, Pjjm)- The following change
(pitm + 8,Pijm — Y. Djim — 26 + ¥, Djim + 6) is said to provide a mean pre-
serving association increasing (decreasing) rearrangement if 6> 0 (6 <
0) where y € [0,1].

Appendix B. Supplementary data
Supplementary data to this article can be found online at https://doi.
org/10.1016/j.jpubeco.2019.06.004.
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