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Abstract

Bipartite incidence graph sampling provides a unified representation of many sam-
pling situations for the purpose of estimation, including the existing unconventional
sampling methods, such as indirect, network or adaptive cluster sampling, which are
not originally described as graph problems. We develop a large class of design-based
linear estimators, defined for the sample edges and subjected to a general condition of
design unbiasedness. The class contains as special cases the classic Horvitz-
Thompson estimator, as well as the other unbiased estimators in the literature of
unconventional sampling, which can be traced back to Birnbaum et al. (1965). Our
generalisation allows one to devise other unbiased estimators in future, thereby
providing a potential of efficiency gains. Illustrations are given for adaptive cluster
sampling, line-intercept sampling and simulated graphs.

Keywords Multiplicity estimator - Priority rule - Graph sampling - Ancestral
observation procedure - Rao-Blackwell method

1 Introduction

Birnbaum et al. (1965) study the situation where patients are sampled indirectly via
the hospitals from which they receive treatment. Insofar as a patient may be treated at
more than one hospital, the patients are not nested in the hospitals like elements in
clustered sampling.

Bimbaum and Sirken consider three estimators for such indirect sampling. The first
one is the classic Horvitz-Thompson (HT) estimator (Horvitz and Thompson 1952)
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based on all the sample patients, each of which is weighted by the inverse of the
probability of being included in the sample. The second estimator is based on all the
sample hospitals and a constructed value for each of them, and the third one is only
based on a sub-sample of hospitals determined by a priority rule. In particular, the
estimator using all the sample hospitals is often referred to as a Hansen-Hurwitz
(HH) type estimator. The HH-type estimator and its variations are used for network
sampling (Sirken 1970, 2005); it is recast as a “generalised weight share method”
(Lavallee 2007); and a modified HH-type estimator is considered for adaptive cluster
sampling (Thompson 1990, 1991).

All the sampling techniques mentioned above are considered somewhat uncon-
ventional, compared to the standard sampling methods using stratification or
multistage selection. Unconventional sampling techniques are often characterised by
the presence of some rules of observation, in addition to the probability design of an
initial sample. For example, under network sampling (Sirken 1970), “siblings report
each other” are needed to reach a “network” of siblings following an initial sample of
households. Under adaptive cluster sampling (Thompson 1990), sample propagation
depends on the “network™ relationship among the units and the values of the
surveyed units. Moreover, unconventional sampling require that information of
“multiplicity” of sources is collected in addition to the sample. For instance, in the
example of indirect sampling of patients via hospitals, one needs to identify all the
relevant hospitals outside the initial sample, in order to compute the inclusion
probability of a sample patient. The same requirement exists as well for any other
unconventional sampling, such as “counting rules” of links between population
elements and selection units under network sampling (Sirken 2005), or the
relationship between edge units and their neighbouring networks under adaptive
cluster sampling (Thompson 1990).

Zhang and Patone (2017) formally define sampling from finite graphs, in analogy
to sampling from finite populations (Neyman 1934), extending the previous works by
Frank (1971, 1980a, 1980b, 2011), which deal with different graph motifs separately.
In particular, they show that each of the aforementioned unconventional sampling
techniques can be given different graph sampling representations. Zhang and Oguz-
Alper (2020) identify sufficient and necessary conditions for feasible representation
of sampling from arbitrary graphs as bipartite incidence graph sampling (BIGS),
including indirect, network and adaptive cluster sampling. For instance, the nodes
can be the hospitals and the patients and an edge exists between a hospital and any
patient that receive treatment at the hospital. This is a bipartite graph since the nodes
of the graph are bi-partitioned, where an edge can exist only between two nodes in
different parts, but not between any two nodes in the same part.

Under graph sampling (Zhang and Patone 2017), one needs to specify an
observation procedure, by which the edges of the sample graph are observed
following an initial sample of nodes. As demonstrated by Zhang and Oguz-Alper
(2020), BIGS can provide a unified representation of various situations of sampling,
which are originally described in other terms, where one part of the nodes refer to the
initial sampling units and the other part the measurement units of interest, to be
referred to as motifs, such that the edges represent the observational links between
sampling units and motifs. More examples will be given later in this paper. Also, the
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observation procedure needs to be ancestral (Zhang and Patone 2017), so that one
knows which other out-of-sample nodes could have led to the motifs in the sample
graph, had they been selected in the initial sample of nodes. The information of
multiplicity or ancestry is apparent under BIGS, which is simply the knowledge of
the nodes (representing sampling units) that are adjacent to the node representing a
sample motif in the BIG.

BIGS can provide a unified representation of many so-called unconventional
sampling techniques in the literature, and the three estimators considered by
(Birnbaum and Sirken 1965) are applicable under any BIGS.

Our aim in this paper is to formulate a large class of unbiased incidence weighting
estimators, which includes the three estimators of (Birnbaum and Sirken 1965) as
special cases but are not limited to them. This allows one to study design-based
estimation under the general setting of ancestral BIGS (satisfying the requirement of
ancestral observation), where the results are immediately applicable to all the relevant
situations. Notice that we do not consider model-based estimation in this paper,
which requires additional assumptions but would allow one to draw conclusions
about the superpopulation from which the given population graph is taken from.

We shall develop the class of unbiased incidence weighting estimators, based on
the sample edges that link the sampling units to the observed motifs. As will be
explained, all the three estimators used by (Birnbaum and Sirken 1965) are special
cases of this class of estimators, which is an insight hitherto unknown in the
literature. Many other unbiased estimators can be devised as members of the
proposed class, and one can apply the Rao-Blackwell method (Rao 1945, Blackwell
1947) to the non-HT estimators, to generate distinct unbiased estimators that can
improve the estimation efficiency. Thus, the discovery of the class of incidence
weighting estimators provides a potential for efficiency gains.

Below, in Sect. 2, we formally introduce ancestral BIGS, and develop the
incidence weighting estimators. The general condition of unbiased estimation is
established. New understandings of the three aforementioned estimators are
discussed. We consider also the application of Rao-Blackwell method, which
motivates a new subclass of the HH-type estimators. Illustrations are given in Sect. 3
of adaptive cluster sampling (Thompson 1990), line-intercept sampling (Becker
1991) and simulated graphs, which demonstrate the scope and flexibility of the
proposed approach across a variety of situations. Some concluding remarks are given
in Sect. 4.

2 Incidence weighting estimator under BIGS

Denote by B = (F,Q;H) a bipartite simple directed graph, where (F,Q) form a
bipartition of the node set /' U Q, and each edge in H points from one node in F' to
another in Q. No edge exists between any two nodes in F or any two in Q. For BIGS
from B, let F be the set of initial sampling units, and Q the population of motifs that
are of interest, where a motif is a subgraph exhibiting a particular pattern, for
example a pair of nodes with directed edges to each other, or three nodes forming a
triangle in an undirected simple graph. An edge (ix) that is incident to i € F and

@ Springer



M. Patone, L. Zhang

K € Q exists, if and only if the selection of i in a sample s from F leads to the
observation of motif x in €, hence the edges (and the graph B) are defined to be
directed. The edge set H is unknown to start with. Let the size of F be M = |F|, and
that of Q be N = |Q|, where N is generally unknown. The incidence relationships
corresponding to the edges in H represent thus the observational links between the
sampling units and the motifs of interest.

Zhang and Oguz-Alper (2020, Theorem 1) establish the sufficient and necessary
conditions, by which an arbitrary instance of graph sampling can be given a feasible
BIGS representation. They examine and discuss the BIGS representation of indirect,
network and adaptive cluster sampling. For instance, for indirect sampling of patients
via hospitals, let F' consist of the hospitals and Q the patients, where (ix) € H iff
patient x receives treatment at hospital i. For network sampling of siblings via
households, one can let F’ consist of the households and Q the networks of siblings, i.
e. each x represents a group of people who are siblings of each other, where (ix) € H
iff at least one of the siblings in k belongs to household i. Adaptive cluster sampling
will be discussed in Sect. 3.

Let oy = {k: k € Q, (i) € H} be the successors of i in B. Given the initial
sample s from F, the observation procedure of BIGS is incident (Zhang and Patone
2017), such that all the nodes in «; are included in the sample graph provided i € s;
hence, the term BIGS. Let Q; = J;, %, which consists of all the sample motifs.
Following the general definition of sample graph (Zhang and Patone 2017), the
sample BIG is given by

B, = (5,Q4; Hy) where H;= (s x Q) NH

is the sample of edges. To be able to calculate the inclusion probabilities of each x in
Q,, the observation procedure needs to be ancestral as well. Let f,, ={i:i¢€
F, (ix) € H} be the ancestors (or predecessors) of x in B. Let () = U, cq, B
The knowledge of ancestry (or multiplicity) amounts to the observation of (<) \ s,
although these nodes are not part of the sample graph By, such as the out-of-sample
hospitals of the sample patients.

Example 1 Consider ancestral BIGS from the population BIG below.

K1 K2 K3
11 1o i3 n

We have F = {ij,i,iz3,is} and Q= {ki,k2,x3} and H = {(i1x1), (i21),
(iak2), (i3x3) }. Suppose s = {ij,i3} C F. By incident observation procedure, we
have Q; = {r,x3} and H; = {(ijx1), (i3k3)}, and the sample graph B, =
(s,Qy; Hy) as defined above. In addition, we observe () \ s = {i»}, where i, is
not part of the sample BIG. Notice that the ancestry knowledge requires one to
obtain additionally the information identifying all the ancestors of all the observed
sample motifs in Q. For instance, for each patient x sampled from the hospital 7, all
the hospitals (other than i) in which & receives treatments must be identified, whether
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or not they are among the actual sample of hospitals. This can e.g. be achieved by
adding a survey question to each sample patient in €, which enumerates all the
relevant hospitals. Sometimes, it may be more natural to survey the units in s instead.
For instance, when sampling children via their parents, where the mother and father
are used as separate sampling units in F, one can ask the in-sample parent about the
out-of-sample parent(s). Finally, it may be possible or preferable to retrieve the
ancestry knowledge from external sources, such as the Birth Register when sampling
children via parents.

Notice also that, in computer science (e.g. Leskovec and Faloutsos 2006; Hu and
Lau 2013), one may be concerned with situations where the graph is in principle
known but is too large or dynamic to be fully processed or stored for practical
purposes. Taking a sub-graph according to some chosen probability scheme is then a
possible approach. For an example the whole Twitter graph consisting of users and
their following/follower relationships can be constructed by the company at any
given time point. However storing every instance of the graph might be unfeasible
due to the enormous amount of memory required and the fact that the graph is
changing all the time. Taking a sample may suffice for the purpose of estimating e.g.
the follower to following ratio. As another example, let F' be the products available in
an online market place and Q the buying customers, and let (ix) € H iff the customer
k has bought the product i. Again, the whole graph is available to the owner of the
market, but sampling may be preferred for various market analytics. Of course, in
these situations the ancestry knowledge of the sample € is guaranteed.

Sometimes, either the design or circumstances may prevent one from obtaining the
complete ancestry knowledge, such that not all the ancestors f,. of an observed motif
Kk are known. Without losing generality, suppose one only manages to obtain
information about a subset of 8., denoted by fi;, where f5;. is non-empty now that x is
already observed. It is then both necessary and possible to modify the sampling
strategy (including the estimators described below), an example of which will be
discussed in Sect. 3.1 later. Moreover, we refer to Zhang and Oguz-Alper (2020) for
a treatment of incomplete ancestry knowledge, which can arise in a number of
situations of graph sampling.

2.1 The incidence weighting estimator

Let y, be an unknown constant associated with motif x, for ¥ € Q, given the
population graph B. The aim is to estimate the total 0 = > __ ¥y, including e.g.
v = 1. Let §; = 1 or O indicates if i € s ornot, so that 7; = Pr (J; = 1) = E(J;), for
i € F. Given the sample graph By, let {W;,; (ix) € Hy} be the incidence weights of
the sample edges, and W, =0 if (ix) & H,. The incidence weighting estimator
(IWE) is given by
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0:ZVViKyK:ZVVm;K (1)

e, ) (e, i
where ;) = Pr ((ix) € Hy) = m; under BIGS. Notice that the definition (1) allows
for sample dependent weights Wj,.
Proposition 1 The IWE by (1) is unbiased for 0 provided, for each k € Q,

S EWilsi=1)=1. )

icp,

Proof The expectation of 0 with respect to the sampling distribution of s is given by
610) = S H0 6 (S o =1 ) = S T - 1) -
er T KE; keEQ  ief,
since ;) = 7; under BIGS, and Zieﬁ’ E(W;|6; = 1) = 1 by stipulation. O

The condition (2) ensures that the IWE is unbiased under repeated sampling.
When the weights are constant of sampling, denoted by w;,. for distinction, it reduces
to D cp i =1 for any x € Q. Let n; be the second-order sample inclusion

probability of i,j € F.
Proposition 2 The BIG sampling variance of an unbiased IWE is given by

V(0)=> > (Aw— Dy (3)

KEQ (€Q

where

M= il E(Wickildidy = 1)
icf, jeﬁ,

Proof Given unbiased 0, we have V' (0) = E(0%) — 0%, where

ZX}wZXﬁ(’%ﬂO

KEQ (€Q icp,. jep,
—ZZWZZ”EWWM—D
KEQ (eQ icp,. jePy

since W Wy = 0 if ;0, = 0 under BIGS, for any (ix), (j¢) € H. The result follows
now from taking the difference of E(6?) and 6* = (D ken v O
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2.2 HT-type estimator

Let myy = Pr (k€ Q) and my = Pr (k€ QL) for k,£cQ, where
parentheses are used in the subscript to distinguish these inclusion probabilities of
the motifs from those of the sampling units. The HT-estimator is given by

Oy =" ye/m

KeQ

where V(éy) =D e 2orea Tun /ey — 1)yiye. Under BIGS, we have

) = l—mp =1— Pr (ﬁKOS:@)
n(lc/f) =1- (ﬁﬁ,( + ﬁﬁ[ - ﬁﬁ/\-uﬁf) .

where 7, is the exclusion probability of f8; in s, which is the probability that none of
the ancestors of x in B is included in the initial sample s, and the knowledge of the
out-of-sample ancestors 8, \ s is required to compute 7z . Similarly for 7g g,

The HT-estimator is a special case of the IWE, where the weights W;, for each k&
and s satisfy

Z I/Vilc/ﬂ:i - l/7-[(1() . (4)

iesnp,

Notice that these weights W, are not constant of sampling if || > 1, since they
depend on how s intersects f3,.. For Example 1 earlier, we have W, = m;,/ T(x,) and
Wiy = T,/ (k) by (4), since both i, and 3 have only one ancestor in the BIG.
Moreover,

Wi, = n(l)ﬁil if sN {il,iz} = {il}
VVith = 717( ., T, if sN {i],iz} = {ig}

K1)

(VI/iIKIﬂ VVizKl) = (Kll)(anll ) (1 - a)niz) if sN {ilaiZ} = {ilv i2}

The value a does not matter, since the coefficient of y,, in the IWE (1) is
ZiESﬁ/))N I/I/l"»'/7-[l"

To see that the weights given by (4) satisfy the condition (2) generally, let ¢, be
the probability that the sample intersection is s, = s N f,. for k € Q, where () =
ZSN ¢, over all possible s,. Given (4), for any x € €, we have then

S Es =1 = S S e =S, T =T

icf, i€f, sidi i€sy

TE(K

Arguing similarly in terms of the joint probability that the sample intersections for x
and / are s, and sy, it can be shown that A, in (3) reduces to 7 ) / () T(¢) given (4)
and (2).
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More generally, let 1, = m( >, Wi/m for any weights W, that are not
constants of sampling. To satisfy the condition (2), for any x € €, the weights must
be such that

SZ d)s,\.rls,\. = n(’”) : (5)

The HT-estimator is the special case where 5, = 1. It is possible to assign #; that
differs from 1 for different sample intersects s, subjected to the restriction (5). Any
estimator satisfying (5) but not (4) may be referred to as a HT-type estimator.

2.3 HH-type estimator

While a HT-type estimator uses sample dependent weights W;,, a HH-type estimator
uses weights w;, that are constant of sampling. The condition (2) is reduced to
Zie/}, wj = 1, for any x € Q. Thus, for Example 1 earlier, we have now w;,,, +

Wiy, = 1 and wy,, = Wy, = 1. Bimbaum and Sirken (1965) observe that

Z)’K = nyc Zwm = Z Zwmyx .

KeQ KeQ icp, i€F Kk€w;

It follows that the HH-type estimator given by

éz = Zzi/ni and Zi = Zwi}fylc (6)
i€s KEW;
is unbiased for 6 under repeated sampling, where z; is a constructed constant for each
initial sample unit i. The BIG sampling variance of 0. is given by

Notice that one only needs z; for the initial sample units in order to apply 0., which is
possible provided ancestral BIGS. Moreover, the HH-type estimator (6) defines
actually a family of estimators, depending on the choice of w;,, although (Birn-
baum and Sirken 1965) use only the equal weights w;; = 1/|f,|. The corresponding
0. is referred to as the multiplicity estimator, denoted by ézﬁ. Variations of the
multiplicity estimator under other settings of indirect, network sampling are con-
sidered by Sirken (1970), Sirken and Levy (1974), Sirken (2004) and Laval-
le¢ (2007). Unlike the HT-estimator, it is in principle possible to apply the Rao-
Blackwell method to improve the HH-type estimator, to which we return in Sect. 2.5.
Some other HH-type estimators will be discussed then.

2.4 Priority-rule estimator

Birnbaum and Sirken (1965) invent a third estimator based on a prioritised subset of
Hi, where they let [;,, = 1 if i = min (s N ﬂ,c) and 0 otherwise, i.e. if unit 7 happens to
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be enumerated first in the frame F among all the in-sample ancestors of x, for each
K € Q. For Example 1 earlier, we have I;,.,, = 1 whenever k, € € and [;,,,, = 1
whenever k3 € Q, since both k; and x3 have only one ancestor in the BIG. The
priority-rule only matters for x; here. If {i;,i,13,is} is the frame arranged in the
order of enumeration, then we would have [;,,, = 1 if i; € s whether or not i; € s,
and I;,,, = 1 only if i; € s and i1 & s. Whereas if {is, i3, 1,/ } is the frame arranged
in the order of enumeration, then we would have I,,,, = 1 if iy € s whether or not
it €s,and [, =1 only if i} € s and i, ¢ s.
The priority-rule estimator based on {(ix) : I, = 1, (i) € Hy} is given by

A Ly

6 — et o4

' (iyeh, P @
where p; = Pr (Im = 1|(ix) € HS) = Pr (Im =119, = 1) is the conditional prob-
ability that (ix) is prioritised given (ix) € H,, and w;c = 1/|,| are the equal weights
for any k € Q. Clearly, other priority rules or choices of w;, are possible.

One can easily recognise ép as a special case of IWE with W;,. = [, w;, /pi. It can
satisfy the unbiasedness condition (2), provided p;. > 0 for all (ix) € Hy, in which
case E(Wy|d; =1) = w;,. Bimbaum and Sirken (1965) did not provide an
expression of V(ép), but indicated that it is unwieldy. Now that ép is a special
case of IWE, its wvariance follows readily from Proposition 2. Let
Pije = Pr (Il = 1]6;6; = 1), we have

TiPix jt
Ay = E E Twmwjz
iep, jep, TTaPiPt

in (3), such that

V(ép) = Z M - l)wmwﬂhytz
(ieH (oen M PiPjt

because > _,.; ;=1 for any x € Q. An unbiased variance estimator can be given
by

V()= (Pl 1) Py
g ; ; T TPixDje T “r
(ix)eH; (j)eH,

The priority probabilities p;. and p;.; depend on the priority rule, as well as the
sampling design. The details for the estimtator of Birnbaum and Sirken (1965) under
initial simple random sampling (SRS) without replacement of s are given in
Appendix A.

It should be noticed that the priority rule is not part of sampling; the sample graph
By includes all the edges incident to every sample unit in s. Had one applied
subsampling by randomly selecting one of the edges incident to each 7 in s with some
designed probabilities, the sample graph would have contained one and only one
edge from each sample unit. Instead, the priority rule selects only one sample edge
incident to each motif in Qg for the purpose of estimation.
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There is a possibility that a unit i can be sampled but never prioritised, in which
case ép would be biased. For an extreme example, suppose a motif « is incident to all
the sampling units in F, then the last unit in F can never be prioritised (for x)
according to the priority rule of Birnbaum and Sirken (1965), as long as |s| > 1.
Generally, é,, is biased under this priority rule, provided there exists at least one motif
K in Q, where

B >1 and Pr (s >1|rkeQ) =1

such that the ancestor i = max(f8,.) has no chance of being prioritised when it is in s.
The probability above depends on the ordering of sampling units in F, as well as the
initial sample size. Given any ordering of the units in F, as the initial sample
increases, it is possible for é,, to behave more erratically and become biased
eventually.

2.5 Using Rao-Blackwell method

The minimal sufficient statistic under BIGS is {(x,y«) : k € Q}, or simply Q as
long as one keeps in mind that the y-values are constants associated with the motifs.

Let 0 be an unbiased IWE. Applying the Rao-Blackwell method to 0 yields éRB =
E(0|Q;) as an improved estimator, if the conditional variance V(0|Q) is positive.

Since the HT-estimator éy is fixed conditional on Q,, we have éyRB = éy. For a non-
HT estimator, it is in principle possible that the RB method can improve its
efficiency, as illustrated below.

Example 2 Consider the BIG in Example 1. Given |s| = 1, there are 4 distinct initial
samples, leading to 4 distinct €, such that V(é|QS) =0 and Ogz = 0 for any
unbiased IWE. Given [s| = 2, there are 6 different initial samples, leading to 5
distinct Qy, where both s = {7}, 2} and s’ = {i1,i4} lead to the same motifs {x, x>},
so that Ogg # 0 given motif sample {x;,x2}, if 0(s) # 0(s'). Take e.g. the HH-type
estimator 0, by (6), we have

A~ (}\) w N a) . ~
0(s) = - Vi + lzmym + IZMJ’Kz # 0-(s")
i T, i,
— wizKl yKl + wizk‘z
ir is
A V4 (S) Wiy Wiy Wiy
0 = . .
Vi, UzRB p(S) +p(S') T Vi + T Y + T Yiea

The calculation required for the RB method may be intractable, if the conditional
sample space of s given €) is large and the initial sampling design p(s) is not fully
specified, which is common in practice for designs with unequal inclusion
probabilities over F. Moreover, the result of RB method is generally not a unique
minimum variance unbiased estimator under BIGS, because the minimal sufficient
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statistic is not complete. It is thus worth exploring other useful choices of the IWE.
Due to the inherent shortcoming of the priority-rule estimator pointed out earlier, we

concentrate on the HH-type estimator éz below.
Consider the special case where |o;] = 1 in the population BIG, such as when
sampling households via persons. Suppose first with-replacement sampling of s,

where the different draws generate an I1ID sample, and compare éy and 0. based on a
single draw. Let p; and p) = > ;. g i be the respective selection probabilities. We

have p; = p; if i = j and 0 if i # j, and p(.) = p(,) if kK = £ and 0 if otherwise, now
that |o;| = 1. We have

V<Zzi/17i> - V(Z yx/pm) => (Z W} /pi — l/p<,<>>y,2< =0
ics KEQ KkeQ \ief,

if wy = pi/ P fori € B, given which we have @Z = ézRB. The variance of any other

0. would be larger, as long as w;/p; is not a constant over f,., because

E(;|eg> L L V(gmegv) :yf.y(wwm) -0,
i ich. P(x)Pi Px) i Di

A similar argument holds approximately for the choice w;. o< m; under sampling
without replacement of s, provided n; ~ m;7; and 7() ~ 77 (p), as in the case of
sampling households via persons with a small sampling fraction |s|/|F]. This can make
z;/m; more similar to each other over F, which is advantageous with respect to the

anticipated mean squared error of 0. under the sampling design and a population
model of z;, according to Theorem 6.2 of Godambe and Joshi (1965).

To make z;/7; more similar to each other over F without the restriction |o;| = 1,
one may consider setting ;. <wj if |o;| > |o;|, despite m; = 7;, because there are
more motifs contributing to z; than z;. Thus, under general unequal-probability
sampling of s, it may be reasonable to consider the probability and inverse-degree
adjusted (PIDA) weights

i o i/ |y (8)

subjected to the condition (2), where y > 0 is a tuning constant of choice. Denote by
ézw the corresponding PIDA-IWE. The multiplicity estimator ézﬁ becomes a special

case of 0.,, given y = 0 and constant &; over F.

Notice that to apply the weights (8) with y # 0, one needs to know |o;| for all
i € B, and k € Q, in addition to the ancestral observation of .. For instance, under
indirect sampling of children via parents, one would need to collect the number of
children for the out-of-sample parents in f(€) \ s as well. For network sampling of
siblings via households, one would need to collect the number of other sibling
networks in each household i with at least one member from a sample sibling
network x.
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3 lllustrations
3.1 Adaptive cluster sampling

Consider the example of adaptive cluster sampling (ACS) discussed by Thompson
(1990). The population F consists of 5 grids, with y-values {1,0,2, 10, 1000}. Each
grid has either one or two neighbours which are adjacent in the given sequence, as in
the graph G below, where as Thompson (1990) we simply denote each grid by its y-
value.

G: 1 0 2 10 1000

Given an initial sample of size 2 by SRS from F, one would survey all the
neighbour grids (in both directions if possible) of a sample grid i if y; exceeds the
threshold value 5 but not otherwise. The observation procedure is repeated for all the
neighbour grids, which may or may not generate further grids to be surveyed. The
process is terminated, when the last observed grids are all below the threshold. The
interest is to estimate the total amount of species (or mean per grid) over the given
area.

In particular, the grid 2 is a so-called edge unit, which can be observed from 10 or
1000, but would not lead to 10 or 1000 if only 2 is selected in s. The inclusion
probability of grid 2 under ACS cannot be calculated correctly when it is selected in s
but not 10 or 1000, in which case the knowledge of multiplicity (or ancestry) is
lacking. Thompson (1990) proposes a modified HT-estimator which uses the grid 2
in estimation, only if it is selected on its own, the probability of which is known from
the design of the initial sample.

Zhang and Oguz-Alper (2020) develop feasible BIGS representations of ACS
from G above. Here we use one of them to illustrate how the IWE can be applied to
ACS. The population BIG is given by B = (F,F;H), with Q = F and H as below.

B : 1 0 2 10 1000
| N
1 0 2 10 1000

Zhang and Oguz-Alper (2020) point out that it is possible to consider BIGS from
B, where the observational links between (10, 2) and (1000, 2) under ACS are
removed to ensure ancestral observation, and apply the classic HT-estimator under
this BIGS representation of ACS from G. They show that the two strategies (ACS,
modified HT) and (BIGS, HT) actually lead to the same estimator. The difference is
that one cannot apply the RB method to the HT-estimator under BIGS, as one can
with the modified HT-estimator under ACS. We refer to Zhang and Oguz-
Alper (2020) for more details.

Thompson (1990) proposes also a modified HH-type estimator, where an edge
unit is used in estimation only if it is selected in s directly. This modified HH-type
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estimator is simply the multiplicity estimator ézﬁ under BIGS from 5, with equal
weights w; = 1/|f,] in (6). The two strategies (ACS, modified HH-type) and

(BIGS, 62/5) lead to the same estimator. Moreover, application of the RB method to

0.5 is the same as that for the modified HH-type estimator; we refer to
Thompson (1990) for the details.

Finally, since the contiguous grids that form a network are all observed together
under ACS if any of them is observed, ancestral BIGS from B entails the observation
of |o;| needed for the PIDA weights given by (8). However, since |o;| is the same for
all the grids in the same network and the initial sampling is SRS, the weights by (8)

are all equal in this case, so that the estimator ém coincides with the multiplicity

estimator 92/;.

3.2 Line-intercept sampling

Line-intercept sampling (LIS) is a method of sampling habitats in a region, where a
habitat is sampled if a chosen line segment transects it. The habitat may e.g. be
animal tracks, roads, forestry, which are of irregular shapes. Kaiser (1983) considers
the general situation, where a point is randomly selected on the map and an angle is
randomly chosen, yielding a line segment of fixed length or transecting the whole
area in the chosen direction. Repetition generates an IID sample of lines. In the
simplest setting, each transect line is selected at random by selecting randomly a
position along a fixed baseline that traverses the whole study area, in the direction
perpendicular to the baseline. We apply IWE under BIGS to the following example
of LIS (Becker 1991) under this simple setting.

The aim is to estimate the total number of wolverines in the mapped area, as
sketched in Fig. 1. Four systematic samples A, B, C and D, each containing 3
positions, are drawn on the baseline that is equally divided into 3 segments of length
12 miles each. Following the 12 selected lines and any wolverine track that intercepts
them yields 4 observed tracks, denoted by k = 1, ..., 4 and heuristically indicated by
the dashed lines in Fig. 1. Let y, be the associated number of wolverines, and L, the
length of the projection of k on the baseline. From top to bottom and left to right, we
observe  (y1,L1) = (1,5.25), (n,L2) =(2,7.5), (v3,L3) =(2,2.4) and
(va, L) = (1,7.05).

3.2.1 Feasible BIGS representation of LIS

First we construct a feasible BIGS representation of LIS in this case. Given the
observed tracks, partition the baseline into 7 projection segments, each with
associated length x;, for i =1,...,7 from left to right, where x; refers to the
overlapping projection of k =1 and 2, x, the projection of x = 2 that does not
overlap with k =1, x3 the distance between projections of k =2 and 3, x4
the projection of k¥ = 3, x5 the distance between projections of ¥ = 3 and 4, x¢ the
projection of k = 4, and x7 the distance between x = 4 and right-hand border. The
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k1

k3

k4

k2

Baseline

Fig. 1 LIS for wolverinne with 4 systematic samples (A, B, C, D) of 3 positions each

probability that the i-th projection segment is selected by a systematic sample is
pi = x;/12. The 4 systematic samples are IID.

The sample BIG on the r-th draw is given by B, = (s,, Q,; H,), where s, contains
the selected projection segments, and o; the wolverine tracks that intercept the
sampled line originating from i € s,, such that Q, = UiEs, o; and H, = UiES, ixa;.In
this example, we have s; = s, = {1, 5, 6}, yielding Q; = Q; = {1,2,4} on the first
two draws A and B, and s3 = s4 = {4, 6,7}, yielding Q3 = Q4 = {3,4} on the last
two draws C and D. The distinct projection segments selected over all the draws are
s = ULI s, = {1,4,5,6,7}, and the distinct tracks are Q; = Ule Q, ={1,2,3,4}.
Let F* = {1,2,...,7} contain the 7 projection segments constructed from (s, € ), and
H, = Ule H,. Let B* = (F*,Qy; Hy) be given as below:

k=1 K=2 k=3 k=4
[ 1 [ I
i=1 1=2 1=3 1=4 1=25 1=06 1=17

Let f5;. be the ancestors of k in B*, where 7 = {1}, f5 = {1,2}, p; = {4} and
B = {6}

Let Q ={l,...,k,..., N} contain all the wolverine tracks in the area, where N >4
given the sample Q. Let F(Q) = {I,...,i,..., M} be the sampling frame, which
consists of all the projection segments constructed from Q. Let
H = {(ix);i € F,x € Q}, where an edge exists from i to x provided « intercepts
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any line that originates from the i-th projection segment. The population BIG is given
by B=(F,Q;H).

In practice, only 5* can be constructed but not 5. The two are not the same generally,
in that one needs to further partition the projection segments of F* in F based on €, in
order to accommodate the unobserved tracks in Q \ €. For instance, suppose there is a
track that can only be intercepted from the 7-th projection segment in /™ and the track
does not reach the right-hand border, then this projection segment would be partitioned
into 3 segments in F, and (F, H) would differ from (F*, H*) accordingly.

Under LIS, field observation along a line has an actual width of detectability.
Dividing the baseline accordingly yields thus a known sampling frame F’ of
detectability partitions. Let B’ = (F',Q;H’) be the corresponding BIG. By
Theorem 1 of Zhang and Oguz-Alper (2020), LIS can be represented as BIGS
from B’ where, in particular, the observation procedure of LIS ensures that BIGS
from B’ is ancestral for Q.

Now, as along as the unit of detectability is negligible in scale compared to the
baseline, one can assume the elements of ' to be nested in those of F* (or F), such
that the selection probability of each observed track x with respect to BIGS from B’
can be correctly calculated using B* (or B). Thus, the strategy BIGS-IWE defined for
B’ can be applied using the observed B*, just as when B were known.

3.2.2 Estimators

The HT-estimator is given by Thompson (2012, Ch. 19.1). In the present set-up,
since the projection segments are non-overlapping, the selection probability of track
Kk on each draw is given by p(), where p(1) = 0.4375, pp) = 0.625, p3) = 0.2 and
P4y = 0.5875. The inclusion probability of x € € is one minus the probability that
K is not selected on any of the 4 draws, m() =1 — (1 fp(,())“, where 71y = 0.90,
no) = 0.98, 73 =0.59 and 7y = 0.97. Denote by p(.) the probability of
selecting either x or ¢ on a given draw. The second-order inclusion probability of
K # £ € Qy is given by

4
Tty = Ty + 70y = 1+ (1 = Py

where T(12) = 090, T13) = 051, T(14) = 088, T(23) = 057, T(24) = 0.95 and
T34) = 0.59. The HT-estimator éy and its estimated variance are given in Table 1.
An unbiased estimator of 0 from the r-th draw is 1, = ZKEQ,_ Vi/P(x)>» Where

1) =1 = 7.1878 and 73 = 74 = 11.7021. Becker (1991) uses the HH-type estimator
over all the draws:

4
01—1[-1 = Z ‘E,,/4 .
r=I1
Under BIGS from B, let 0., = Y ics, Zi/Pi be the TWE on the r-th draw, given by

(6). Given wjc = p;/p(y) for i € B, where w11 = w43 = wes = 1, W12 = p1/p) =

0.7 and wyy = pa/, p2) = 0.3, we obtain éHH above as an IWE estimator, since
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Table 1 IWE under BIGS from

B* éy éno ézﬁ éza(.S
Estimate 7.57 9.44 8.99 9.27
Variance 5.27 1.70 2.46 1.97

Z pl Vi -1, .

i€s, pi Kex, KEQ, P

Since these weights are given by (8) with y = 0, we denote Orapr by 0,40 in Table 1.

For the multiplicity estimator (921; with equal weights, we have
w)] = 043 = Wes = 1, and w1y = wyy = 0.5. The resulting IWE on each draw are
g)z/;’l = FA)ZM = 6.2736 and éz/fﬁ = (92[;,4 = 11.7021. The IWE over all the draws is
given in Table 1. Next, the unequal weights by (8) can be calculated, since o; is
observed under ancestral BIGS from B* given the observation procedure of LIS. Let
y=0.5. We have wj; = w43 = wgq4 = 1, w13 = 0.6226 and w,; = 0.3773. The
corresponding IWE is 6.8341 on the first two draws, and 11.7021 on the last two
draws. This estimator is denoted by ém_s in Table 1.

Given the systematic sampling design of the transect lines, the tracks {1,2,4} can
only be observed if a position is selected in the left part of 1st projection segment,
which would only result in {1,5,6} as the sampled projection segments. Similarly,
the tracks {3,4} can only be observed if a position is selected in 4th projection
segment, which would only result in {4,6,7} as the sampled projection segments.
Thus, applying the RB method would not change any unbiased IWE based on the
observed sample BIGS in this case.

The estimator éHH of Becker (1991) is the IWE éz:xO- The HT-estimator éy noted
by Thompson (2012) can be given as the IWE with weights satisfying (4). Other
unbiased IWE can be used for LIS under BIGS from 5%, two of which are as given in
Table 1. Neither the HT-estimator éy nor the multiplicity estimator ézﬁ is efficient
here. Efficiency gains can be achieved using the PIDA weights (8). In this case,
adjusting the equal weights by the selection probability while disregarding the
degrees of the initial sample units performs well, where ém_o has the lowest estimated
variance. Of course, the true variance of ézaO may or may not be smaller than that of,
say, 0.,5. Meanwhile, setting y = 1.227 would numerically reproduce the equal
weights w1, = my; = 0.5 based on the observed sample. It seems that the IWE by (8)
has the potential to approximate the relatively more efficient estimators in different
situations, if one is able to choose the coefficient y in (8) appropriately.

3.3 A simulation study

Two graphs B = (F,Q;H) and B’ = (F,Q; H') are constructed for this simulation
study. Both B and B’ have the same node sets F and Q, and |F| = 54 and |Q| = 310.
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The edge sets |H| and |H'| have the size |H| = |H'| = 1200, but different
distributions of the degree on the motifs in F, as shown in Fig. 2. The distribution
of the degree of the motifs in F is relatively uniform over a small range of values in
B, but much more skewed and asymmetric in 3.

Let 8 = |Q|, and y, = 1 for k € Q. We consider the following 7 estimators of 6
under BIGS from B or B’ with SRS of s, where m = |s| varies from 2 to 53:

o the IWE éy with weights satisfying (4) (the HT estimator);

o the IWE Omr with weights satisfying (8) for y =0,1,2, (the multiplicity
estimator);

o the IWE é,, by (7) (the priority-rule estimator of Birnbaum and Sirken (1965)). We
explore different ordering of the motifs in F: random, ascending or descending
yielding three estimators, denoted by ép , @)pA and ép , respectively.

Table 2 gives the relative efficiency of the 6 other estimators against the HT-
estimator, for a selected set of initial sample sizes, each based on 10000 simulations
of BIGS from either B or B'. All the results are significant with respect to the
simulation error.

We notice that all the three priority-rule estimators épR, épA and épD are biased
when the sample size is large enough. This happens at m = 45 for B and m = 46 for
B'. Note that the maximum degree of the motifs is 10 in B and 9 in 5. Moreover, the
variance of any priority-rule estimators decreases as the sample size m increases until
a threshold value after which the variance starts to increase. In these simulation the
threshold is somewhere between 10 and 30.

The sampling variance of the priority-rule estimator is also affected by the
ordering of the sampling units in F. The variance tends to be lowest when F is
arranged in descending ordering by |«;|, whereas ascending ordering tends to yield
the largest variance. Without prioritisation, the value z; is a constant of sampling
given m;,. Due the randomness induced by the priority-rule, z; varies over different
samples. A sampling unit with large |o;| has a large range of possible z; values and
placing such a unit towards the end of the ordering tends to increase the sample

10
12

10

frequency
frequency

<
niERRRN i
o o 4 IIII| [T |

T T T T T T T T T T T mIT T T
17 18 19 20 21 22 23 24 25 26 1 22 86 122 261
degree F degree F
Fig. 2 Distribution of degree |o;| in B (left) and B’ (right)
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Table 2 Relative efficiency of IWE (against éy) for B and B’, 10000 simulations

m B B

027() Oz:x 1 0212 opR 01)A opD 0210 021 1 0212 OpR 011A opD

5 09 055 049 0.80 143 0.68 122023 018 097 116 0.3
11 095 055 048 097 257 084 174 033 025 089 154 045
17 099 057 051 234 498 257 267 051 039 082 230 0.24
29 131 0.75 0.67 267 30.1 332 796 154 117 120 121 29.3

variance of {z; : i € s} due to prioritisation. It then makes sense that descending
ordering by |o;| may work better than ascending ordering. However, one may not
know {|a;| : i € F} in practice, in which case applying ép given whichever ordering
of F' can be a haphazard business.

Given initial SRS, the different HH-type estimators here differ only with respect to
the use of |o;| in the PIDA weights (8) via the choice of 7. The equal-weights esmator

0., is the least efficient of the three HH- -type estimators, especially for B’ where the
distribution of |o;| is more skewed. The differences between the other two estimators

HZ,( 1 and an are relatively small, compared to their differences to 92(10, so that a non-

optimal choice of y # 0 is less critical than simply setting y = 0. Taken together,
these results suggest that the extra effort that may be required to obtain |o;| is worth
considering in practice, and a sensible choice of y depending on the distribution of
|o;| over F if it is known, or B; if it is only observed in the sample BIG, is an
interesting question to be studied.

Finally, both 02“, and Omz are more efficient than the HT-estimator when m is
small, whereas the HT-estimator improves more quickly as m becomes larger,
especially for B'. The matter depends on the sampling fractions |Q;|/|Q| and |s|/|F], as
well as the respective inclusion probabilities of motifs and sampling units. The
interplay between them is complex as it depends on the population BIG. Further
research is needed in this respect.

4 Concluding remarks

In this paper we develop a large class of incidence weighting estimators (1) under
BIGS. The IWE is applicable to all situations of unconventional sampling techniques
that require a specific observation procedure in addition to an initial sample, which
can be represented by ancestral BIGS, including indirect, network, adaptive cluster
and line-intercept sampling. The condition (2) ensures exactly design-unbiased IWE,
which synthesises and generalises the conditions underlying the other unbiased
estimators known in the literature.
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The classic HT-estimator from finite-population sampling is shown to be a special
case of IWE, with any sample dependent weights satisfying the restriction (4), which
provides a novel insight. A more general restriction (5) is given for sample dependent
weights. It will be intriguing to investigate other HT-type estimators satisfying this
restriction.

The priority-rule estimator invented by Birnbaum and Sirken (1965) is another a
special case of IWE. However, it may become biased as the initial sample size
increases and behave erratically long before that, such that its application may be a
haphazard business if one is unable to control the interplay between the ordering of
sampling units and the priority-rule of Birnbaum and Sirken (1965). It remains to be
seen whether one is able to overcome these shortcomings by future developments.

The HH-type estimators used in the literature are also members of the proposed
class. While it is in principle possible to apply the Rao-Blackwell method to an HH-
type estimator to improve its efficiency, the computation may be intractable if the
conditional sample space of s is large and/or if the initial sampling design p(s) is not
fully specified. However, consideration of the Rao-Blackwell method and the degrees
(in the BIG) of the sampling units points to the PIDA weights (8) for IWE, as a
general alternative to the commonly used equal weights and the corresponding
multiplicity estimator. The numerical illustration of line-intercept sampling and the
simulation results suggest that the PIDA weights can easily outperform the equal
weights. Further study is warranted, in order to identify the sensible choice of the
PIDA weights in applications.

Finally, other incidence weights can be explored subjected to the condition (2),
beyond those examined in this paper. This is clearly another direction of future
research.

Appendix

Priority probabilities of 0,
For each k € Qg and i € B, let diy) = > _;cpj; (j)en be the number of sampling

units where higher priority than i under the priority rule min(s N f5,.). Assume SRS of
s, where m = |s|. We have

M —1—d, M—1
= (LG
m—1 m—1

The joint priority probability of (ix) and (j¢) given 6;6; = 1 is
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Dix ifk=4{i=j
0 ifk=40i#]j

(M_l_d""‘“)/(M_l) if A b=
(MY (V70 it i aa 150 G+ A0 0] =0
0 if e # 4,0 #j and |B 0 Y + B0 {i}]| >0

Dixjt =

where ﬁ; is the subset ancestors of x with higher priority than i, and dj. ¢ =
|B. U B}| is the number of units in B, U B, with higher priority than i, and
digw)j0) = 1B U By
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