
Quanitative Security Assurance Metrics - REST API Case Studies

BASEL KATT, Norwegian University of Science and Technology, Norway
NISHU PRASHER, Statistics Norway, Division for Quality and Team Management., Norway

Security assurance is the confidence that a system meets its security require-
ments based on specific evidences that an assurance technique provide. The
notion of measuring security is complex and tricky. Existing approaches
do not conisder the relevance of the different security requirements to the
evaluated application context. Furthermore, they are mostly qualitative in
nature and are heavily based on manual processing, which make them costly
and time consuming. Therefore, they are not widely used and applied, es-
pecially by small and medium-sized enterprises (SME), which constitute
the backbone of the Norwegian economy, In this paper, we propose a quan-
tification method that aims at evaluating security assurance of systems by
measuring (1) the level of confidence that the mechanisms fulfilling security
requirements are present and (2) the vulnerabilities associated with possible
security threats are absent. Additionally, an assurance evaluation process is
proposed. Two case studies applying our method are presented. The case
studies use our assurance method to evaluate the security level of two REST
APIs developed by Statistics Norway, where one of the authors is employed.
One of the REST APIs is public and the other is private. Analyzes show
that the API with the most security mechanisms implemented got a slightly
higher security assurance score. This was due to the fact that the vulner-
abilities were considered more harmful in one of the cases as the security
objectives diverged.

ACM Reference Format:
Basel Katt and Nishu Prasher. 2018. Quanitative Security Assurance Metrics
- REST API Case Studies. 1, 1 (June 2018), 7 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
Security assurance is the confidence that a system meets its security
requirements based on specific evidences that an assurance tech-
nique provide. Thus, the security assurance level of a system states
how much confidence one can have in the system that is safe to use.
Evaluation, on the other hand, is the process that is responsible for
gathering evidences and assessing security "assurance" metrics to
check if the security requirements are fulfilled. A security metric
is often defined as a metric that depicts the security level, security
performance or security strength of a system[Savola 2013].

Current evaluation methods and standards, like OpenSAMM and
BSSIM maturity models, the Common Criteria (CC) [CCW 2012]
and others, can be characterized as (1) qualitative in nature and tend
to achieve their goals manually, to a large extend, which lead to
an inaccurate and not repetitive security assurance levels; and (2)
treating security requirements within one domain equally for all
applications regardless of the context. The problem of the qualitative
nature of security assurance metrics and the need for quantitative in-
dicators has been identified in the literature [Ouedraogo et al. 2009].

Authors’ addresses: Basel Katt, Norwegian University of Science and Technology,
Norway, basel.katt@ntnu.no; Nishu Prasher, Statistics Norway, Division for Quality
and Team Management. Norway, nishu.prasher@ssb.no.

© 2018 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in , https://doi.org/10.
1145/nnnnnnn.nnnnnnn.

Furthermore, recent efforts [Abdulrazeg et al. 2017; Thakurta 2013;
Yoo et al. 2017] indicate that privatization of security requirements
based on the application context is an important aspect during in the
application life cycle. On the other hand, recent research work that
applied quantitative methods are focusing mainly on vulnerabilities,
like the work done by Joshi et al. in [Joshi and Singh 2017], but not
security requirements.

We believe that security assurance metrics should be quantitative
in nature and include both perspectives, the postive side of security,
i.e., security requirement fulfillment, and the negative side of the
security, i.e., vulnerability existence. Furthermore, the importance,
or relevance, factor of security requirements, alongside the risk
factor of security vulnerabilities should be taken into account.

This paper presents a quantitative approach for defining security
assurance metrics that provides a high level security assurance
evaluation and distinguishes two perspectives: protection metrics
and vulnerability metrics. We adapt a similar process to the one
presented in [Savola et al. 2010] for the development of the security
assurance metrics.

Two case studies were carried out at Statistics Norway to validate
the proposed method and verify its results. This include applying
the assurance method to evaluate two operational REST APIs that
belong and are used by Statistics Norway, which is the Norwegian
national statistical institute and the main provider of official statis-
tics. The first one, TS-API, is an internal private API which will be
anonymized due to security reasons. This API does not hold any
data and it is used for transformation of the data. The security con-
cerns are mostly related to integrity of the data, such that the data
must not be changed, before it is sent further[Metivier 2017].The
other REST API, PX-API 1, is an open API which has a detailed
user-documentation available on the website [Norway 2017]. This
API lets the user create a customized dataset, based on queries made
towards over 5000 StatBank tables Statistics Norway offer[Norway
2017].

Analyzes showed that the API with the most security mechanisms
imple mented got a slightly higher security assurance score. This
was due to the fact that the vulnerabilities were considered more
harmful in one of the cases as the security objectives diverged.

The rest of the paper is organized as follows. Section 2 discussed
the related work and the main concepts discussed in this paper.
Section 3 presents the security assurance process, while section 4 the
different elements and indicators of our security assurance metrics
are defined and discussed. In section 5 we present the case studies
and results and finally in section 6 we analyze the results, conclude
and present the plans for the future work.

1http://data.ssb.no/api-name/api-version/lang/

, Vol. 1, No. 1, Article . Publication date: June 2018.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

:2 • Basel Katt and Nishu Prasher

2 RELATED WORK
Rsearch on security assurance metrics and evaluation methods is
vast. The majority of work focus on security assurance throughout
the software development life cycle [CC: 2006] process. This is a
valid approach as dealing with security from the early stages of
the development process will end up with more secure system.
However, the emphasis on the process vs implementation leads to
overlooking the actual practical security posture of the end product
implementation and deployment of operational systems [Jansen
2009].
A various frameworks and standards have been developed for

evaluating security assurance, such as for example the BSIMM 2

and OpenSAMM 3 maturity models, the OWASP Application Secu-
rity Verification Standard (ASVS) [Manico 2016] and the Common
Criteria (CC) [CCW 2012]. Maturity models provide qualitative
frameworks to evaluate the security posture of the process and cul-
ture practiced in an organizations. ASVS collects a list of security
assurance requirements and an associated qualitative evaluation
scheme. The CC provides a framework that allows specifying se-
curity and assurance requirements that need to be evaluated to
determine the security, or trust, level of a system. The main criti-
cism against such standards is that they tend to focus on the process
more than evaluating the implementation, and they are qualitative
in nature and done manually to a large extend.

Spears et al. [Spears et al. 2013] examined assurance in a regula-
tory context. They aim at conceptualizing assurance by applying
CMM to security processes. Still their work provide the abstract
theoretical background on CMM and focuses on processes rather
than implementation. Joshi et al. [Joshi and Singh 2017] proposes
a framework that contributes to improvement of the security level
of their University campus network. The model is a quantitative
information security risk assessment model which uses Common
Vulnerability Scoring System (CVSS). The framework is divided
into three main phases, including threat identification, threat pri-
oritization, and mitigation. This approach is quantitative in nature
and results in prioritization of threats, but the main problem is the
lacking of security requirement verification.
Such et al. [Such et al. 2016] suggests a framework with 20 "as-

surance techniques". The techniques are split over 5 high-level cate-
gories, review, observe, interview, test, and independent validation.
Furthermore Such et al. conducted a survey on 153 industry prac-
titioners where 81% had over 5 years of experience to study the
characteristics those assurance techniques, like expertise required,
number of people required, time required for completion, effec-
tiveness and cost. The main finding of the work was to compute a
measure of cost-effectiveness for each assurance technique, which
is not the focus of the current work.
Tung et al. [Tung et al. 2016] has proposed a framework where

they have applied security activities and practises of secure devel-
opment life cycle to generate security guidelines and improving
software security. This framework is an integrated security test-
ing framework that particularly can be used while developing a
software.

2https://www.bsimm.com/
3http://www.opensamm.org/

Hudic et al. [Hudic et al. 2017] offers a security assurance assess-
ment methodology for hybrid clouds. Systems and services in the
cloud are multi-layered and multi-tenant enviroments. Hence, the
proposed methodology of Hudic et al. consist of identification and
isolation of specific components that are of interest, where the inde-
pendent assurance level is calculated for each of them. Further, the
authors aggregated assessments into assurance levels for various
groups, which is relevant for this thesis also. The focus of this work
is mainly on security requirements and policy compliance.
Additionally, some initiatives aimed at developing operational

methodologies for security assurance of IT infrastructures. Pham
et al. [Pham et al. 2008] proposes an attack graph based security
assurance method based on multi-agents. The authors defined an
"attackability" metric for static evaluation and other metrics for
anomaly detection at run time. Pendleton et al. discuss in their
survey paper[Pendleton et al. 2016] how hard it is to develop security
metrics. They used attack surface estimation to detect vulnerabilities
within a system. In their study they define security metrics based
on four key indicators: system vulnerabilities, the system defense
strength, the attack (or threat) severity and (4) the system dimension
or situation. Instead of evaluating the security directly, they estimate
the number of access points to the subject system by counting
available interfaces, supported protocols, open ports, open sockets,
installed software, etc. The current work enacpsulates these factors
into two main security assurance metric types, security requirement
metrics and vulnerability metrics. Additionally, we consider the
security requirement importance, besides the vulnerability risks.
BUGYO [Bulut et al. 2007; Haddad et al. 2011] can be cited as

the first methodology and tool for continuous security assurance
evaluation; security assurance evaluation in the context of BUGYO
was aimed at probing the security of runtime systems rather than
products. This work investigates a quantitative approach for defin-
ing security assurance metrics that provides an overall security
assurance evaluation of a target of evaluation. Ouedraogo et al.
[Ouedraogo et al. 2014] also advocate the need for a Security As-
surance (SA) system which can be embedded within a current IT
system. The purpose of the SA-system is to identify vulnerabilities
and mitigate these by a so-called assurance-driven approach. Hence,
the output is a set of assurance indicators of the system. Their paper
analyze the practical challenges associated to the assessment of SA
and shows when the assurance level eventually drop. The main
focus of these work is on runtime monitoring, and not testing, to
check the availability of security mechanisms.
Savola[Savola 2013] explains security metrics as a metric that

illustrate the security level, security performance or the security
strength of a system. Savola’s paper is mainly about identifying qual-
ity criteria of security metrics. The result were three foundational
quality criteria: correctness, measurability and meaningfulness.

3 SECURITY ASSURANCE EVALUATION (SAE) PROCESS
We define a secruity assurance evaluation process as the process
that defines the steps required to evaluate the security assurance
level of the target of evaluation (ToE).The input is an operational
system running a target of application to be evaluated and the output
is the assurance level. Our proposed SEAP considers three main

, Vol. 1, No. 1, Article . Publication date: June 2018.

Quanitative Security Assurance Metrics - REST API Case Studies • :3

types of metrics: vulnerability metrics, security requirement metrics
and assurance metrics. The different types of assurance metrics
will be discussed in the next section. Similar to the methodologies
defined in [Haddad et al. 2011], the assurance process consists of five
main activities: application modelling, metric selection and test case
definition, test case execution and measurement collection, assurance
metrics and level calculation, evaluation and monitoring.

3.1 Application and threat modelling:
The application modelling allows decomposing the application in or-
der to identify its main components, its enviroment, its assumptions,
and its critical assets. Security functions and threats related to the
basic security concepts of the application and its environment will
be analyzed. Besides the architecture of the ToE, this step results
in the security requirements expected to be fulfilled and the set of
threats to the target system.
There has been some confusion when checklist are defined to

verify security requirement fulfillment and verify vulnerability exis-
tence. Insufficient TLS/SSL configuration is a vulnerability, while
secure communication through HTTPS is a requirement. Further, if
validation of the HTTP Certificate is deactivated it does not matter
that the encryption is enforced, still it is possible to decrypt the
information. In order to capture the whole picture, it is important
to consider both security requirements and vulnerabilities.

To capture all these entities it was necessary to not only to focus
on the security vulnerabilities but in addition create a checklist for
security requirements. By doing this it was easy to get an under-
standing of what we expect from the API and what we don’t expect
from it[Felderer et al. 2016]. Web applications- and APIs-security is
often seen as similar. However, API-testing is different in the sense
that it tests the interface which allows access to data and commu-
nication and not the application as whole[De 2017]. For this study,
all the vulnerabilities were obtained from the Owasp site[Oftedal
et al. 2017]. The security requirements for this thesis work were
compiled from the Owasp ASVS[Manico 2016].

3.2 Metric selection and test case definition:
Ametric is based on the measurement of various parts or parameters
of security functions implemented on the systemwith its service and
operational environment. Depending on the measurements being
performed, metrics can be classified as follows:

• Security requirement metrics relate to a measurement that
evaluates whether security protection mechanisms exist and
fulfill defined security requirements using the GQM method.
• Vulnerability metrics relate to a measurement that evaluates
the weaknesses/severity and vulnerabilities existence in the
systems using the CVSS and GQM methods.

Test cases for both metrics can be defined to test the vulnerabilities
and verify the security requirements on the target of evaluation.

3.3 Test case execution and measurement collection:
Test case execution andmeasurement collection consist in deploying
specific probes to implement the test cases on a target of evaluation
and its operational environment. These probes can help to collect

raw data from the system. This step will result in a measurement
that will be normalized to produce an assurance level in step 3.4.

3.4 Assurance metrics and level calculation:
Once the security requirement and vulnerability metrics are deter-
mined in step 3.3, the overall security assurance of the target of
evaluation can be calculated using equation 6 presented in section
4.

3.5 Evaluation and monitoring:
This step involves comparing the current value of the assurance
level to the previous measure, or to a certain threshold and issuing
an appropriate message. It can also providing a real time display
of security assurance of the service to help the evaluator identify
causes of security assurance deviation and assist him/her in making
decisions.

4 SECURITY ASSURANCE METRIC
We will try in this section is to define meaningful and measurable
metrics to capture the requirements and vulnerabilities that are
present in the system. We assume that there are a finite set ofm
security requirements r1...rm , as well as a finite set of n potential
vulnerabilities v1...vn , defined for the ToE. We assume that these
sets are specified in the first step of the SAE procees, i.e., application
and threat modeling. This can be done using various methods, like
theat analysis [Myagmar et al. 2005], and standards, like the ASVS
(Application Security Verification Standards) [OWASP 2015] for web
application.

4.1 Requirement & Vulnerability
A security metric is often defined as a metric that depicts the security
level, security performance or security strength of a system [Savola
2013]. We still use the term metrics despite the arguments [Savola
2013] that security cannot be measured as a universal concept due
to the complexity and uncertainty during the testing. Further, ac-
cording to NIST assurance is defined as following: "Grounds for
confidence that the other four security goals (integrity, availability,
confidentiality and accountability) have been adequately met by a
specific implementation. "Adequately met" includes (1) functionality
that performs correctly, (2) sufficient protection against unintentional
errors (by users or software), and (3) sufficient resistance to intentional
penetration or bypass[Kissel 2013]."
Fulfilling a security requirement through a countermeasure, or

mechanism, will give protection (referring to point 2), and to check
if the functionality performs correctly (referring to point 1) there
is necessary to check if such security mechanism is present. While
by doing security testing for vulnerabilities it is possible to check
sufficient resistance to intentional penetration or bypass. Thus, we
define the assurance metric of a ToE, AM as follows 4

AM = RM −VM (1)

such that RM is the requirement metrics andVM is the vulnerability
metric.

4Another way to define the assurance metric is as a pair <RM, VM> instead of sub-
stracting the vulnerability metric from the requirement metric.

, Vol. 1, No. 1, Article . Publication date: June 2018.

:4 • Basel Katt and Nishu Prasher

The previous discussion suggests that security requirement ful-
fillment and vulnerability existence factors are two important
indicators that need to be considered when security assurance is
evaluated. Additionally, the discussion in section 1 motivates that
(1) security requirement importance, relevance, or weight, as we
call it, and (2) vulnerability risk value should be considered as well.
Putting all together we conclude that the security assurance metrics
consists of two elements, security requirement metric and vulnera-
bility metric. The first will be defined based on two main factors,
fulfillment and weight, while the other will be defined based on two
main factors, existence and risk.

4.2 Fulfillment an Existence
In order to map the fulfillment of security requirements and ex-
istence of security vulnerabilities into measurable evidences, we
use the GQM (Goal Question Metric) approach [Basili et al. 1994].
It allows the to derive measurable metrics from defined concep-
tual goals by developing questions that cover the goals, for which
the answers represent the measurable metrics. It is defined as tree
structure consists of three levels [Basili et al. 1994]
• Conceptual goal: A goal in our case model the fulfillment of
particular security requirement or the existence of particular
vulnerability.
• Operational question: A question is used to define the way
the achievement of a particular goal can be performed. A
question in our context represent the test case that aims at
checking whether a security requirement is fulfilled by a
security mechanism(s) or a vulnerability exists within the
operational context.
• Quanitative answers: An answer represent a metric that is
associated with a particular question, i.e., test case, to check
it in a measurable way.

If we assume that the overall goal is to check the security assurance
level of the ToE. This main goal can be divided into sub-goals, each
of associated with the fulfillment of one security requirement of
the existence of one security vulnerability. After that we define the
test cases that tries to check the fulfillment of a security require-
ment or the existence of a vulnerability. Finally we quanitify the
results of the test cases and associate them to the metrics. For ex-
ample, table 1 shows applying GQM for checking the fulfillment
of the security requirement user input should sanitzed. Note that
ASVS standard [OWASP 2015], among others, is used to construct
the list of questions, i.e., test cases, associated with that security
requirement.

4.3 Weight and Risk
Weighting is explained as "The process of weighting involves empha-
sizing the contribution of some aspects of a phenomenon (or of a set
of data) to a final effect or result, giving them more weight in the
analysis. That is, rather than each variable in the data contributing
equally to the final result, some data are adjusted to contribute more
than others5."
In relation to security, not all security requirements are equally

important. That depends merely on the functions of the API and
5https://en.wikipedia.org/wiki/Weighting

what it does and if it process sensitive data? The weights will express
how important a security requirement is and it must be done accord-
ing to what we want to protect. A scale from 0-10 will aid to express
the levels of importance. Where 0 is assigned to requirements that
are meaningless and futile, and 10 is the maximum expressing a
vital requirement.

On the other hand the term risk was defined as the probability
and the consequence of an unwanted incident. . To pursue the defi-
nition, a risk is an impact of uncertainty on systems, organizations
etc. Further risk management is the management of this impact,
where the purpose is to protect against the threats. Whilst, risk as-
sessment is the activity where the risks are identified, analyzed and
articulated to the decision makers. There are several frameworks
or methods for risk analysis, and organizations may choose their
method depending on the type of risks they encounter or their busi-
ness area[NCSC 2016]. In our context we will use CVSS (Common
Vulnerability Scoring System)[First.org [n. d.]] for calculating risks.
It is a published standard used globally. It was designed by National
Institute of Standard and Technology (NIST) with cooperation of
industry partners.

CVSS helps to achieve a score, a decimal number, which reflects
the vulnerability’s severity, in the range of [0.0, 10.0]. The metrics
are calculated in three different groups: base, temporal and envi-
ronmental[First.org [n. d.]]. The two latter metrics are optional to
use depending on the system and context. Base metrics consist of
two metrics, exploitability and impact metrics, which represents the
intrinsic and fundamental characteristics of a vulnerability that do
not change over time or across user environments. Temporal metrics
reflect if the characteristics of the vulnerability changes over time,
and environmental metrics reflect characteristics of vulnerabilities
that are unique to a particular user’s environment.

4.4 Requirement & Vulnerability Metrics
Based on the previous discussion, we define a security requirement
metric (Rmi) for a given security requirement ri at a specific time
instance as:

Rmi = (wi ×

k∑
j=1

fi j) (2)

where k represent the number of test cases, or questions, defined
for this security requirement, wi is the weight of the security re-
quirement and fi j is the fulfillment factor of the jth test case of the
the ith t security requirement. As mentioned before, GQM is used
to measure the fulfillment of the security requirements.

As a result we define the accumulate security requirement metrics
of an application at a specific time instance as:

RM =
m∑
i=1

(Rmi) (3)

wherem represents the total number of security requirement defined
for the ToE. Table 1 shows how to construct the test cases for a
security requirement and link it to a measurable fulfillment factors.

, Vol. 1, No. 1, Article . Publication date: June 2018.

Quanitative Security Assurance Metrics - REST API Case Studies • :5

Table 1. Example of applying GQM approach to quantify the fulfillment factor for the security requirement (sub-goal): user input must be sanitized.

Sub-goal Question / Test case Answer / metric

Use input sanitized

Do server side input validation failures result in request rejection and are logged? 1 (Full)
Do input validation routines are enforced on the server side? 1 (Full)
Are prepared statements used for protecting SQL queries, and others? 1 (Full)
Do security controls preventing LDAP Injection enabled? 0.5 (Avarage)
Does the ToE has defenses against HTTP parameter pollution attacks? 0 (Weak)
Is client side validation used? 0 (Weak)
Is positive validation (whitelisting) used for input data, like REST calls and HTTP headers? 0 (Weak)
Is JSON.parse is used to parse JSON on the client.? 0 (Weak)

Similarly we define a vulnerability metric (Vmi) for a given secu-
rity vulnerability at a specific time instance as:

Vmi = (ri ×

p∑
j=1

ei j) (4)

where, p represent the number of test cases defined for this vul-
nerability type, ri is the risk of the ith vulnerability and ei j is the
existence factor for jth test case defined for the ith vulnerability.
The existence factor can have three values, 0 means that the test
case indicates no vulnerability, 1 indicates the existence of the vul-
nerability for the test case, and 0.5 indicates the partial existence of
the vulnerability for the test case.
Thus, the vulnerability metrics of a system at a specific time

instance can be calculated using the risk of vulnerabilities and their
existence factor as follows:

VM =
n∑

k=1
(Vmk) (5)

where n represents the total number of vulnerabilities defined for
the ToE.

Assurance metrics (AM) determine the actual confidence that de-
ployed countermeasures protect assets from threats (vulnerabilities)
and fulfill security requirements. We define assurance metrics as
the difference between security requirement metric (RM) and vulner-
ability metric (VM). Thus, the assurance metrics can be calculated
as follows:

AM = RM −VM =
m∑
i=1

(Rmi) −
n∑

k=1
(Vmk) (6)

where,AM is the security assurance metrics at a given time instance,
RM is the security requirement metrics at a given time instance,
and VM is the vulnerability metrics at a time given instance.

From equation 6, it can be noticed that AM is minimum when the
following two conditions are met:
• All security requirements are not fulfilled (RM becomes zero),
which causes the value of the first term to be minimum (zero),
and
• All possible vulnerabilities exist and all have a maximum risk
value. This makes the second term to be maximum (VM).

AM , on the other hand, can be maximum if (1) VM is minimum for
all vulnerabilities, and (2) the protection mechanisms have been

found to be effective to fulfill the defined security requirements (RM
is maximum) for all requirements.

4.5 Scale Consideration & Normalization
The scale is dependent on number of requirements and vulner-
abilities. The total number of requirements are 10 which has 53
mechanisms. Total number of vulnerability categories are 9 and
containing 36 vulnerabilities. The maximum number of the weight a
requirement can get is 10 and the maximum number of risk score is
also 10. The maximum score an API can get is if every requirement
is fulfilled:

10 × 10 = 100 (7)
For each vulnerability that is present, the score assigned to the

vulnerability is subtracted from the total. If every vulnerability is
present, and each of them is assigned max risk score, the total score
will be

− 9 × 10 = −90 (8)
Consequently, the minimum score is -90. The scale will range from
-90 up to 100.

However, such large range is difficult to work with and interpret,
so the score must be normalized to a common domain. A common
domain used in scoring models in security, e.g. risk models is 0-10,
therefore this range was chosen. It is possible to shrink a large scale
to fit into a new, smaller scale. The method used here is min-max
normalization [Borgatti [n. d.]; Delen et al. 2006].

Fig. 1. Normalize to different scale

υ ′ =
υ −minA

maxA −minA
(newmaxA − newminA) + newminA (9)

The min-max normalization[Delen et al. 2006, p.4] equation is
shown in equation 9. TheminA andmaxA are minimum and maxi-
mum of an attribute, A, refering to the original variable A (in our

, Vol. 1, No. 1, Article . Publication date: June 2018.

:6 • Basel Katt and Nishu Prasher

case A=-90 to 100). The value v is mapped to value υ ′ in the range of
[newminA,newmaxA] using min-max normalization[Khajvand and
Tarokh 2011]. Quoting Shalabi & Shaaban, "min-max normalization
performs a linear transformation on the original data[Shalabi and
Shaaban 2006]".

Table 2. Degree of Security

Score Degree of Security
0.0 - 0.99 None Security
1 - 3.9 Low security
4.0 - 6.9 Moderate Security
7.0 - 8.9 Very Good Security
9.0 - 10.0 Excellent Security

The table 2 is adapted from the table of severity for vulnerabili-
ties[NVD 2018]. However, my table is showing the opposite, thus
levels of security. This table can be used to convert the score to
textual representation.

5 CASE STUDY & RESULTS
This section describes how the quantification method was applied
to two case studies, and the result that was obtained. The SAE
process described before awasperformed on two different REST
APIs, PX-API and TS-API respectively. The main activities that were
performed.

(1) Learning about the API. Sketching a UML-diagram of the API,
that shows what the requests and responds look like.

(2) Manual check: First a existence score that express whether a
requirement is present or not by checking the related security
mechanism.

(3) Weighting: Each requirement get a weight that will reflect
the importance of that requirement depending on the func-
tionality of the API, and the security requirement.

(4) Analysis of security testing result: Security vulnerability score
will be checked after security testing both of the REST APIs.

(5) Risk score: A risk analysis is done to get a vulnerability score.
(6) Security Assurance: A total score of security assurance is

calculated for the REST API.

5.1 List of Requirements
Total of 10 requirements were considered as vital for a REST API.
The 10 requirements have 53 security mechanisms associated with
them. Following is a description of every security requirement for
the REST API according to Owasp that I have chosen as necessary
for REST APIs[Manico 2016].
• Authentication
• JWT security
• Access Control
• Input Sanitation
• Error Handling
• Data Protection
• Communication Security
• HTTP Security
• Web Services

5.2 List of Security Vulnerabilities
If a security mechanism is missing or not working properly it will
lead to a security vulnerability. According to figure ?? for a vulnera-
bility to cause harm, presence of a threat is necessary to exploit it.
For instance if no input sanitation is done it can lead to SQL Injection
attack. The most common vulnerabilities of a REST API was mainly
found from Owasp[Oftedal et al. 2017] and other sites/blogs[Guru99
2017]. Total of 9 main vulnerability categories were considered to
be crucial for a REST API. In detail 36 security vulnerabilities were
added into their associated main categories. The main vulnerability
categories are gathered from[OWASP [n. d.]] are as following:
• Injection
• Broken Authentication
• Sensitive Data Exposure
• Broken Access Control
• Elevation of Privilege
• Cross-Site Scripting
• Cross-Site Request Forgery
• Parameter Tampering
• Man-in-the-middle-attack

5.3 API Security Testing
From the list of vulnerabilities and security requirements we applied
the GQM approach to specify the test cases that can be used to check
the fulfillment and existence of security requirement and vulnerabil-
ity, respectively. The test cases were performed, some manually and
some automatically. In general security testing validates if security
requirements are implemented correctly. Black Box-fuzzing was
performed on the APIs. API fuzzing is done by sending all possible
types of combinations of input parameters and then inspect how
the API responds. Mostly open-standard tools, those easy available
on the internet, was used to security test the REST API, e.g., Sqlmap
and Burp-Suite.

5.4 Results
The last two steps of the SAE process is about assigning of metrics
and quantify assurance. The security assurance score can be calcu-
lated using the metrics AM. The value of VM metric was calculated
as 2.93 and the value of the RM metric was 19.25. Hence, AM will
give a value of:

19.25 − 2.93 = 16.32 (10)
On the original scale [-90,100] the PX-API gets a value 16.32. This

score need to be normalized to a new range from 0 to 10. The values
that needs to be filled in is as following, min_A : -90, max_A = 100,
new_maxA:10, new_minA:0. And υ : is the AM-value:16.32.

υ ′ =
16.32 − (−90)
100 − (−90)

(10 − 0) + 0 ≈ 5.60 (11)

All calculations has been done with decimal numbers, even if they
are shown as rounded numbers in the equation. The PX-API got
5.60, which in our table of security degree falls between 4.0-6.9,
evaluated as Moderate Security.
The same was applied for the second REST API and the final

result of the AM was 9.71, and for RM was 26.80. Thus AM was
calculated as 17.09. After normalization the final value was 5.64.

, Vol. 1, No. 1, Article . Publication date: June 2018.

Quanitative Security Assurance Metrics - REST API Case Studies • :7

6 CONCLUSION AND DISCUSSION AND FUTURE
WORK

PX-API had 2 vulnerabilities and 12 security requirements test cases
fulfilled. TS-API on the other hand had 3.5 vulnerabilities and 17
security requirements present. The PX-API got the AM-score 5.60
and the TS-API got the AM-score 5.64. After the requirements were
counted and before the result of the calculation was done. The ex-
pectation was that the more of the requirements were on place the
more secure the REST API is. Hence it was expected a higher score
for TS-API. For instance, it has authentication which is an important
requirement that gives that extra layer of security. It was not found
a lot of vulnerabilities either, only three. While the PX-API had
less requirements on place and it was found two vulnerabilities for
this API. This was before any weighting was done or risk analysis.
The weighting and risk score is necessary contributors to the score,
because the weight portray the importance of the requirement. The
risk score on the other hand illustrate how harmful the vulnerabil-
ity is. This is due to the fact that the security objective can differ
from one system to another. Information security has three main
objectives: confidentiality, integrity and availability[Metivier 2017].
The PX-APIs main security objective is the availability of the data.
The data should be available to the user. There is no confidentiality
needed as the data is public. The main security objective for the
TS-API is the integrity of the data. Any attacker should not be able
to change the data. The data itself is not confidential. As future work
we plan to work on automation of test cases and generation of test
cases defintion based on abstract application and threat models.

REFERENCES
2006. Common Criteria for Information Technology Security Evaluation Part 3: Security

Assurance components, Version 3.1 Rev 1.
2012. Common Criteria for Information Technology Security Evaluation.
Ala A Abdulrazeg, Norita Md Norwawi, and Nurlida Basir. 2017. RiskSRP: Prioritizing

Security Requirements Based on Total Risk Avoidance. Advanced Science Letters 23,
5 (2017), 4596–4600.

Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. 1994. The goal question
metric approach. Encyclopedia of software engineering 2, 1994 (1994), 528–532.

Steve Borgatti. [n. d.]. Normalizing Variables (Handout). Gatton College of Business
and Economics. University of Kentucky.

Evren Bulut, Djamel Khadraoui, and BertrandMarquet. 2007. Multi-agent based security
assurance monitoring system for telecommunication infrastructures. In Proceedings
of the Fourth IASTED International Conference on Communication, Network and
Information Security. ACTA Press, 90–95.

Brajesh De. 2017. API Testing Strategy. Apress, Berkeley, CA, 153–164. https://doi.org/
10.1007/978-1-4842-1305-6_9

Dursun Delen, Ramesh Sharda, and Max Bessonov. 2006. Identifying significant
predictors of injury severity in traffic accidents using a series of artificial neu-
ral networks. Accident Analysis & Prevention 38, 3 (2006), 434 – 444. https:
//doi.org/10.1016/j.aap.2005.06.024

Michael Felderer, Matthias BÃĳchler, Martin Johns, Achim D. Brucker, Ruth Breu, and
Alexander Pretschner. 2016. Chapter One - Security Testing: A Survey. In Advances
in Computers, Atif Memon (Ed.). Advances in Computers, Vol. 101. Elsevier, 1 – 51.
https://doi.org/10.1016/bs.adcom.2015.11.003

First.org. [n. d.]. Common Vulnerability Scoring System. https://www.first.org/cvss/.
Guru99. 2017. What is Security Testing: Complete Tutorial. https://www.guru99.com/

what-is-security-testing.html. Blog @Guru99.
S. Haddad, S. Dubus, A. Hecker, T. Kanstren, B.Marquet, and R. Savola. 2011. Operational

Security Assurance Evaluation in Open Infrastructures. In Proceedings of the 2011
6th International Conference on Risks and Security of Internet and Systems (CRiSIS)
(CRISIS ’11). IEEE Computer Society, Washington, DC, USA, 1–6. https://doi.org/10.
1109/CRiSIS.2011.6061831

Aleksandar Hudic, Paul Smith, and Edgar R. Weippl. 2017. Security assurance assess-
ment methodology for hybrid clouds. Computers and Security 70, Supplement C
(2017), 723 – 743. https://doi.org/10.1016/j.cose.2017.03.009

Wayne Jansen. 2009. Directions in security metrics research- NISTIR 7564. (2009).

Chanchala Joshi and Umesh Kumar Singh. 2017. Information security risks management
framework âĂŞ A step towards mitigating security risks in university network.
Journal of Information Security and Applications 35, Supplement C (2017), 128 – 137.
https://doi.org/10.1016/j.jisa.2017.06.006

Mahboubeh Khajvand and Mohammad Jafar Tarokh. 2011. Estimating customer future
value of different customer segments based on adapted RFM model in retail banking
context. Procedia Computer Science 3 (2011), 1327 – 1332. https://doi.org/10.1016/j.
procs.2011.01.011 World Conference on Information Technology.

Richard L. Kissel. 2013. Glossary of Key Information Security Terms. NIST Pubs (2013).
http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=913810.

Jim Manico. 2016. Open Web Application Security Project. https://www.owasp.org/
images/3/33/OWASP_Application_Security_Verification_Standard_3.0.1.pdf.

Becky Metivier. 2017. Fundamental Objectives of Information Security: The
CIA Triad. https://www.sagedatasecurity.com/blog/fundamental-objectives-of-
information-security-the-cia-triad. Sage Data Security.

Suvda Myagmar, Adam J Lee, and William Yurcik. 2005. Threat modeling as a basis for
security requirements. In Symposium on requirements engineering for information
security (SREIS), Vol. 2005. Citeseer, 1–8.

NCSC. 2016. Risk Management and risk analysis practice.
https://www.ncsc.gov.uk/guidance/risk-management-and-risk-analysis-practice.
National Cyber Security Centre (UK Government).

Statistics Norway. 2017. StatBank API User Guide. Statistics Nor-
way. http://www.ssb.no/en/omssb/tjenester-og-verktoy/api/px-
api/_attachment/248250?_ts=15b48207778.

NVD. 2018. Common Vulnerability Scoring System Calculater version 3.
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator. National Vulnerability Data-
base (National Institute of Standards and Technology).

Erlend Oftedal, Andrew van der Stock, Tony Hsu Hsiang Chih, Johan Peeters, Jan Wolff,
and Rocco Granitz. 2017. REST Security Cheat Sheet. https://www.owasp.org/index.
php/REST_Security_Cheat_Sheet.

M. Ouedraogo, C. T. Kuo, S. Tjoa, D. Preston, E. Dubois, P. Simoes, and T. Cruz. 2014.
Keeping an eye on your security through assurance indicators. In 2014 11th Interna-
tional Conference on Security and Cryptography (SECRYPT). 1–8.

Moussa Ouedraogo, Haralambos Mouratidis, Djamel Khadraoui, Eric Dubois, and Do-
minic Palmer-Brown. 2009. Current trends and advances in IT service infrastructures
security assurance evaluation. (2009).

OWASP. [n. d.]. OWASP top 10 project. https://www.owasp.org/index.php/Category:
OWASP_Top_Ten_Project,[AccessedJuly2017]

OWASP. 2015. Application Security Verification Standard (ASVS). (2015).
Marcus Pendleton, Richard Garcia-Lebron, Jin-Hee Cho, and Shouhuai Xu. 2016. A

Survey on Systems Security Metrics. ACM Comput. Surv. 49, 4, Article 62 (Dec. 2016),
35 pages. https://doi.org/10.1145/3005714

N. Pham, L. Baud, P. Bellot, and M. Riguidel. 2008. A Near Real-Time System for Secu-
rity Assurance Assessment. In 2008 The Third International Conference on Internet
Monitoring and Protection. 152–160. https://doi.org/10.1109/ICIMP.2008.28

Reijo M. Savola. 2013. Quality of security metrics and measurements. Computers &
Security 37 (2013), 78 – 90. https://doi.org/10.1016/j.cose.2013.05.002

R. M. Savola, H. PentikÃŕÂ£Â¡inen, and M. Ouedraogo. 2010. Towards security effec-
tiveness measurement utilizing risk-based security assurance. In 2010 Information
Security for South Africa. 1–8. https://doi.org/10.1109/ISSA.2010.5588322

L. A. Shalabi and Z. Shaaban. 2006. Normalization as a Preprocessing Engine for
Data Mining and the Approach of Preference Matrix. In 2006 International Con-
ference on Dependability of Computer Systems. 207–214. https://doi.org/10.1109/
DEPCOS-RELCOMEX.2006.38

Janine L. Spears, Henri Barki, and Russell R. Barton. 2013. Theorizing the concept and
role of assurance in information systems security. Information and Management 50,
7 (2013), 598 – 605. https://doi.org/10.1016/j.im.2013.08.004

Jose M. Such, Antonios Gouglidis, William Knowles, Gaurav Misra, and Awais Rashid.
2016. Information assurance techniques: Perceived cost effectiveness. Computers
and Security 60, Supplement C (2016), 117 – 133. https://doi.org/10.1016/j.cose.2016.
03.009

Rahul Thakurta. 2013. A value-based approach to prioritise non-functional requirements
during software project development. International Journal of Business Information
Systems 12, 4 (2013), 363–382.

Y. H. Tung, S. C. Lo, J. F. Shih, and H. F. Lin. 2016. An integrated security testing
framework for Secure Software Development Life Cycle. In 2016 18th Asia-Pacific
Network Operations and Management Symposium (APNOMS). 1–4. https://doi.org/
10.1109/APNOMS.2016.7737238

Sang Guun Yoo, Hugo Pérez Vaca, and Juho Kim. 2017. Enhanced Misuse Cases
for Prioritization of Security Requirements. In Proceedings of the 9th International
Conference on Information Management and Engineering. ACM, 1–10.

, Vol. 1, No. 1, Article . Publication date: June 2018.

https://doi.org/10.1007/978-1-4842-1305-6_9
https://doi.org/10.1007/978-1-4842-1305-6_9
https://doi.org/10.1016/j.aap.2005.06.024
https://doi.org/10.1016/j.aap.2005.06.024
https://doi.org/10.1016/bs.adcom.2015.11.003
https://www.guru99.com/what-is-security-testing.html
https://www.guru99.com/what-is-security-testing.html
https://doi.org/10.1109/CRiSIS.2011.6061831
https://doi.org/10.1109/CRiSIS.2011.6061831
https://doi.org/10.1016/j.cose.2017.03.009
https://doi.org/10.1016/j.jisa.2017.06.006
https://doi.org/10.1016/j.procs.2011.01.011
https://doi.org/10.1016/j.procs.2011.01.011
https://www.owasp.org/images/3/33/OWASP_Application_Security_Verification_Standard_3.0.1.pdf
https://www.owasp.org/images/3/33/OWASP_Application_Security_Verification_Standard_3.0.1.pdf
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project , [Accessed July 2017]
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project , [Accessed July 2017]
https://doi.org/10.1145/3005714
https://doi.org/10.1109/ICIMP.2008.28
https://doi.org/10.1016/j.cose.2013.05.002
https://doi.org/10.1109/ISSA.2010.5588322
https://doi.org/10.1109/DEPCOS-RELCOMEX.2006.38
https://doi.org/10.1109/DEPCOS-RELCOMEX.2006.38
https://doi.org/10.1016/j.im.2013.08.004
https://doi.org/10.1016/j.cose.2016.03.009
https://doi.org/10.1016/j.cose.2016.03.009
https://doi.org/10.1109/APNOMS.2016.7737238
https://doi.org/10.1109/APNOMS.2016.7737238

	Abstract
	1 Introduction
	2 Related Work
	3 Security Assurance Evaluation (SAE) Process
	3.1 Application and threat modelling:
	3.2 Metric selection and test case definition:
	3.3 Test case execution and measurement collection:
	3.4 Assurance metrics and level calculation:
	3.5 Evaluation and monitoring:

	4 Security Assurance Metric
	4.1 Requirement & Vulnerability
	4.2 Fulfillment an Existence
	4.3 Weight and Risk
	4.4 Requirement & Vulnerability Metrics
	4.5 Scale Consideration & Normalization

	5 Case study & Results
	5.1 List of Requirements
	5.2 List of Security Vulnerabilities
	5.3 API Security Testing
	5.4 Results

	6 Conclusion and Discussion and Future Work
	References

