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Summary

In practical survey sampling, missing data are unavoidable due to nonresponse,
rejected observations by editing, disclosure control or outlier suppression. We pro-
pose a calibrated imputation approach so that valid point and variance estimates of
the population (or domain) totals can be computed by the secondary users using
simple complete-sample formulae. This is especially helpful for variance estimation,
which generally require additional information and tools that are unavailable to the
secondary users. Our approach is natural for continuous variables, where the esti-
mation may be either based on reweighting or imputation, including possibly their
outlier-robust extensions. We also propose a multivariate procedure to accommo-
date the estimation of the covariance matrix between estimated population totals,
which facilitates variance estimation of the ratios or differences among the estimated
totals. We illustrate the proposed approach using simulation data in supplementary
materials that are available online.
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1 INTRODUCTION

In the preparation of survey data for use by secondary analysts, some or all of the sample units are usually assigned estimation

weights that can be applied to all the survey variables. In addition to these weights, imputed values may be needed for the units

that are subjected to item missingness. It is often possible to choose the imputed values for each survey variable so that, together

with the observed and retained values of this variable, the corresponding population total can be estimated by weighting as if

0Abbreviations: ANA, anti-nuclear antibodies; APC, antigen-presenting cells; IRF, interferon regulatory factor
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the sample were completely observed. However, applying standard complete-sample variance estimator formulae to the same

imputed sample would generally cause bias (see, e.g., Wolter, 2007, pp. 419, 421).

Variance estimation in the presence of imputed data needs to appropriately account for the underlying data generation mech-

anism. Some common techniques are Fay’s reverse framework (e.g. Fay, 1991, 1992; Shao & Steel, 1999; Kim & Rao, 2009),

two-phase sampling (Särndal, 1992; Deville & Särndal, 1994b) and replication methods (Rao & Shao, 1992; Rao, 1996; Shao

& Sitter, 1996; Chen, Rao, & Sitter, 2000). To choose and apply any of these methods may be difficult for secondary users who

are non-specialists, even impossible if the relevant information about the sampling design and data processing is lacking.

The needs for easier secondary analyses ensuring that different users of the imputed data could obtain the same results by

simple estimation methods have long been recognized (Kalton & Kasprzyk, 1982). Early work under this estimation perspective

for the imputed data was addressed by Lanke (1983), Sedransk (1985) and Kim (2001a). Some later works considered the

use of constrained or calibrated imputation for point estimation in different situations (Chambers & Ren, 2004; Beaumont,

2005; Chauvet, Deville, & Haziza, 2011; Gelein, Haziza, & Causeur, 2014). Multiple imputation (Rubin, 1978a, 1987b, 1996c;

Rubin & Schenker, 1986) and fractional imputation (Kim & Fuller, 2004; Fuller & Kim, 2005) are two methods based on

multiply imputed values. For instance, provided themultiple imputation procedure is proper or the congeniality condition (Meng,

1994) holds, one can compute valid point and variance estimates by combining the results obtained from applying standard

complete-sample formulae to each imputed sample.

In this paper, we propose a calibrated imputation approach that allows for valid point and variance estimation of the population

and domain totals (or means), by applying simple complete-sample formulae to the imputed sample. Although this accommo-

dates a more limited scope than multiple or fractional imputation, secondary users can achieve the intended analyses based on

a single imputed dataset using standard software. Moreover, we provide a multivariate procedure for the estimation of a vector

of totals (or means) and the associated covariance matrix, using simple complete-sample formulae. This allows one to estimate

the variance of ratios or differences of the estimated totals. Finally, the proposed approach has also benefits to the data producer,

such as avoiding the dissemination of multiply imputed datasets, the freedom to choose a suitable inference outlook and apply

different missing data treatments from one variable to another.

The rest of the paper is organized as follows. The proposed approach is outlined in Section 2. We explain in Section 3 how

it can be applied in some common situations of reweighting and imputation-based estimation, as well as domain estimation
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and estimation under stratified multistage sampling. The multivariate calibrated imputation procedure is described in Section 4.

Some concluding remarks and future research topics are given in Section 5.

2 CALIBRATION OF A SINGLE VARIABLE

2.1 Estimation Setup

Consider a finite population of N units denoted by U = {1, 2, ..., N} and let YN = (y1,… , yN ), where yk is the value of a

survey variable y for the kth unit, k ∈ U . Let A be a sample from U selected by a probability sampling design p(IN ), where

IN = (i1,… , iN ) and ik = 1 if the kth unit is selected to the sample A and ik = 0 otherwise, and let RN = (r1,… , rN ), where

rk = 1 if yk is observed and rk = 0 if the yk is unobserved or rejected during data processing (k ∈ U ),Ar = {k ∶ k ∈ A, rk = 1}

be the set of units for which the observations are to be preserved and Am = {k ∶ k ∈ A, rk = 0} be the set for which imputation

is needed. We assume the missing information of the variable y for the units in Am is filled in by imputation and denote the

corresponding imputed values by {y∗k ∶ k ∈ Am}. We assume, in addition, that the imputed dataset will be accompanied by a

set of survey weights {wk ∶ k ∈ A}, as for instance, the inverse of the inclusion probabilities (Horvitz & Thompson, 1952), or

weights suitably calibrated for auxiliary population totals (Deville & Särndal, 1992a).

Suppose it is of interest to estimate the population total of the variable y, that is ty =
∑

k∈U yk. When it comes to complete-

sample estimation of ty using the imputed data {(wk, y∗k) ∶ k ∈ A}, where y
∗
k is the value for unit k in the imputed full sample

A with y∗k = yk for k ∈ Ar, a natural and simple choice for the imputed estimator is

t̂yI =
∑

k∈A
wky

∗
k. (1)

Statistical properties of t̂yI are studied by adopting an inference approach for the imputed data, which is usually specified by

postulating explicitly a model for the distribution of the response indicators or a superpopulation model for the values of the

variables of interest in the population (Haziza, 2009, pp. 222-223). The properties of t̂yI are then evaluated with respect to the

joint distribution of the sampling design and the assumed model, allowing the unconditional variance of the imputed estimator

to be decomposed into variance components which, when estimated, lead to the estimated variance of t̂yI .
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Here we consider instead the estimation of the variance of the imputed estimator t̂yI by means of the complete-sample

estimator

v̂F (t̂yI ) ≡
n

n − 1
∑

k∈A
(u∗k − ū

∗)2, (2)

where u∗k = wky∗k (k ∈ A) and ū
∗ =

∑

k∈A u
∗
k∕n = t̂yI∕n, which amounts to the with-replacement pps sampling variance formula

and, hence, may be computed more easily by secondary users using standard software. For example, when wk = N∕n then

t̂yI = NȳI and V ar(t̂yI ) = N2s2yI∕n, where ȳI and s
2
yI are the sample mean and variance of the imputed variable.

Clearly, naive application of estimators (1) and (2) would lead to incorrect inference generally. In order for these estimators

to yield valid estimates, the imputed values need to be created in a controlled manner, as it will be discussed in the next section.

2.2 The calibrated imputation approach

The main goal of the following calibration method for the imputed data is to provide imputed values y∗k so that the complete-

sample estimators (1) and (2) satisfy

t̂yI ≡
∑

k∈A
wky

∗
k = t̂y0, v̂F (t̂yI ) ≡

n
n − 1

∑

k∈A

(

wky
∗
k − t̂yI∕n

)2 = v̂y0, (3)

where t̂y0 and v̂y0 are valid target estimates for the population total and its corresponding variance estimate. The method requires

the data producer to choose and calculate such targets for the variable specified, as well as to calibrate the imputed values to

attain the conditions in (3). These targets should incorporate all the aspects of the sampling design, response mechanism and

inference approach for the imputed estimator. However, as a benefit of the calibration method, the suitability of these target

estimates is a matter of concern only for the data producer and not for the secondary users, who are no longer exposed to the

theoretical and computational complications involved.

The calibration method can be described by the following two-step algorithm.

Calibration algorithm:

Step 1 (Imputation): Using a standard imputation procedure, obtain a set of initial imputed values {ỹk ∶ k ∈ Am}. For each

ỹk, obtain a corresponding adjusted imputed value ŷk so that

∑

k∈Am

wkŷk = t̂y0 −
∑

k∈Ar

wkyk. (4)
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Step 2 (Calibration): For each k ∈ Ar, set u∗k = wkyk. For k ∈ Am, obtain an imputed value u∗k by a minimal adjustment to

ûk = wkŷk, where ŷk is computed in Step 1, so that

∑

k∈Am

u∗k = t̂y0 −
∑

k∈Ar

wkyk (5)

and

∑

k∈Am

u∗2k = n − 1
n

v̂y0 +
1
n
t̂2y0 −

∑

k∈Ar

w2
ky
2
k, (6)

where t̂y0 and v̂y0 are the targets in (3). Take y∗k = u
∗
k∕wk for k ∈ A.

The algorithm initiates in Step 1 by choosing an imputation scheme to provide preliminary imputed values ŷk, for k ∈ Am,

such that applying (1) with these values yields t̂y0. Provided the initial imputed values ỹk (k ∈ Am) already yields t̂y0 by (1), one

can simply take ŷk = ỹk, for k ∈ Am. An example is given in Section 3.1. Otherwise, the ỹk values need to be adjusted. One

simple ratio adjustment of the initial imputed values is

ŷk =

(

t̂y0 −
∑

l∈Ar
wlyl

)

∑

l∈Am
wl ỹl

ỹk (k ∈ Am), (7)

which is a special case of the reverse calibration approach of Chambers & Ren (2004), originally proposed for the estimation

of ty in the presence of survey outliers. Then, in Step 2, the calibration of the imputed values is made. Optimal imputed values

that are calibrated to (5) and (6) could be computed in closed-form by applying Theorem 1 below. The proof of this theorem is

shown in the Appendix.

Theorem 1. Consider initial values âk and dk > 0 for all k in a non-null set D ⊂ A. Suppose
∑

k∈D dkâk = t1 for some fixed

constant t1 and
∑

k∈D dk(âk − t1∕t0)2 > 0, where t0 =
∑

k∈D dk > 0. Let t2 > t21∕t0 be a fixed constant . Then, the adjusted ak

values that minimize Δ =
∑

k∈D dk(ak − âk)2 subjected to the constraints

∑

k∈D
dkak = t1,

∑

k∈D
dka

2
k = t2, (8)

are given by

ak = t1∕t0 + �(âk − t1∕t0), (9)

where

� =
( t2 − t21∕t0
t̂2 − t21∕t0

)1∕2

and t̂2 =
∑

k∈D dkâ
2
k.
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The optimal calibrated imputed values y∗k of Step 2 are obtained as follows. First, we take the values of the calibration

conditions t1 and t2 of (8) as the right-hand sides of (5) and (6), namely

t1 = t̂y0 −
∑

k∈Ar

wkyk (10)

and

t2 = (n − 1)v̂y0∕n + t̂2y0∕n −
∑

k∈Ar

w2
ky
2
k.

Then, we set D = Am, dk = 1 and âk = ûk = wkŷk for all k ∈ Am, where the ŷk (k ∈ Am) are obtained in Step 1. Thus, it

follows from (9) that the u∗k values of Step 2 are

u∗k ≡ ak = t1∕m + �̂(ûk − t1∕m) (k ∈ Am), (11)

where t1 is defined in (10) and

�̂ =
{ (n − 1)v̂y0∕n −

∑

k∈Ar
(uk − t̂y0∕n)2 − m

(

t̂y0∕n − t1∕m
)2

∑

k∈Am
(ûk − t1∕m)2

}1∕2
.

The resulting calibrated imputed variable is

y∗k =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

yk, k ∈ Ar,

u∗k∕wk, k ∈ Am.
(12)

Remark 1. The calibrated imputation method in (12) does not modify the observed values for units in the respondent set (Ar).

The values that are actually modified are the calibrated y∗k = u
∗
k∕wk values (k ∈ Am), where the u∗k values minimize the squared

distance to the imputed values ûk = wkŷk (k ∈ Am) obtained in Step 1, that is, Δ =
∑

k∈Am
(u∗k − ûk)

2. The resulting u∗k values

are obtained analytically as the “best” linear predictor of uk based on the ûk (k ∈ Am), where the slope �̂ of the regression line,

given in (11), dictates how the empirical variance of the u∗k relates to that of the ûk (k ∈ Am). In practice, unless the ŷk values are

created to have greater empirical variance over Am than Ar, one may expect �̂ > 1. This is because the formula (2) is ostensibly

aimed at a variance of the order n−1, whereas the target v̂y0 is generally aimed at a variance of the order r−1, where r is the size

of Ar. Thus, in order for the two to be equal to each other, the imputed y∗k values will need to have greater variation over Am

than the observed yk over Ar.

Remark 2. Given the set of missing units Am, the application of Theorem 1 to obtain the optimal solution (11) requires that

v̂y0 >
n

n − 1

{

∑

k∈Ar

(uk − t̂y0∕n)2 + m
(

t1∕m − t̂y0∕n
)2
}

(13)
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and

∑

k∈Am

(ûk − t1∕m)2 > 0. (14)

Comparing (13) to (2), it is readily seen that, for the solution to the optimization problem in Step 2 to exist, the target estimate

v̂y0 needs to be larger than the full-sample variance estimate (2) that would have been obtained had the missing values been

imputed by the common value t1∕m. The second condition (14) demands that the sampling weights and the imputation scheme

are such that the ûk = wkŷk values are different from t1∕m for at least one k ∈ Am. This is not the case when mean imputation

is used at Step 1 to fill in the missing values of an equal probability sample. In such a situation, the proposed approach could

still be applied by adding some initial zero-mean noise to each mean imputed value. The calibration constraints ensure that this

added variability will not affect the variance of the imputed estimator.

3 SOME APPLICATIONS

We explain below how the two-step approach and Theorem 1 proposed in Section 2 can be applied in some general situations,

which comprise reweighting and imputation-based estimation, as well as domain estimation and estimation under stratified

multistage sampling.

3.1 Ratio imputation

Suppose that, in addition to the survey variable y, there is an auxiliary variable x which is not affected by nonresponse. Assume

a population ratio model � of the pairs {(xk, yk) ∶ k ∈ U}, under which

E�(yk ∣ xk) = �0xk, V ar�(yk ∣ xk) = �2xk,

for some unknown parameters �0 and �2. By ratio imputation under the model �, the missing yk values are imputed as

ỹk = �̂0rxk (k ∈ Am),
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where �̂0r =
∑

k∈Ar
wkyk∕

∑

k∈Ar
wkxk, and wk = 1∕�k, and �k is the sample inclusion probability, for k ∈ A. The resulting

imputed estimator of the population total ty is

t̂y0 =
∑

k∈Ar

wkyk +
∑

k∈Am

wkỹk = �̂0r t̂x,

where t̂x =
∑

k∈Awkxk is the Horvitz-Thompson estimator (Horvitz & Thompson, 1952) of the population total tx =
∑

k∈U xk.

Mean imputation is a special case of ratio imputation with xk = 1 for all k ∈ A, by which the imputed estimator t̂y0 reduces to

t̂y0 = Nȳr. Under the conditions of Theorem 1 of Kim & Rao (2009), a design and model consistent estimator of the variance

of t̂y0 can be expressed as

v̂y0 = v̂1 + v̂2, (15)

where

v̂1 =
∑

k∈A

∑

l∈A

(�kl − �k�l)
�kl

wk�̂kwl �̂l , v̂2 =
(

t̂x
t̂xr

)2
∑

k∈Ar

wkê
2
k,

�̂k = �̂0rxk +
t̂x
t̂xr
rkêk (k ∈ A)

t̂xr =
∑

k∈Ar
wkxk and êk = yk − �̂0rxk.

However, to compute v̂1, the secondary user needs to have access to the matrix of the second-order inclusion probabilities

{�kl ∶ kl ∈ A}, which are almost never disseminated together with the imputed sample. The proposed approach avoids this

complication. To calibrate the ratio imputed values ỹk = �̂0rxk (k ∈ Am), we notice that ŷk = ỹk already satisfies Step 1, since

t1 = �̂0r t̂xm in Theorem 1. For Step 2, by (12) and (11), the calibrated imputed values are

y∗k = u
∗
k∕wk, (16)

where u∗k = wkyk (k ∈ Ar), and for k ∈ Am,

u∗k =
�̂0r t̂xm
m

+ �̂�̂0r

(

wkxk −
t̂xm
m

)

(k ∈ Am)

and

�̂2 =

(n−1)
n
(v̂1 + v̂2) −

∑

k∈Ar

(

wkyk −
�̂0r t̂x
n

)2
− m�̂20r

(

t̂x
n
− t̂xm

m

)2

�̂20r
∑

k∈Am

(

wkxk −
t̂xm
m

)2
.

In the case of mean imputation and simple random sampling without replacement, (15) reduces to

v̂y0 = N2
(1
r
− 1
N

)

s2yr, (17)
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where s2yr =
∑

k∈Ar
(yk − ȳr)2∕(r − 1) and ȳr is the observed respondent mean.

3.2 Domain estimation

As a realistic setting for domain total estimation, in addition to the population total, consider a domain population partition

U = U1 ∪⋯ ∪ UD. Let the population total of domain Ud be

tdy =
∑

k∈Ud

yk =
∑

k∈U
�kdyk,

where the domain indicator �kd , �kd = 1 if k ∈ Ud and �kd = 0 otherwise, is observed for all units in the sample A (d =

1,… , D). Let t̂dy be the target domain total estimator and v̂dy its variance estimate. Domain estimation can be handled by

separate calibration for each domain by the producer and application of the domain complete-data formulae by the secondary

users, yielding t̂dyI = t̂dy and v̂F (t̂dyI ) = v̂dy, as explained in Section 2.

However, one is still interested in estimating the population total, in addition to the domain totals. Directly applying the

complete-sample formula (1) to the domain-calibrated imputed sample would correctly estimate the population total. One can

combine the domain variance estimates, as if the sampling were stratified by the domains. However, the resulting variance

estimate is incorrect even when the domain total estimators are independent of each other, due to the additional term

vb =
n

n − 1

D
∑

d=1
nd(t̂dyI∕nd − t̂y0∕n)2 =

n2

n − 1
Vn(t̂dyI∕nd),

where Vn(t̂dyI∕nd) is the variance of t̂dyI∕nd with respect to the empirical sample domain distribution function (n1∕n,… , nD∕n),

since

Vn(t̂dyI∕nd) =
D
∑

d=1

nd
n
(t̂dyI∕nd − t̂y0∕n)2 and t̂y0∕n = En(t̂dyI∕nd) =

D
∑

d=1

nd
n
(t̂dyI∕nd).

We propose to introduce a domain estimation effect factor, denoted by  , and use

v̂F (t̂yI ) = 2
n

n − 1
∑

k∈A
(wky

∗
k − t̂y0∕n)

2 = v̂y0. (18)

The factor  can be calculated after domain-calibrated imputation, and disseminated together with imputed sample.

In the separate domain calibration above, v̂F (t̂dyI ) is built on the squared errors around t̂dyI∕nd . Consider using another

complete-sample formula v̂F (t̂dyI ), built around t̂yI∕n instead, where

v̂F (t̂dyI ) =
nd

nd − 1
∑

k∈A
�kd(wky

∗
kd − t̂y0∕n)

2.
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We need to extend the calibration constraints as follows:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

t̂dyI =
∑

k∈A �kdwky∗k = t̂dy for d = 1, ..., D

v̂F (t̂dyI ) =
nd
nd−1

∑

k∈A �kd(wky∗kd − t̂y0∕n)
2 = v̂dy for d = 1, ..., D

v̂F (t̂yI ) = 2
n
n−1

∑

k∈A(wky∗k − t̂y0∕n)
2 = v̂y0.

(19)

In other words, we use �kd to identify the relevant observations for domain estimation, including the special case of Ud = U

and �kd ≡ 1, and use t̂y0∕n in all the ultimate variance estimators, including domain variance estimation. We refer to (19) as the

centred domain calibration approach.

Minimum adjustments of {ŷk; k ∈ Am} from Step 2 of the proposed approach can be achieved by Theorem 1 as well. To

focus the idea, suppose negligible 1∕n and 1∕nd . Let {u∗k; k ∈ Amd} be the calibrated imputations in domain d, given by

u∗k = t1d∕m + �d(ûk − t1d∕m),

where t1d = t̂dy −
∑

k∈Ard
wkyk is the constrained total of u∗k = wky∗k in Amd . However, instead of choosing �d such that

�2d
∑

k∈Amd

(

ûk −
t1d
m
)2 = v̂dy −

∑

k∈Ard

(

uk −
t̂dy
nd

)2 − md
( t̂dy
nd
−
t1d
m
)2,

as under separate domain calibration, we should now choose �d such that

�2d
∑

k∈Amd

(

ûk −
t1d
m
)2 = v̂dy −

∑

k∈Ard

(

uk −
t̂y0
n
)2 − md

( t̂y0
n
−
t1d
m
)2.

This allows us to estimate the domain variance v̂dy as in (19). The domain estimation effect factor  can be calculated afterwards

to satisfy (19). The conditions for the existence of solution are formally the same as discussed in Section 2.2. Provided domain-

specific calibration, it is feasible as long as t̂y0∕n does not differ too much from t̂dy∕nd in the different domains.

In practice one may be interested in multiple sets of (overlapping) domains. For example, a user may want to have estimates

by region as well as estimates by industry. Insofar as the need is known in advance, the producer can apply the approach above

to the ‘atomic domains’, which arise from crossing region and industry. In addition to the separate atomic-domain calibrated

sample, one can supply a domain estimation factor for the population total, a set of domain estimation factors for each of the

regions, and another set of factors for each industry.
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3.3 Stratified Multistage Sampling

Let the populationU be partitioned intoH strata of n primary sampling units (PSUs), where a sampleAℎ of nℎ PSUs is selected

separately within the ℎth stratum (ℎ = 1,… ,H ; n1 + ⋯ + nH = n). From each PSU in Aℎ, additional stages of sampling

are undertaken until the selection of the ultimate sampling units (USUs). Let wi, yi and ri be, respectively, the weight, the y-

value and the response indicator for the ith USU. Let Aℎk be the set of USUs in the kth selected PSU of the ℎth stratum, where

Arℎk = {i ∶ i ∈ Aℎk, ri = 1} and Amℎk = {i ∶ i ∈ Aℎk, ri = 0}.

By setting y∗i = yi if ri = 1 and letting y
∗
i be the calibrated imputation value if ri = 0, the imputed estimate of the population

total ty can be written as t̂yI =
∑H
ℎ=1 t̂yIℎ, where t̂yIℎ =

∑

k∈Aℎ
u∗ℎk and u

∗
ℎk =

∑

i∈Aℎk
wiy∗i =

∑

i∈Arℎk
wiyi +

∑

i∈Amℎk
wiy∗i . For

calibrated imputation that enables (3), we can apply Theorem 1 and the 2-step approach directly at the level of USUs, ignoring

the clustering structure of the multistage sampling.

Survey data analysis softwares (such as STATA, R, SAS) commonly use the stratified ultimate variance formula for variance

estimation. It is therefore convenient if the secondary user can simply input the imputed sample, and let the software carry on

as usual. Thus, as another possibility of full-sample variance estimator, we consider

v̂F (t̂yI ) =
H
∑

ℎ=1

nℎ
nℎ − 1

∑

k∈Aℎ

(u∗ℎk − ū
∗
ℎ)
2,

where ū∗ℎ =
∑

k∈Aℎ
u∗ℎk∕nℎ = t̂yIℎ∕nℎ. This choice fits naturally with the standard approach of ultimate-cluster variance

estimation under stratified multistage sampling (e.g. Skinner, 1989, Section 2.13).

Given t̂y0ℎ for the population total in the ℎth stratum and its associated variances v̂y0ℎ = v̂(t̂y0ℎ) (ℎ = 1,… ,H), consider the

problem of finding the values y∗j starting with ỹj , j ∈ ∪k∈AℎAmℎk, so that

t̂yIℎ =
∑

k∈Aℎ
u∗ℎk = t̂y0ℎ,

∑

k∈Aℎ
(u∗ℎk − ū

∗
ℎ)
2 =

∑

k∈Aℎ
u∗ 2ℎk − t̂

2
y0ℎ∕nℎ = (nℎ − 1)v̂y0ℎ∕nℎ.

(20)

We propose to obtain a solution of this problem in two stages. First, the initial imputed PSU totals are adjusted minimally subject

to the two constraints above, yielding the adjusted PSU total u∗ℎk. Second, the initial imputed values ỹj are adjusted, separately

within each PSU, to agree with the corresponding calibrated PSU total from the first step.

For the first stage, we can apply Theorem 1 within the ℎth stratum similarly as in Section 2. Let Aℎ0 = {k ∈ Aℎ ∶ #(Amℎk) =

0}, ûℎk = uℎk for k ∈ Aℎ0 and ûℎk = ũℎk(t̂y0ℎ −
∑

k∈Aℎ0
uℎk)∕(

∑

l∈Aℎ∖Aℎ0
ũℎl) for k ∈ Aℎ∖Aℎ0. Then, take D = Dℎ = Aℎ∖Aℎ0,
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dk = dℎk = 1, âk = âℎk = ûℎk, t0 =
∑

k∈Aℎ∖Aℎ0
dk ≡ mℎ, t1 = t1ℎ = t̂y0ℎ −

∑

k∈Aℎ0
uℎk and t2 = t2ℎ = (nℎ − 1)t̂y0ℎ∕nℎ +

t̂2y0ℎ∕nℎ−
∑

k∈Aℎ0
u2ℎk. For each ℎ = 1,… ,H , the optimal solution that minimizes the squared distance Δℎ =

∑

Aℎ
(u∗ℎk− ûℎk)

2 =

∑

Aℎ∖Aℎ0
(u∗ℎk − ûℎk)

2 subject to (20) are given by u∗ℎk = uℎk for k ∈ Aℎ0, and

u∗ℎk =
t̂1ℎ
mℎ

+ �̂ℎ
(

ûℎk −
t̂1ℎ
mℎ

)

(21)

for k ∈ Aℎ∖Aℎ0, where

�̂ℎ =
{ (nℎ − 1)v̂y0ℎ∕nℎ −

∑

Aℎ0
(uℎk − t̂y0ℎ∕nℎ)2 − mℎ(t̂y0ℎ∕nℎ − t1ℎ∕mℎ)2

∑

k∈Aℎ∖Aℎ0
(ûℎk − t1ℎ∕mℎ)2

}
1
2 .

Having thus obtained u∗ℎk, we adjust the ỹi’s separately within each PSU so that u∗ℎk =
∑

i∈Arℎk
wiyi +

∑

i∈Amℎk
wiy∗i , which

is a single constraint. For given ℎ and k ∈ Aℎ∖Aℎ0, the values y∗i that minimize the distance
∑

i∈Amℎk
(y∗i − ỹi)

2∕2 subject to

∑

j∈Amℎk
wiy∗i = u

∗
ℎk −

∑

i∈Arℎk
wiyi ≡ uℎk0 are

y∗i = ỹi
{

1 +
(wi

ỹi

)

(

uℎk0 −
∑

i∈Amℎk
wiỹi

)

∑

i∈Amℎk
w2
i

}

(i ∈ Amℎk). (22)

4 CALIBRATION OF MULTIPLE VARIABLES

Let yk = (yk1,… , ykp)⊤ denote a p-dimensional vector of values for the k-th unit and u∗k = wky∗k, where y
∗
k = (y

∗
k1,… , y∗kp)

⊤

denote the calibrated imputed values having the restriction that y∗kl = ykl if ykl is observed and fixed (k ∈ A and l = 1,… , p).

Following the basic algorithm of Section 2, consider the problem of finding the u∗k satisfying

∑

k∈A
u∗k = t̂0,

n
n − 1

∑

k∈A
(u∗k − t̂0∕n)

⊗2 = V̂ 0,

where t̂0 denotes a p-dimensional vector of target estimates for the population total ty =
∑

k∈U yk, V̂ 0 denotes the target estimated

variance-covariance matrix of t̂0 and a⊗2 = aa⊤. To obtain V̂ 0 in the presence of multivariate missing data is a difficult issue.

See, e.g., Skinner & Rao (2002) and Chauvet & Haziza (2012) for a fully efficient approach in the bivariate case, and Im et al.

(2018) and Sang & Kim (2018) for two fractional imputation methods in the multivariate setting. Below we propose a two-phase

calibration procedure, where at the first phase the problem is solved for transformed vectors v∗k’s (k ∈ A), and at the second

phase the results are back-transformed to u∗k’s as required. Assume without loss of generality the weighted values

ûk = wkŷk ≡ (ûk1,… , ûkp)⊤
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satisfy
∑

k∈A ûk = t̂0 preserving all the observed and fixed values. This can be achieved for instance by separate imputation of

ykl , for l = 1, ..., p, up to Step 1 in Section 2.2.

Let D be the subset of units with all items missing and suppose m = |D| > 0. Denote by V̂ 0 = P�P ⊤ the spectral

decomposition of V̂ 0, where P is the p × p orthogonal matrix of the eigenvectors of V̂ 0 and � is the diagonal matrix of the

corresponding eigenvalues. Consider the orthogonal principal components

v̂k = P ⊤(ûk − t̂0∕n) (k ∈ A)

and set

v∗k = v̂k (k ∈ R = A ⧵D). (23)

Now, choose the {v∗k : k ∈ D} which minimize the squared Frobenius norm

∑

k∈D
(v∗k − v̂k)

⊤(v∗k − v̂k)

subject to

∑

k∈D
v∗k = −

∑

k∈R
v̂k ≡ mv̄∗D,

∑

k∈D
v∗⊗2k = n − 1

n
� −

∑

k∈R
v̂⊗2k .

The solution to this constrained optimization problem can be obtained by Theorem 2 below. The proof of this theorem is

presented in the Appendix.

Theorem 2. Consider a set of vectors âk (k ∈ D), satisfying
∑

k∈D âk = 0 and C =
∑

k∈D â
⊗2
k being positive definite. Let B

be a pre-specified positive definite matrix. Multivariate calibrated vectors that minimize
∑

k∈D(a∗k − âk)
⊤(a∗k − âk) subjected to

∑

k∈D
a∗k = 0,

∑

k∈D
a∗ka

∗⊤
k = B

are a∗k = �âk, where � = B1∕2C−1∕2 and B1∕2 and C−1∕2 are the square root and inverse square root matrices of B and C ,

respectively.

In the first phase of the calibration method, we let a∗k = v
∗
k − v̄

∗
D and âk = v̂k − v̄∗D in Theorem 2. If the matrices

B ≡ n − 1
n
� −

∑

k∈R
v̂⊗2k − mv̄∗⊗2D , C ≡

∑

k∈D
(v̂k − v̄∗D)

⊗2

are both positive definite, then the optimal calibrated v∗k vectors by Theorem 2 are

v∗k = (Ip − �)v̄
∗
D + �v̂k = v̄

∗
D + �(v̂k − v̄

∗
D) (k ∈ D), (24)
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where Ip is the identity matrix of order p. Now, from
∑

k∈D(v̂k − v̄∗D) =
∑

k∈A v̂k = 0 by (23), it follows that
∑

k∈D v∗k = mv̄
∗
D

and
∑

k∈D v
∗⊗2
k = mv̄∗⊗2D + �C�⊤ = mv̄∗⊗2D + B = (n − 1)n−1� −

∑

k∈R v̂
⊗2
k . We thus enter the second phase of imputation,

where we transform the v∗k (k ∈ D) given by (23) and (24) back into

u∗k = Pv∗k + t̂0∕n =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ûk, (k ∈ R = A ⧵D),

P {v̄∗D + �(v̂k − v̄
∗
D)} + t̂0∕n, (k ∈ D),

(25)

which are the final calibrated imputed vectors. The transformation (25) implies that

∑

k∈A
u∗k = P

∑

k∈A
v∗k + t̂0 = t̂0

and

n
n − 1

∑

i∈D
(u∗k − t̂0∕n)

⊗2 = n
n − 1

P
{

∑

k∈R
v̂⊗2k + n − 1

n
� −

∑

k∈R
v̂⊗2k

}

P ⊤ = V̂ 0,

as intended.

Notice that the vectors u∗k in (25) can be computed directly from ûk by the linear transformation

u∗k = �̃1(k ∈ D) + {Ip1(k ∈ A ⧵D) + �̃1(k ∈ D)}ûk, (26)

where �̃ = P�P ⊤, �̃ = −(Ip − �̃)(
∑

k∈R ûk − t̂0)∕m and 1() is the indicator function of a set . All the observed and fixed

data values are associated with the units in R = A⧵D, and thus are preserved in the respective u∗k values. The u
∗
k and ûk vectors

share the same distance as that of the corresponding v∗k and the v̂k vectors, for k ∈ D.

One of the benefits of the proposed calibrated imputation approach above is to facilitate inferences for a nonlinear function of

population total vector ty. For example, suppose
√

n(t̂0 − ty) has an asymptotic multivariate normal distribution with mean zero

and positive-definite variance-covariance matrix V and that the target variance V̂ 0 is consistent for the variance of t̂y. Thus, an

approximate 100(1 − �)% confidence interval for g(ty), where g ∶ ℝp ←→ ℝ is smooth and has nonzero gradient ∇g(⋅) at ty, is

g
(

t̂yI
)

± z1−�∕2

[

∇⊤g
(

t̂yI
)

{

n
n − 1

∑

k∈A
(u∗k − t̂0∕n)

⊗2

}

∇g
(

t̂yI
)

]1∕2

,

where t̂yI =
∑

k∈A u∗k = t̂0, which is Wald-type interval that could alternatively be computed by

g
(

t̂yI
)

± z1−�∕2
[

v̂F
{

g
(

t̂yI
) }]1∕2 , (27)
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where

v̂F
{

g
(

t̂yI
) }

= n
n − 1

∑

k∈A
(u∗gk − t̂g0∕n)

⊗2,

u∗gk = ∇
⊤g

(

t̂yI
)

u∗k and t̂g0 = ∇
⊤g

(

t̂yI
)

t̂0. The use of the estimate v̂F
{

g
(

t̂yI
) }

above does not merely simplifies the compu-

tation of the estimated variance of g
(

t̂yI
)

by a complete sample formula, but it also prevents the secondary users to having to

apply a specific variance estimation method and corresponding software to estimate the variance of g
(

t̂yI
)

.

5 CONCLUDING REMARKS

In this paper we propose a calibrated imputation approach to be used routinely in the preparation of imputed sample survey

data, under a stratified multistage sampling design. It allows secondary users to estimate specified population parameters and

associated variances and covariances by simple complete-sample formulae, regardless of how complicatedly it may be when

these are to be derived from the original incomplete data. Domain estimation can be accommodated in addition. The approach

avoids the need to disseminate multiple imputed (or replicated) datasets.

A topic for future research is the imputation of categorical variables. The fractional imputation of Kim & Fuller (2004)

provides a fully efficient imputation method, where K imputed values are created for a K-category variable. Favre et al. (2005)

propose a fully efficient single-sample imputation method, under which a categorical variable is treated as a vector of dummy-

indicators during the imputation. However, variance estimation under these methods may require a different approach than by

using simple complete-sample formulae. It seems possible to adapt the multivariate calibrated imputation approach in this paper,

where the imputed values of the dummy-vector can be continuous instead of just 0 and 1, given the target estimates of the

population totals of each category and the associated variances and covariances.

Another research topic of interest is calibrated imputation for quantile estimation. For instance, given the target quantile

estimate t̂� and its variance estimate v̂� , for 0 < � < 1. It may be possible to adapt the proposed algorithm in Section 2.2. as

follows. At Step 1, adjust the initial imputed values {ỹk ∶ k ∈ Am} to {ŷk ∶ k ∈ Am}, which satisfy

∑

k∈Ar

wiI(yk ⩽ t̂�) +
∑

k∈Am

wiI(ŷk ⩽ t̂�) = �
∑

k∈A
wi.

Then, at Step 2, adjust the negative and positive deviations ŷk− t̂� , for k ∈ Am, while maintaining their signs to satisfy a suitably

chosen complete-sample variance formula.
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SUPPORTING INFORMATION

The supporting information, available as part of the online article, provides numerical illustrations for the proposed approach to

estimate a population total and to preserve variability. Examples consider element sampling, stratified multistage sampling and

also calibration of imputed multivariate data.

APPENDIX

A PROOF OF THEOREM 1

The proof of Theorem 1 is shown below. In the special case of dk = 1, the problem addressed by Theorem 1 reduces essentially

to that of the small-area constrained Bayes estimators (Ghosh, 1992, Theorem 1), which minimize an unweighted quadratic

function of the prediction errors. The two constraints in Ghosh (1992, Theorem 1), despite being formulated in a small area

estimation setting, are equivalent in form to (8).

Proof. Notice that

∑

k∈D
dk(ak − âk)2 = t2 − 2

∑

k∈D
dkakâk + t̂2.

Since t2 and t̂2 are positive and fixed, one needs to maximize
∑

k∈D dkakâk or, equivalently,
∑

k∈D qkakâk, where qk = dk∕t0 and

∑

k∈D qk = 1. Consider then (q1, ..., qm) as a discrete distribution function, denoted by q , which puts probability qk on each pair

of (ak, âk), for k ∈ D. We have
∑

k∈D qkakâk = Eq(akâk), i.e., the expectation over q . Notice thatEq(ak) =
∑

k∈D qkak = t1∕t0

and Eq(âk) = t1∕t0 are both fixed, as well as Vq(ak) = t2∕t0 − (t1∕t0)2 and Vq(âk) = t̂2∕t0 − (t1∕t0)2. Thus, the maximum

of Eq(akâk) is the same as that of Covq(ak, âk), which is given when the correlation between ak and âk is equal to 1 over q ,

i.e., ak = � + �âk with probability one, for some constants � and �. Solving (�, �) for (8) yields then � = (1 − �)t1∕t0 and

� = [(t2 − t21∕t0)∕(t̂2 − t
2
1∕t0)]

1∕2. This completes the proof.
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B PROOF OF THEOREM 2

Proof. Let the Lagrangian of this constrained optimisation problem be

L = 1
2
∑

k∈D
(ã∗k − a

∗
k)
⊤(ã∗k − a

∗
k) −  

T
∑

k∈D
ã∗k − 1

⊤[�◦(
∑

k∈D
ã∗kã

∗⊤
k − S∗D)]1

for some vector  and matrix �, where 1 denotes a vector of ones and “◦” denotes the Hadamard (element-wise) product of two

matrices. We have

()L∕)ã∗k)
⊤ = (ã∗k − a

∗
k) −  − (� + �

⊤)ã∗k = 0 ⇒ ã∗k = [Ip − (� + �
⊤)]−1(a∗k +  )

providedW = [Ip−(�+�⊤)]−1 exists. Notice thatW is symmetric. Substitution of ã∗k = W (a∗k+ ) into
∑

k∈D a∗k = 0 yields

 = 0. Next, substitution of ã∗k = W a∗k into
∑

k∈D a∗ka
∗⊤
k = B yields

BB⊤ =
∑

D
W a∗ka

∗⊤
k W = W CC⊤W ⇒ W = BC−1.

This completes the proof.
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Summary

In practical survey sampling, missing data are unavoidable due to nonresponse,
rejected observations by editing, disclosure control or outlier suppression. We pro-
pose a calibrated imputation approach so that valid point and variance estimates of
the population (or domain) totals can be computed by the secondary users using
simple complete-sample formulae. This is especially helpful for variance estimation,
which generally require additional information and tools that are unavailable to the
secondary users. Our approach is natural for continuous variables, where the esti-
mation may be either based on reweighting or imputation, including possibly their
outlier-robust extensions. We also propose a multivariate procedure to accommo-
date the estimation of the covariance matrix between estimated population totals,
which facilitates variance estimation of the ratios or differences among the estimated
totals. We illustrate the proposed approach using simulation data in supplementary
materials that are available online.

KEYWORDS:
analysis of incomplete data, item nonresponse, missing data, variance estimation

1 INTRODUCTION

In the preparation of survey data for use by secondary analysts, some or all of the sample units are usually assigned estimation

weights that can be applied to all the survey variables. In addition to these weights, imputed values may be needed for the units

that are subjected to item missingness. It is often possible to choose the imputed values for each survey variable so that, together

with the observed and retained values of this variable, the corresponding population total can be estimated by weighting as if

0Abbreviations: ANA, anti-nuclear antibodies; APC, antigen-presenting cells; IRF, interferon regulatory factor
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the sample were completely observed. However, applying standard complete-sample variance estimator formulae to the same

imputed sample would generally cause bias (see, e.g., Wolter, 2007, pp. 419, 421).

Variance estimation in the presence of imputed data needs to appropriately account for the underlying data generation mech-

anism. Some common techniques are Fay’s reverse framework (e.g. Fay, 1991, 1992; Shao & Steel, 1999; Kim & Rao, 2009),

two-phase sampling (Särndal, 1992; Deville & Särndal, 1994b) and replication methods (Rao & Shao, 1992; Rao, 1996; Shao

& Sitter, 1996; Chen, Rao, & Sitter, 2000). To choose and apply any of these methods may be difficult for secondary users who

are non-specialists, even impossible if the relevant information about the sampling design and data processing is lacking.

The needs for easier secondary analyses ensuring that different users of the imputed data could obtain the same results by

simple estimation methods have long been recognized (Kalton & Kasprzyk, 1982). Early work under this estimation perspective

for the imputed data was addressed by Lanke (1983), Sedransk (1985) and Kim (2001a). Some later works considered the

use of constrained or calibrated imputation for point estimation in different situations (Chambers & Ren, 2004; Beaumont,

2005; Chauvet, Deville, & Haziza, 2011; Gelein, Haziza, & Causeur, 2014). Multiple imputation (Rubin, 1978a, 1987b, 1996c;

Rubin & Schenker, 1986) and fractional imputation (Kim & Fuller, 2004; Fuller & Kim, 2005) are two methods based on

multiply imputed values. For instance, provided themultiple imputation procedure is proper or the congeniality condition (Meng,

1994) holds, one can compute valid point and variance estimates by combining the results obtained from applying standard

complete-sample formulae to each imputed sample.

In this paper, we propose a calibrated imputation approach that allows for valid point and variance estimation of the population

and domain totals (or means), by applying simple complete-sample formulae to the imputed sample. Although this accommo-

dates a more limited scope than multiple or fractional imputation, secondary users can achieve the intended analyses based on

a single imputed dataset using standard software. Moreover, we provide a multivariate procedure for the estimation of a vector

of totals (or means) and the associated covariance matrix, using simple complete-sample formulae. This allows one to estimate

the variance of ratios or differences of the estimated totals. Finally, the proposed approach has also benefits to the data producer,

such as avoiding the dissemination of multiply imputed datasets, the freedom to choose a suitable inference outlook and apply

different missing data treatments from one variable to another.

The rest of the paper is organized as follows. The proposed approach is outlined in Section 2. We explain in Section 3 how

it can be applied in some common situations of reweighting and imputation-based estimation, as well as domain estimation
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and estimation under stratified multistage sampling. The multivariate calibrated imputation procedure is described in Section 4.

Some concluding remarks and future research topics are given in Section 5.

2 CALIBRATION OF A SINGLE VARIABLE

2.1 Estimation Setup

Consider a finite population of N units denoted by U = {1, 2, ..., N} and let YN = (y1,… , yN ), where yk is the value of a

survey variable y for the kth unit, k ∈ U . Let A be a sample from U selected by a probability sampling design p(IN ), where

IN = (i1,… , iN ) and ik = 1 if the kth unit is selected to the sample A and ik = 0 otherwise, and let RN = (r1,… , rN ), where

rk = 1 if yk is observed and rk = 0 if the yk is unobserved or rejected during data processing (k ∈ U ),Ar = {k ∶ k ∈ A, rk = 1}

be the set of units for which the observations are to be preserved and Am = {k ∶ k ∈ A, rk = 0} be the set for which imputation

is needed. We assume the missing information of the variable y for the units in Am is filled in by imputation and denote the

corresponding imputed values by {y∗k ∶ k ∈ Am}. We assume, in addition, that the imputed dataset will be accompanied by a

set of survey weights {wk ∶ k ∈ A}, as for instance, the inverse of the inclusion probabilities (Horvitz & Thompson, 1952), or

weights suitably calibrated for auxiliary population totals (Deville & Särndal, 1992a).

Suppose it is of interest to estimate the population total of the variable y, that is ty =
∑

k∈U yk. When it comes to complete-

sample estimation of ty using the imputed data {(wk, y∗k) ∶ k ∈ A}, where y
∗
k is the value for unit k in the imputed full sample

A with y∗k = yk for k ∈ Ar, a natural and simple choice for the imputed estimator is

t̂yI =
∑

k∈A
wky

∗
k. (1)

Statistical properties of t̂yI are studied by adopting an inference approach for the imputed data, which is usually specified by

postulating explicitly a model for the distribution of the response indicators or a superpopulation model for the values of the

variables of interest in the population (Haziza, 2009, pp. 222-223). The properties of t̂yI are then evaluated with respect to the

joint distribution of the sampling design and the assumed model, allowing the unconditional variance of the imputed estimator

to be decomposed into variance components which, when estimated, lead to the estimated variance of t̂yI .
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Here we consider instead the estimation of the variance of the imputed estimator t̂yI by means of the complete-sample

estimator

v̂F (t̂yI ) ≡
n

n − 1
∑

k∈A
(u∗k − ū

∗)2, (2)

where u∗k = wky∗k (k ∈ A) and ū
∗ =

∑

k∈A u
∗
k∕n = t̂yI∕n, which amounts to the with-replacement pps sampling variance formula

and, hence, may be computed more easily by secondary users using standard software. For example, when wk = N∕n then

t̂yI = NȳI and V ar(t̂yI ) = N2s2yI∕n, where ȳI and s
2
yI are the sample mean and variance of the imputed variable.

Clearly, naive application of estimators (1) and (2) would lead to incorrect inference generally. In order for these estimators

to yield valid estimates, the imputed values need to be created in a controlled manner, as it will be discussed in the next section.

2.2 The calibrated imputation approach

The main goal of the following calibration method for the imputed data is to provide imputed values y∗k so that the complete-

sample estimators (1) and (2) satisfy

t̂yI ≡
∑

k∈A
wky

∗
k = t̂y0, v̂F (t̂yI ) ≡

n
n − 1

∑

k∈A

(

wky
∗
k − t̂yI∕n

)2 = v̂y0, (3)

where t̂y0 and v̂y0 are valid target estimates for the population total and its corresponding variance estimate. The method requires

the data producer to choose and calculate such targets for the variable specified, as well as to calibrate the imputed values to

attain the conditions in (3). These targets should incorporate all the aspects of the sampling design, response mechanism and

inference approach for the imputed estimator. However, as a benefit of the calibration method, the suitability of these target

estimates is a matter of concern only for the data producer and not for the secondary users, who are no longer exposed to the

theoretical and computational complications involved.

The calibration method can be described by the following two-step algorithm.

Calibration algorithm:

Step 1 (Imputation): Using a standard imputation procedure, obtain a set of initial imputed values {ỹk ∶ k ∈ Am}. For each

ỹk, obtain a corresponding adjusted imputed value ŷk so that

∑

k∈Am

wkŷk = t̂y0 −
∑

k∈Ar

wkyk. (4)
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Step 2 (Calibration): For each k ∈ Ar, set u∗k = wkyk. For k ∈ Am, obtain an imputed value u∗k by a minimal adjustment to

ûk = wkŷk, where ŷk is computed in Step 1, so that

∑

k∈Am

u∗k = t̂y0 −
∑

k∈Ar

wkyk (5)

and

∑

k∈Am

u∗2k = n − 1
n

v̂y0 +
1
n
t̂2y0 −

∑

k∈Ar

w2
ky
2
k, (6)

where t̂y0 and v̂y0 are the targets in (3). Take y∗k = u
∗
k∕wk for k ∈ A.

The algorithm initiates in Step 1 by choosing an imputation scheme to provide preliminary imputed values ŷk, for k ∈ Am,

such that applying (1) with these values yields t̂y0. Provided the initial imputed values ỹk (k ∈ Am) already yields t̂y0 by (1), one

can simply take ŷk = ỹk, for k ∈ Am. An example is given in Section 3.1. Otherwise, the ỹk values need to be adjusted. One

simple ratio adjustment of the initial imputed values is

ŷk =

(

t̂y0 −
∑

l∈Ar
wlyl

)

∑

l∈Am
wl ỹl

ỹk (k ∈ Am), (7)

which is a special case of the reverse calibration approach of Chambers & Ren (2004), originally proposed for the estimation

of ty in the presence of survey outliers. Then, in Step 2, the calibration of the imputed values is made. Optimal imputed values

that are calibrated to (5) and (6) could be computed in closed-form by applying Theorem 1 below. The proof of this theorem is

shown in the Appendix.

Theorem 1. Consider initial values âk and dk > 0 for all k in a non-null set D ⊂ A. Suppose
∑

k∈D dkâk = t1 for some fixed

constant t1 and
∑

k∈D dk(âk − t1∕t0)2 > 0, where t0 =
∑

k∈D dk > 0. Let t2 > t21∕t0 be a fixed constant . Then, the adjusted ak

values that minimize Δ =
∑

k∈D dk(ak − âk)2 subjected to the constraints

∑

k∈D
dkak = t1,

∑

k∈D
dka

2
k = t2, (8)

are given by

ak = t1∕t0 + �(âk − t1∕t0), (9)

where

� =
( t2 − t21∕t0
t̂2 − t21∕t0

)1∕2

and t̂2 =
∑

k∈D dkâ
2
k.
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The optimal calibrated imputed values y∗k of Step 2 are obtained as follows. First, we take the values of the calibration

conditions t1 and t2 of (8) as the right-hand sides of (5) and (6), namely

t1 = t̂y0 −
∑

k∈Ar

wkyk (10)

and

t2 = (n − 1)v̂y0∕n + t̂2y0∕n −
∑

k∈Ar

w2
ky
2
k.

Then, we set D = Am, dk = 1 and âk = ûk = wkŷk for all k ∈ Am, where the ŷk (k ∈ Am) are obtained in Step 1. Thus, it

follows from (9) that the u∗k values of Step 2 are

u∗k ≡ ak = t1∕m + �̂(ûk − t1∕m) (k ∈ Am), (11)

where t1 is defined in (10) and

�̂ =
{ (n − 1)v̂y0∕n −

∑

k∈Ar
(uk − t̂y0∕n)2 − m

(

t̂y0∕n − t1∕m
)2

∑

k∈Am
(ûk − t1∕m)2

}1∕2
.

The resulting calibrated imputed variable is

y∗k =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

yk, k ∈ Ar,

u∗k∕wk, k ∈ Am.
(12)

Remark 1. The calibrated imputation method in (12) does not modify the observed values for units in the respondent set (Ar).

The values that are actually modified are the calibrated y∗k = u
∗
k∕wk values (k ∈ Am), where the u∗k values minimize the squared

distance to the imputed values ûk = wkŷk (k ∈ Am) obtained in Step 1, that is, Δ =
∑

k∈Am
(u∗k − ûk)

2. The resulting u∗k values

are obtained analytically as the “best” linear predictor of uk based on the ûk (k ∈ Am), where the slope �̂ of the regression line,

given in (11), dictates how the empirical variance of the u∗k relates to that of the ûk (k ∈ Am). In practice, unless the ŷk values are

created to have greater empirical variance over Am than Ar, one may expect �̂ > 1. This is because the formula (2) is ostensibly

aimed at a variance of the order n−1, whereas the target v̂y0 is generally aimed at a variance of the order r−1, where r is the size

of Ar. Thus, in order for the two to be equal to each other, the imputed y∗k values will need to have greater variation over Am

than the observed yk over Ar.

Remark 2. Given the set of missing units Am, the application of Theorem 1 to obtain the optimal solution (11) requires that

v̂y0 >
n

n − 1

{

∑

k∈Ar

(uk − t̂y0∕n)2 + m
(

t1∕m − t̂y0∕n
)2
}

(13)
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and

∑

k∈Am

(ûk − t1∕m)2 > 0. (14)

Comparing (13) to (2), it is readily seen that, for the solution to the optimization problem in Step 2 to exist, the target estimate

v̂y0 needs to be larger than the full-sample variance estimate (2) that would have been obtained had the missing values been

imputed by the common value t1∕m. The second condition (14) demands that the sampling weights and the imputation scheme

are such that the ûk = wkŷk values are different from t1∕m for at least one k ∈ Am. This is not the case when mean imputation

is used at Step 1 to fill in the missing values of an equal probability sample. In such a situation, the proposed approach could

still be applied by adding some initial zero-mean noise to each mean imputed value. The calibration constraints ensure that this

added variability will not affect the variance of the imputed estimator.

3 SOME APPLICATIONS

We explain below how the two-step approach and Theorem 1 proposed in Section 2 can be applied in some general situations,

which comprise reweighting and imputation-based estimation, as well as domain estimation and estimation under stratified

multistage sampling.

3.1 Ratio imputation

Suppose that, in addition to the survey variable y, there is an auxiliary variable x which is not affected by nonresponse. Assume

a population ratio model � of the pairs {(xk, yk) ∶ k ∈ U}, under which

E�(yk ∣ xk) = �0xk, V ar�(yk ∣ xk) = �2xk,

for some unknown parameters �0 and �2. By ratio imputation under the model �, the missing yk values are imputed as

ỹk = �̂0rxk (k ∈ Am),
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where �̂0r =
∑

k∈Ar
wkyk∕

∑

k∈Ar
wkxk, and wk = 1∕�k, and �k is the sample inclusion probability, for k ∈ A. The resulting

imputed estimator of the population total ty is

t̂y0 =
∑

k∈Ar

wkyk +
∑

k∈Am

wkỹk = �̂0r t̂x,

where t̂x =
∑

k∈Awkxk is the Horvitz-Thompson estimator (Horvitz & Thompson, 1952) of the population total tx =
∑

k∈U xk.

Mean imputation is a special case of ratio imputation with xk = 1 for all k ∈ A, by which the imputed estimator t̂y0 reduces to

t̂y0 = Nȳr. Under the conditions of Theorem 1 of Kim & Rao (2009), a design and model consistent estimator of the variance

of t̂y0 can be expressed as

v̂y0 = v̂1 + v̂2, (15)

where

v̂1 =
∑

k∈A

∑

l∈A

(�kl − �k�l)
�kl

wk�̂kwl �̂l , v̂2 =
(

t̂x
t̂xr

)2
∑

k∈Ar

wkê
2
k,

�̂k = �̂0rxk +
t̂x
t̂xr
rkêk (k ∈ A)

t̂xr =
∑

k∈Ar
wkxk and êk = yk − �̂0rxk.

However, to compute v̂1, the secondary user needs to have access to the matrix of the second-order inclusion probabilities

{�kl ∶ kl ∈ A}, which are almost never disseminated together with the imputed sample. The proposed approach avoids this

complication. To calibrate the ratio imputed values ỹk = �̂0rxk (k ∈ Am), we notice that ŷk = ỹk already satisfies Step 1, since

t1 = �̂0r t̂xm in Theorem 1. For Step 2, by (12) and (11), the calibrated imputed values are

y∗k = u
∗
k∕wk, (16)

where u∗k = wkyk (k ∈ Ar), and for k ∈ Am,

u∗k =
�̂0r t̂xm
m

+ �̂�̂0r

(

wkxk −
t̂xm
m

)

(k ∈ Am)

and

�̂2 =

(n−1)
n
(v̂1 + v̂2) −

∑

k∈Ar

(

wkyk −
�̂0r t̂x
n

)2
− m�̂20r

(

t̂x
n
− t̂xm

m

)2

�̂20r
∑

k∈Am

(

wkxk −
t̂xm
m

)2
.

In the case of mean imputation and simple random sampling without replacement, (15) reduces to

v̂y0 = N2
(1
r
− 1
N

)

s2yr, (17)
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where s2yr =
∑

k∈Ar
(yk − ȳr)2∕(r − 1) and ȳr is the observed respondent mean.

3.2 Domain estimation

As a realistic setting for domain total estimation, in addition to the population total, consider a domain population partition

U = U1 ∪⋯ ∪ UD. Let the population total of domain Ud be

tdy =
∑

k∈Ud

yk =
∑

k∈U
�kdyk,

where the domain indicator �kd , �kd = 1 if k ∈ Ud and �kd = 0 otherwise, is observed for all units in the sample A (d =

1,… , D). Let t̂dy be the target domain total estimator and v̂dy its variance estimate. Domain estimation can be handled by

separate calibration for each domain by the producer and application of the domain complete-data formulae by the secondary

users, yielding t̂dyI = t̂dy and v̂F (t̂dyI ) = v̂dy, as explained in Section 2.

However, one is still interested in estimating the population total, in addition to the domain totals. Directly applying the

complete-sample formula (1) to the domain-calibrated imputed sample would correctly estimate the population total. One can

combine the domain variance estimates, as if the sampling were stratified by the domains. However, the resulting variance

estimate is incorrect even when the domain total estimators are independent of each other, due to the additional term

vb =
n

n − 1

D
∑

d=1
nd(t̂dyI∕nd − t̂y0∕n)2 =

n2

n − 1
Vn(t̂dyI∕nd),

where Vn(t̂dyI∕nd) is the variance of t̂dyI∕nd with respect to the empirical sample domain distribution function (n1∕n,… , nD∕n),

since

Vn(t̂dyI∕nd) =
D
∑

d=1

nd
n
(t̂dyI∕nd − t̂y0∕n)2 and t̂y0∕n = En(t̂dyI∕nd) =

D
∑

d=1

nd
n
(t̂dyI∕nd).

We propose to introduce a domain estimation effect factor, denoted by  , and use

v̂F (t̂yI ) = 2
n

n − 1
∑

k∈A
(wky

∗
k − t̂y0∕n)

2 = v̂y0. (18)

The factor  can be calculated after domain-calibrated imputation, and disseminated together with imputed sample.

In the separate domain calibration above, v̂F (t̂dyI ) is built on the squared errors around t̂dyI∕nd . Consider using another

complete-sample formula v̂F (t̂dyI ), built around t̂yI∕n instead, where

v̂F (t̂dyI ) =
nd

nd − 1
∑

k∈A
�kd(wky

∗
kd − t̂y0∕n)

2.
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We need to extend the calibration constraints as follows:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

t̂dyI =
∑

k∈A �kdwky∗k = t̂dy for d = 1, ..., D

v̂F (t̂dyI ) =
nd
nd−1

∑

k∈A �kd(wky∗kd − t̂y0∕n)
2 = v̂dy for d = 1, ..., D

v̂F (t̂yI ) = 2
n
n−1

∑

k∈A(wky∗k − t̂y0∕n)
2 = v̂y0.

(19)

In other words, we use �kd to identify the relevant observations for domain estimation, including the special case of Ud = U

and �kd ≡ 1, and use t̂y0∕n in all the ultimate variance estimators, including domain variance estimation. We refer to (19) as the

centred domain calibration approach.

Minimum adjustments of {ŷk; k ∈ Am} from Step 2 of the proposed approach can be achieved by Theorem 1 as well. To

focus the idea, suppose negligible 1∕n and 1∕nd . Let {u∗k; k ∈ Amd} be the calibrated imputations in domain d, given by

u∗k = t1d∕m + �d(ûk − t1d∕m),

where t1d = t̂dy −
∑

k∈Ard
wkyk is the constrained total of u∗k = wky∗k in Amd . However, instead of choosing �d such that

�2d
∑

k∈Amd

(

ûk −
t1d
m
)2 = v̂dy −

∑

k∈Ard

(

uk −
t̂dy
nd

)2 − md
( t̂dy
nd
−
t1d
m
)2,

as under separate domain calibration, we should now choose �d such that

�2d
∑

k∈Amd

(

ûk −
t1d
m
)2 = v̂dy −

∑

k∈Ard

(

uk −
t̂y0
n
)2 − md

( t̂y0
n
−
t1d
m
)2.

This allows us to estimate the domain variance v̂dy as in (19). The domain estimation effect factor  can be calculated afterwards

to satisfy (19). The conditions for the existence of solution are formally the same as discussed in Section 2.2. Provided domain-

specific calibration, it is feasible as long as t̂y0∕n does not differ too much from t̂dy∕nd in the different domains.

In practice one may be interested in multiple sets of (overlapping) domains. For example, a user may want to have estimates

by region as well as estimates by industry. Insofar as the need is known in advance, the producer can apply the approach above

to the ‘atomic domains’, which arise from crossing region and industry. In addition to the separate atomic-domain calibrated

sample, one can supply a domain estimation factor for the population total, a set of domain estimation factors for each of the

regions, and another set of factors for each industry.
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3.3 Stratified Multistage Sampling

Let the populationU be partitioned intoH strata of n primary sampling units (PSUs), where a sampleAℎ of nℎ PSUs is selected

separately within the ℎth stratum (ℎ = 1,… ,H ; n1 + ⋯ + nH = n). From each PSU in Aℎ, additional stages of sampling

are undertaken until the selection of the ultimate sampling units (USUs). Let wi, yi and ri be, respectively, the weight, the y-

value and the response indicator for the ith USU. Let Aℎk be the set of USUs in the kth selected PSU of the ℎth stratum, where

Arℎk = {i ∶ i ∈ Aℎk, ri = 1} and Amℎk = {i ∶ i ∈ Aℎk, ri = 0}.

By setting y∗i = yi if ri = 1 and letting y
∗
i be the calibrated imputation value if ri = 0, the imputed estimate of the population

total ty can be written as t̂yI =
∑H
ℎ=1 t̂yIℎ, where t̂yIℎ =

∑

k∈Aℎ
u∗ℎk and u

∗
ℎk =

∑

i∈Aℎk
wiy∗i =

∑

i∈Arℎk
wiyi +

∑

i∈Amℎk
wiy∗i . For

calibrated imputation that enables (3), we can apply Theorem 1 and the 2-step approach directly at the level of USUs, ignoring

the clustering structure of the multistage sampling.

Survey data analysis softwares (such as STATA, R, SAS) commonly use the stratified ultimate variance formula for variance

estimation. It is therefore convenient if the secondary user can simply input the imputed sample, and let the software carry on

as usual. Thus, as another possibility of full-sample variance estimator, we consider

v̂F (t̂yI ) =
H
∑

ℎ=1

nℎ
nℎ − 1

∑

k∈Aℎ

(u∗ℎk − ū
∗
ℎ)
2,

where ū∗ℎ =
∑

k∈Aℎ
u∗ℎk∕nℎ = t̂yIℎ∕nℎ. This choice fits naturally with the standard approach of ultimate-cluster variance

estimation under stratified multistage sampling (e.g. Skinner, 1989, Section 2.13).

Given t̂y0ℎ for the population total in the ℎth stratum and its associated variances v̂y0ℎ = v̂(t̂y0ℎ) (ℎ = 1,… ,H), consider the

problem of finding the values y∗j starting with ỹj , j ∈ ∪k∈AℎAmℎk, so that

t̂yIℎ =
∑

k∈Aℎ
u∗ℎk = t̂y0ℎ,

∑

k∈Aℎ
(u∗ℎk − ū

∗
ℎ)
2 =

∑

k∈Aℎ
u∗ 2ℎk − t̂

2
y0ℎ∕nℎ = (nℎ − 1)v̂y0ℎ∕nℎ.

(20)

We propose to obtain a solution of this problem in two stages. First, the initial imputed PSU totals are adjusted minimally subject

to the two constraints above, yielding the adjusted PSU total u∗ℎk. Second, the initial imputed values ỹj are adjusted, separately

within each PSU, to agree with the corresponding calibrated PSU total from the first step.

For the first stage, we can apply Theorem 1 within the ℎth stratum similarly as in Section 2. Let Aℎ0 = {k ∈ Aℎ ∶ #(Amℎk) =

0}, ûℎk = uℎk for k ∈ Aℎ0 and ûℎk = ũℎk(t̂y0ℎ −
∑

k∈Aℎ0
uℎk)∕(

∑

l∈Aℎ∖Aℎ0
ũℎl) for k ∈ Aℎ∖Aℎ0. Then, take D = Dℎ = Aℎ∖Aℎ0,
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dk = dℎk = 1, âk = âℎk = ûℎk, t0 =
∑

k∈Aℎ∖Aℎ0
dk ≡ mℎ, t1 = t1ℎ = t̂y0ℎ −

∑

k∈Aℎ0
uℎk and t2 = t2ℎ = (nℎ − 1)t̂y0ℎ∕nℎ +

t̂2y0ℎ∕nℎ−
∑

k∈Aℎ0
u2ℎk. For each ℎ = 1,… ,H , the optimal solution that minimizes the squared distance Δℎ =

∑

Aℎ
(u∗ℎk− ûℎk)

2 =

∑

Aℎ∖Aℎ0
(u∗ℎk − ûℎk)

2 subject to (20) are given by u∗ℎk = uℎk for k ∈ Aℎ0, and

u∗ℎk =
t̂1ℎ
mℎ

+ �̂ℎ
(

ûℎk −
t̂1ℎ
mℎ

)

(21)

for k ∈ Aℎ∖Aℎ0, where

�̂ℎ =
{ (nℎ − 1)v̂y0ℎ∕nℎ −

∑

Aℎ0
(uℎk − t̂y0ℎ∕nℎ)2 − mℎ(t̂y0ℎ∕nℎ − t1ℎ∕mℎ)2

∑

k∈Aℎ∖Aℎ0
(ûℎk − t1ℎ∕mℎ)2

}
1
2 .

Having thus obtained u∗ℎk, we adjust the ỹi’s separately within each PSU so that u∗ℎk =
∑

i∈Arℎk
wiyi +

∑

i∈Amℎk
wiy∗i , which

is a single constraint. For given ℎ and k ∈ Aℎ∖Aℎ0, the values y∗i that minimize the distance
∑

i∈Amℎk
(y∗i − ỹi)

2∕2 subject to

∑

j∈Amℎk
wiy∗i = u

∗
ℎk −

∑

i∈Arℎk
wiyi ≡ uℎk0 are

y∗i = ỹi
{

1 +
(wi

ỹi

)

(

uℎk0 −
∑

i∈Amℎk
wiỹi

)

∑

i∈Amℎk
w2
i

}

(i ∈ Amℎk). (22)

4 CALIBRATION OF MULTIPLE VARIABLES

Let yk = (yk1,… , ykp)⊤ denote a p-dimensional vector of values for the k-th unit and u∗k = wky∗k, where y
∗
k = (y

∗
k1,… , y∗kp)

⊤

denote the calibrated imputed values having the restriction that y∗kl = ykl if ykl is observed and fixed (k ∈ A and l = 1,… , p).

Following the basic algorithm of Section 2, consider the problem of finding the u∗k satisfying

∑

k∈A
u∗k = t̂0,

n
n − 1

∑

k∈A
(u∗k − t̂0∕n)

⊗2 = V̂ 0,

where t̂0 denotes a p-dimensional vector of target estimates for the population total ty =
∑

k∈U yk, V̂ 0 denotes the target estimated

variance-covariance matrix of t̂0 and a⊗2 = aa⊤. To obtain V̂ 0 in the presence of multivariate missing data is a difficult issue.

See, e.g., Skinner & Rao (2002) and Chauvet & Haziza (2012) for a fully efficient approach in the bivariate case, and Im et al.

(2018) and Sang & Kim (2018) for two fractional imputation methods in the multivariate setting. Below we propose a two-phase

calibration procedure, where at the first phase the problem is solved for transformed vectors v∗k’s (k ∈ A), and at the second

phase the results are back-transformed to u∗k’s as required. Assume without loss of generality the weighted values

ûk = wkŷk ≡ (ûk1,… , ûkp)⊤
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satisfy
∑

k∈A ûk = t̂0 preserving all the observed and fixed values. This can be achieved for instance by separate imputation of

ykl , for l = 1, ..., p, up to Step 1 in Section 2.2.

Let D be the subset of units with all items missing and suppose m = |D| > 0. Denote by V̂ 0 = P�P ⊤ the spectral

decomposition of V̂ 0, where P is the p × p orthogonal matrix of the eigenvectors of V̂ 0 and � is the diagonal matrix of the

corresponding eigenvalues. Consider the orthogonal principal components

v̂k = P ⊤(ûk − t̂0∕n) (k ∈ A)

and set

v∗k = v̂k (k ∈ R = A ⧵D). (23)

Now, choose the {v∗k : k ∈ D} which minimize the squared Frobenius norm

∑

k∈D
(v∗k − v̂k)

⊤(v∗k − v̂k)

subject to

∑

k∈D
v∗k = −

∑

k∈R
v̂k ≡ mv̄∗D,

∑

k∈D
v∗⊗2k = n − 1

n
� −

∑

k∈R
v̂⊗2k .

The solution to this constrained optimization problem can be obtained by Theorem 2 below. The proof of this theorem is

presented in the Appendix.

Theorem 2. Consider a set of vectors âk (k ∈ D), satisfying
∑

k∈D âk = 0 and C =
∑

k∈D â
⊗2
k being positive definite. Let B

be a pre-specified positive definite matrix. Multivariate calibrated vectors that minimize
∑

k∈D(a∗k − âk)
⊤(a∗k − âk) subjected to

∑

k∈D
a∗k = 0,

∑

k∈D
a∗ka

∗⊤
k = B

are a∗k = �âk, where � = B1∕2C−1∕2 and B1∕2 and C−1∕2 are the square root and inverse square root matrices of B and C ,

respectively.

In the first phase of the calibration method, we let a∗k = v
∗
k − v̄

∗
D and âk = v̂k − v̄∗D in Theorem 2. If the matrices

B ≡ n − 1
n
� −

∑

k∈R
v̂⊗2k − mv̄∗⊗2D , C ≡

∑

k∈D
(v̂k − v̄∗D)

⊗2

are both positive definite, then the optimal calibrated v∗k vectors by Theorem 2 are

v∗k = (Ip − �)v̄
∗
D + �v̂k = v̄

∗
D + �(v̂k − v̄

∗
D) (k ∈ D), (24)
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where Ip is the identity matrix of order p. Now, from
∑

k∈D(v̂k − v̄∗D) =
∑

k∈A v̂k = 0 by (23), it follows that
∑

k∈D v∗k = mv̄
∗
D

and
∑

k∈D v
∗⊗2
k = mv̄∗⊗2D + �C�⊤ = mv̄∗⊗2D + B = (n − 1)n−1� −

∑

k∈R v̂
⊗2
k . We thus enter the second phase of imputation,

where we transform the v∗k (k ∈ D) given by (23) and (24) back into

u∗k = Pv∗k + t̂0∕n =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ûk, (k ∈ R = A ⧵D),

P {v̄∗D + �(v̂k − v̄
∗
D)} + t̂0∕n, (k ∈ D),

(25)

which are the final calibrated imputed vectors. The transformation (25) implies that

∑

k∈A
u∗k = P

∑

k∈A
v∗k + t̂0 = t̂0

and

n
n − 1

∑

i∈D
(u∗k − t̂0∕n)

⊗2 = n
n − 1

P
{

∑

k∈R
v̂⊗2k + n − 1

n
� −

∑

k∈R
v̂⊗2k

}

P ⊤ = V̂ 0,

as intended.

Notice that the vectors u∗k in (25) can be computed directly from ûk by the linear transformation

u∗k = �̃1(k ∈ D) + {Ip1(k ∈ A ⧵D) + �̃1(k ∈ D)}ûk, (26)

where �̃ = P�P ⊤, �̃ = −(Ip − �̃)(
∑

k∈R ûk − t̂0)∕m and 1() is the indicator function of a set . All the observed and fixed

data values are associated with the units in R = A⧵D, and thus are preserved in the respective u∗k values. The u
∗
k and ûk vectors

share the same distance as that of the corresponding v∗k and the v̂k vectors, for k ∈ D.

One of the benefits of the proposed calibrated imputation approach above is to facilitate inferences for a nonlinear function of

population total vector ty. For example, suppose
√

n(t̂0 − ty) has an asymptotic multivariate normal distribution with mean zero

and positive-definite variance-covariance matrix V and that the target variance V̂ 0 is consistent for the variance of t̂y. Thus, an

approximate 100(1 − �)% confidence interval for g(ty), where g ∶ ℝp ←→ ℝ is smooth and has nonzero gradient ∇g(⋅) at ty, is

g
(

t̂yI
)

± z1−�∕2

[

∇⊤g
(

t̂yI
)

{

n
n − 1

∑

k∈A
(u∗k − t̂0∕n)

⊗2

}

∇g
(

t̂yI
)

]1∕2

,

where t̂yI =
∑

k∈A u∗k = t̂0, which is Wald-type interval that could alternatively be computed by

g
(

t̂yI
)

± z1−�∕2
[

v̂F
{

g
(

t̂yI
) }]1∕2 , (27)
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where

v̂F
{

g
(

t̂yI
) }

= n
n − 1

∑

k∈A
(u∗gk − t̂g0∕n)

⊗2,

u∗gk = ∇
⊤g

(

t̂yI
)

u∗k and t̂g0 = ∇
⊤g

(

t̂yI
)

t̂0. The use of the estimate v̂F
{

g
(

t̂yI
) }

above does not merely simplifies the compu-

tation of the estimated variance of g
(

t̂yI
)

by a complete sample formula, but it also prevents the secondary users to having to

apply a specific variance estimation method and corresponding software to estimate the variance of g
(

t̂yI
)

.

5 CONCLUDING REMARKS

In this paper we propose a calibrated imputation approach to be used routinely in the preparation of imputed sample survey

data, under a stratified multistage sampling design. It allows secondary users to estimate specified population parameters and

associated variances and covariances by simple complete-sample formulae, regardless of how complicatedly it may be when

these are to be derived from the original incomplete data. Domain estimation can be accommodated in addition. The approach

avoids the need to disseminate multiple imputed (or replicated) datasets.

A topic for future research is the imputation of categorical variables. The fractional imputation of Kim & Fuller (2004)

provides a fully efficient imputation method, where K imputed values are created for a K-category variable. Favre et al. (2005)

propose a fully efficient single-sample imputation method, under which a categorical variable is treated as a vector of dummy-

indicators during the imputation. However, variance estimation under these methods may require a different approach than by

using simple complete-sample formulae. It seems possible to adapt the multivariate calibrated imputation approach in this paper,

where the imputed values of the dummy-vector can be continuous instead of just 0 and 1, given the target estimates of the

population totals of each category and the associated variances and covariances.

Another research topic of interest is calibrated imputation for quantile estimation. For instance, given the target quantile

estimate t̂� and its variance estimate v̂� , for 0 < � < 1. It may be possible to adapt the proposed algorithm in Section 2.2. as

follows. At Step 1, adjust the initial imputed values {ỹk ∶ k ∈ Am} to {ŷk ∶ k ∈ Am}, which satisfy

∑

k∈Ar

wiI(yk ⩽ t̂�) +
∑

k∈Am

wiI(ŷk ⩽ t̂�) = �
∑

k∈A
wi.

Then, at Step 2, adjust the negative and positive deviations ŷk− t̂� , for k ∈ Am, while maintaining their signs to satisfy a suitably

chosen complete-sample variance formula.
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SUPPORTING INFORMATION

The supporting information, available as part of the online article, provides numerical illustrations for the proposed approach to

estimate a population total and to preserve variability. Examples consider element sampling, stratified multistage sampling and

also calibration of imputed multivariate data.

APPENDIX

A PROOF OF THEOREM 1

The proof of Theorem 1 is shown below. In the special case of dk = 1, the problem addressed by Theorem 1 reduces essentially

to that of the small-area constrained Bayes estimators (Ghosh, 1992, Theorem 1), which minimize an unweighted quadratic

function of the prediction errors. The two constraints in Ghosh (1992, Theorem 1), despite being formulated in a small area

estimation setting, are equivalent in form to (8).

Proof. Notice that

∑

k∈D
dk(ak − âk)2 = t2 − 2

∑

k∈D
dkakâk + t̂2.

Since t2 and t̂2 are positive and fixed, one needs to maximize
∑

k∈D dkakâk or, equivalently,
∑

k∈D qkakâk, where qk = dk∕t0 and

∑

k∈D qk = 1. Consider then (q1, ..., qm) as a discrete distribution function, denoted by q , which puts probability qk on each pair

of (ak, âk), for k ∈ D. We have
∑

k∈D qkakâk = Eq(akâk), i.e., the expectation over q . Notice thatEq(ak) =
∑

k∈D qkak = t1∕t0

and Eq(âk) = t1∕t0 are both fixed, as well as Vq(ak) = t2∕t0 − (t1∕t0)2 and Vq(âk) = t̂2∕t0 − (t1∕t0)2. Thus, the maximum

of Eq(akâk) is the same as that of Covq(ak, âk), which is given when the correlation between ak and âk is equal to 1 over q ,

i.e., ak = � + �âk with probability one, for some constants � and �. Solving (�, �) for (8) yields then � = (1 − �)t1∕t0 and

� = [(t2 − t21∕t0)∕(t̂2 − t
2
1∕t0)]

1∕2. This completes the proof.
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B PROOF OF THEOREM 2

Proof. Let the Lagrangian of this constrained optimisation problem be

L = 1
2
∑

k∈D
(ã∗k − a

∗
k)
⊤(ã∗k − a

∗
k) −  

T
∑

k∈D
ã∗k − 1

⊤[�◦(
∑

k∈D
ã∗kã

∗⊤
k − S∗D)]1

for some vector  and matrix �, where 1 denotes a vector of ones and “◦” denotes the Hadamard (element-wise) product of two

matrices. We have

()L∕)ã∗k)
⊤ = (ã∗k − a

∗
k) −  − (� + �

⊤)ã∗k = 0 ⇒ ã∗k = [Ip − (� + �
⊤)]−1(a∗k +  )

providedW = [Ip−(�+�⊤)]−1 exists. Notice thatW is symmetric. Substitution of ã∗k = W (a∗k+ ) into
∑

k∈D a∗k = 0 yields

 = 0. Next, substitution of ã∗k = W a∗k into
∑

k∈D a∗ka
∗⊤
k = B yields

BB⊤ =
∑

D
W a∗ka

∗⊤
k W = W CC⊤W ⇒ W = BC−1.

This completes the proof.
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