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Record linkage is increasingly used, especially in medical studies, to combine
data from different databases that refer to the same entities. The linked data can
bring analysts novel and valuable knowledge that is impossible to obtain from a
single database. However, linkage errors are usually unavoidable, regardless of
record linkage methods, and ignoring these errors may lead to biased estimates.
While different methods have been developed to deal with the linkage errors
in the generalized linear model, there is not much interest on Cox regression
model, although this is one of the most important statistical models in clinical
and epidemiological research. In this work, we propose an adjusted estimating
equation for secondary Cox regression analysis, where linked data have been
prepared by a third-party operator, and no information on matching variables is
available to the analyst. Through a Monte Carlo simulation study, the proposed
method is shown to lead to substantial bias reductions in the estimation of the
parameters of the Cox model caused by false links. An asymptotically unbiased
variance estimator for the adjusted estimators of Cox regression coefficients is
also proposed. Finally, the proposed method is applied to a linked database from
the Brest stroke registry in France.
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1 INTRODUCTION

Record linkage, also known as data matching, is a process of combining data from different sources that refer to the
same individuals or entities. Nowadays, data are collected everywhere by different sectors, and the ability of combining
information from several databases can lead to novel knowledge for analysts. For example, record linkage is widely used
in epidemiology and medical studies to enrich data on clinical performance and other health-related information.1,2 In
national censuses, population data files obtained at different times can be linked to create longitudinal data sets.3 Record
linkage may also be applied early in a survey to link the sampling frame and administrative data.4 The linked data allows
for statistical analysis (eg, Cox regression) which would not be possible with data collected solely by means of the survey.

The record linkage process is straightforward if unique identifiers (eg, Social Security Number) are available and
free of error in both databases. However, this information is often not available, or sometimes cannot be used due to
ethical reasons. In such cases, record linkage methods may only use partial identifying information shared between
databases, such as name, address, and gender. The variables used for comparison are called matching variables. Over the
last decades, several methods have been developed to link data efficiently,5,6 such as the frequentist approach7-9 and the
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Bayesian approach.10,11 However, because the matching variables are not unique and are likely to contain inaccuracies,
linkage errors are unavoidable. The two kinds of record linkage errors are false links (false positives, ie, a non-matched
pair predicted as a link), and missed links (false negatives, ie, a matched pair failed to be predicted as a link). Ignoring
these errors may cause substantial bias in the analysis model,12 causing misleading inference. It is therefore important to
account for linkage errors in statistical analysis.

In published literature, two positions are usually considered to account for linkage errors in statistical analysis. Under
the primary analysis framework, the data analyst is supposed to be granted access to the full linkage process, including
knowledge of matching variables. From this perspective, Scheuren and Winkler13 made use of the two highest matching
weights of each record pair to reduce the bias of ordinary least square estimators under a linear regression model. How-
ever, the proposed estimators are not unbiased in full generality. Lahiri and Larsen14 discussed this problem and proposed
unbiased estimators in the same context, using the posterior matching probabilities obtained from the Fellegi-Sunter
record linkage model. Hof and Zwinderman15 extended the method by Lahiri and Larsen14 for multiple links, and also
proposed alternative estimators based on weighted least square methods, both for linear and logistic regression models.
Recently, Han and Lahiri16 adapted the approach by Lahiri and Larsen14 to provide a system of estimating equations,
which may lead to unbiased estimators under a generalized linear model.

In some applications, the analysis step is separated from the record linkage, for example, when the matching vari-
ables contain confidential information. This is the secondary analysis framework, in which the data analyst is only
provided access to the final linked data, whereas the (unknown) record linkage process has been performed by a
third-party operator.17 Starting from this perspective, Chambers18 proposed the exchangeable linkage error (ELE) model,
and bias-corrected estimating equations for both linear and logistic regression modeling. Under the ELE model, it is
assumed that linked records may be split into distinct blocks inside which the probability of correct linkage and the proba-
bility of incorrect linkage are constant. Following this work, several authors19-22 developed methods for secondary analysis
of linked data. Recently, Zhang and Tuoto23 proposed a pseudo ordinary least square method for secondary linkage-data
linear regression analysis, which can accommodate heterogeneous linkage errors and incomplete match space problems.

Although the Cox proportional hazard model24 is of routine use for survival analysis, comparatively very few papers
have focused on accounting for record linkage errors in this context.25 performed a simulation study emphasizing the
impact of missing matches on the parameter estimation of the Cox model, but did not propose any solution to obtain
unbiased estimators for the model parameters. Hof et al26 proposed a joint modeling for survival analysis and probabilistic
record linkage. However, this analysis model is developed under a primary analysis viewpoint, while in many applications,
a secondary analysis is more likely. In this work, we reason from the secondary analysis position. We propose a model to
account for record linkage errors, and an estimation method to correct for the bias caused by false link errors in the Cox
regression model.

The article is organised as follows. In Section 2, we propose a new estimating equation, which leads to an approxi-
mately unbiased estimation of the parameters for the Cox model with linked data. A variance estimator is also proposed.
In Section 3, we evaluate the proposed estimator and the associated variance estimator through simulation studies. In
Section 4, an application on a real dataset is presented. Finally, possible further research is discussed in Section 5.

2 COX REGRESSION ANALYSIS WITH LINKED DATA

2.1 Cox regression model

The Cox proportional hazard model24 is the most popular method to assess the effect of covariates X on a survival time.
This is therefore one of the most important models in medical research. Suppose that a random sample of n units is
available. For each unit i = 1, … ,n, we let T̃i be a non-negative random variable, which denotes the duration between a
time origin and the time of occurrence of some event of interest. We suppose that T̃i is right censored, which means that the
event is observed only if it occurs before censoring time Ci. For units i = 1, … ,n, we therefore observe Ti = min(T̃i,Ci).
We let 𝛿i = 1{T̃i≤Ci} denote the variable indicating whether the duration time is observed prior to censoring. The vector of

covariates is denoted as Xi =
(

X1
i , … ,Xp

i

)T . In this section, we first suppose that Xi is observed for any unit in the sample.
According to the Cox model, the hazard function of an event at time t is given by

𝜆(t|Xi) = 𝜆0(t) exp
(
XT

i 𝜷0
)
, (1)

where 𝜷0 = (𝛽01, … , 𝛽0p)T is a p-vector of unknown parameters and 𝜆0(t) is a common baseline hazard function. Assum-
ing that the survival times are observed on a finite interval, and that C is independent of T̃ conditionally on X, a consistent
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estimator 𝛽 of 𝛽0 may be obtained by solving the estimating equation:

H0(𝛽) ≡
1
n

n∑

i=1
𝛿i

⎧
⎪
⎨
⎪
⎩

Xi −

∑n
j=1Yj(Ti) exp

(
XT

j 𝜷
)

Xj

∑n
j=1Yj(Ti) exp

(
XT

j 𝜷
)

⎫
⎪
⎬
⎪
⎭

= 0, (2)

where Yj(t) = 1(Ti≥t) is an at-risk indicator.27 We call (2) the theoretical estimating equation. This is also the maximum
partial likelihood (mpl) estimation. Under some mild assumptions, a consistent estimator of the covariance matrix of �̂�
is given by Reference 27

V̂mpl(�̂�) =
{
−n∇H0(�̂�)

}−1
. (3)

2.2 Linkage error model

Suppose that we have a dataset A of nA time-to-event data. If the covariates Xi were known for any unit i ∈ A, the param-
eter of the Cox model would be estimated by solving the theoretical estimating Equation (2). However, if the covariates
are not known in database A, Equation (2) may not be solved in practice.

In order to obtain the needed covariates, a linkage is performed with a dataset B of size nB ≥ nA, containing in partic-
ular the auxiliary variables Xi. For any unit i in A, we note Zi for the vector of auxiliary values resulting from the linkage
process. Reasoning from the secondary analysis perspective, we do not have access to the matching variables and do not
know the actual linkage process.

We assume that the linkage error is non-informative of the regression model, that is, may depend on the errors in
the matching process, but not on the model covariates nor on the survival time.28 This is the key assumption of most
secondary analysis approaches in the literature, for which Zhang and Tuoto23 have proposed a diagnostic test. Adopting
the modelling approach of Copas and Hilton,29 we suppose that both databases are partitioned into blocks Av and Bv, v =
1, … ,V , and that the record linkage is performed independently in these blocks. Also, we suppose that for any entity
i ∈ Av, we have:

Zi =

{
Xi with probability 𝛼v,

X(j) with probability 1 − 𝛼v,
(4)

where (j) stands for some unit randomly selected in database Bv. In other words, it is supposed that for any i ∈ Av, the
correct entity is linked to i with probability 𝛼v, otherwise the unit j linked to i is randomly selected in Bv. The correct
linkage probability of record pairs within a block can be different in practice. However, most relevant approaches for
secondary analysis seem to be robust to the failure of this assumption when the linkage errors are non-informative.23 It
should be noted that we implicitly assume that A is a subset from B, and that all entities in A can therefore have some
matching records in B. Also, we assume that there is at most one link for each record of both databases. In practice, there
will often be some entities of A which remain unlinked after the linkage process. This may be due to errors in the matching
variables, or to the fact they are not sufficiently discriminant for identifying links. Such incomplete record linkage can be
problematic for further analysis if the missed links are not at random.25 There are some discussions on this incomplete
matching space problem.19,23,30 This problem is out of the scope of our work. We therefore assume that the linkage is
complete, or alternatively that any missing links are independent on the time of event and model covariates.

2.3 Adjusted estimating equation

By naively treating the linked covariates Zi as if they were the true covariates Xi for the units i ∈ A, an estimator of 𝜷0
may be obtained by solving the following equation:

Hnaive(𝜷) ≡
1

nA

V∑

v=1

∑

i∈Av

𝛿i

{

Zi −
∑V

v=1
∑

j∈Av
Yj(Ti) exp(Z⊤j 𝜷)Zj

∑V
v=1

∑
j∈Av

Yj(Ti) exp(Z⊤j 𝜷)

}

= 0. (5)
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4 VO et al.

We call (5) the naive estimating equation. Since some units are incorrectly linked, it may lead to biased estimates, see the
simulation results in Section 3.

We propose a bias-corrected estimating equation, accounting for the fact that from the hit-miss model (4), the
covariates may be incorrectly linked. We first introduce some notations. Let us define

g(𝜷,Xi) = exp
(
X⊤

i 𝜷
)

and h(𝜷,Xi) = exp
(
X⊤

i 𝜷
)
Xi.

Also, let XBv , gBv
(𝜷) and hBv (𝜷)denote the means of Xi, g(𝜷,Xi) and h(𝜷,Xi) over Bv, respectively. The linkage-error adjusted

estimating equation (AEE) is given by

H(𝜷) ≡ 1
nA

V∑

v=1

∑

i∈Av

𝛿i

⎧
⎪
⎨
⎪
⎩

X∗
i (𝛼v) −

∑V
v=1

∑
j∈Av

Yj(Ti)h∗j (𝛼v, 𝜷)
∑V

v=1
∑

j∈Av
Yj(Ti)g∗j (𝛼v, 𝜷)

⎫
⎪
⎬
⎪
⎭

= 0 (6)

where, for any i ∈ Av,

X∗
i (𝛼v) = 𝛼−1

v Zi − (𝛼−1
v − 1)XBv ,

g∗j (𝛼v, 𝜷) = 𝛼−1
v g(Zj, 𝜷) − (𝛼−1

v − 1)gBv
(𝜷),

h∗j (𝛼v, 𝜷) = 𝛼−1
v h(Zj, 𝜷) − (𝛼−1

v − 1)hBv(𝜷). (7)

We prove in Appendix A that H(𝜷) is an (approximately) conditionally unbiased estimator for the function H0(𝜷)
involved in the theoretical estimating equation. Solving the proposed AEE therefore leads to a consistent estimator of 𝜷,
see the simulation results in Section 3.

Since there is no closed-form solution for the estimating equations considered above, an iterative method like the
Newton-Raphson algorithm is commonly used in practice. Also, the probabilities 𝛼v may be (somewhat arbitrarily)
specified by the record linkage practitioner, or estimated from a validation sample18,23 if their true values are unknown.

2.4 Variance estimator

In this section, we discuss variance estimation for the estimator of the parameter 𝛽0 obtained by solving the AEE given in
(6). We first note that several sources of variance need to be accounted for: (a) the (usual) variability associated to solving a
sample-based estimating equation, (b) the variability associated to the linkage process, and (c) the variability associated to
the estimation of the probabilities 𝛼v, v = 1, … ,V . Using the variance estimator given in (3) fails to account for all these
sources of variability, and therefore leads to an underestimation of the variance, see the simulation results in Section 3.

We propose a sandwich-like variance estimator, which reads as follows:

V̂AEE(�̂�) ≡ {∇H(�̂�)}−1 × V̂{H(𝜷0)} × {∇H(�̂�)}−1
, (8)

with V̂{H(𝜷0)} = V̂1{H(𝜷0)} + V̂2{H(𝜷0)}. (9)

The first component V̂1{H(𝜷0)} in (9) accounts for the variability in (c). Under the assumption that the validation samples
Sv used for such estimation are selected in the datasets Av through simple random sampling without replacement, this
variance estimator is

V̂1{H(𝜷0)} =
V∑

v=1
H2,v(�̂�v, �̂�){H2,v(�̂�v, �̂�)}⊤ ×

(
1

nSv

− 1
nAv

) nSv

nSv − 1
1 − �̂�v

�̂�
3
v
,

where nSv is the sample size of the validation set Sv, and

H2,v(𝛼v, 𝜷) =
1

nA

∑

i∈Av

𝛿i

⎧
⎪
⎨
⎪
⎩

(Zi − XBv) −

∑
j∈Av

Yj(Ti)
{{

h(𝜷,Zj) − hBv (𝜷)
}
− R∗i (𝛼v, 𝜷)

{
g(𝜷,Zj) − gBv

(𝜷)
}}

∑
j∈Av

Yj(Ti)g∗j (𝛼v, 𝜷)

⎫
⎪
⎬
⎪
⎭

.
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VO et al. 5

with

R∗i (𝛼v, 𝜷) =

∑
j∈Av

Yj(Ti)h∗j (𝛼v, 𝜷)
∑

j∈Av
Yj(Ti)g∗j (𝛼v, 𝜷)

.

The second component V̂2{H(𝜷0)} in (9) accounts for both the variability in (a) and (b). We have

V̂2{H(𝜷0)} =
s2

H(�̂�)
nA

where

s2
H(𝜷) =

1
nA − 1

V∑

v=1

∑

i∈Av

{

Hi(𝜷) −
1

nA

V∑

v=1

∑

j∈Av

Hj(𝜷)

}2

and

Hi(𝜷) = 𝛿i

⎧
⎪
⎨
⎪
⎩

X∗
i (�̂�v) −

∑V
v=1

∑
j∈Av

Yj(Ti)h∗j (�̂�v, 𝜷)
∑V

v=1
∑

j∈Av
Yj(Ti)g∗j (�̂�v, 𝜷)

⎫
⎪
⎬
⎪
⎭

.

The derivation of this variance estimator is explained in detail in Appendix B. It is evaluated empirically in the next section
through a simulation study.

3 A SIMULATION STUDY

In this section, we evaluate the performance of the proposed estimator for the parameter of the Cox model, and the
associated variance estimator. The data generation process is first presented in Section 3.1. The estimation methods that
we evaluate are presented in Section 3.2, along with the performance indicators. The simulation results are given in
Section 3.3. To facilitate interpretation and to study the influence of different simulation parameters, we first consider
in Section 3.3.1 scenarios with a single block. Scenarios with multiple blocks and different levels of linkage quality are
considered in Section 3.3.2.

3.1 Data generation

Assume that there are two datasets A with nA individuals, and B with nB ≥ nA individuals. We first generate the nB units in
database B with p = 2 covariates, including a continuous variable X1 ∼ (0, 1) and a binary variable X2 ∼ Bernoulli(0.7).
Given the p-vector of coefficients 𝜷 = (𝛽1, 𝛽2)⊤ = (0.5,−0.5)⊤, the true survival time T̃B is generated as

T̃B = −
log(U)

𝜆 exp
(
X⊤𝜷

) (10)

where U follows a standard uniform distribution,31 and 𝜆 is fixed as equal to 1 for simplicity. A constant censoring time
is chosen (from 100 000 independent data generation runs) to yield a censoring rate of approximately 0.25 over all the
simulation runs.

Without loss of generality, we suppose that the units in dataset A are the nA first ones in dataset B. In other words, a
pair of individuals (ai, bj) for i ∈ A and j ∈ B is a match if i = j = 1, … ,nA. The survival times TA

i for i ∈ A are therefore
obtained as TA

i = TB
i for i = 1, … ,n. Given the values of 𝛼, the linked values Z for covariates in database A are obtained

according to the linkage error model (4).
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6 VO et al.

If there are multiple blocks, data for each block were generated independently as follows. Firstly, for each block v,
we generate nBv observations (T, 𝛿,X) from the Cox model described in Equation (10). Note that the value of the true
parameters 𝜷 and the distribution of X are the same over blocks v. Then, we choose randomly nAv ≤ nBv survival times
(T, 𝛿) for block Av. All generated nBv values of X will be placed in block Bv. Secondly, given the value of 𝛼v for block v, nAv

linked values Z for block Av are obtained by the linkage error model (4). Inside each block Av, an audit sample of 10%
of the units is selected by simple random sampling without replacement, and the proportion of correct links in the audit
sample is used as the estimator �̂�v.

3.2 Methods and performance indicators

For each scenario, we consider the following estimation methods. The Theoretical is obtained by solving the theoret-
ical estimating equation (2) with the true values of covariates X. This is a benchmark estimation strategy, since it cannot
be applied on linked data in practice. The Naive is obtained by solving the naive estimating Equation (5) with linked
data. The Validation is obtained by solving the theoretical estimating Equation (2) with only correct linked pairs in
the validation set. Note that, contrarily to Theoretical, this method may be used in practice if an audit sample is avail-
able. For each of these three methods, the variance of the estimator of the parameter in the Cox model is estimated by
using the variance estimator V̂mpl(�̂�) in Equation (3), implemented by means of R survival package.

For each scenario, we also consider estimation methods making use of the proposed approach. The TAEE (theoretical
adjusted estimating equation) is obtained by solving the proposed estimating Equation (6) with the theoretical value
of 𝛼v. The AEE (adjusted estimating equation) is obtained by solving the proposed estimating Equation (6), where 𝛼v is
estimated by taking the proportion of correct links in the audit sample. For each method, the Newton-Raphson algorithm
is applied with a maximum of 20 iterations and an initial parameter value 𝜷 = (0, 0)⊤. We also report the number of time
(Fails) when the Newton-Raphson algorithm does not converge. For AEE, the variance is estimated by using V̂(�̂�) in
Equation (B18). For TAEE, the variance is estimated by setting V̂1{H(𝜷0)} = 0 in V̂(�̂�). For both TAEE and AEE, we also
compare to the variance estimator V̂mpl(�̂�) in Equation (3).

The data generation and the estimation process are repeated R = 1,000 times. Over these simulations, we compare
the estimation methods in terms of the Monte Carlo bias

BMC(�̂�) =
1
R

R∑

r=1

(
�̂�
(r) − 𝜷

)
,

with �̂� (r) the estimator computed on the r-th sample. We also compute the Monte Carlo standard deviation:

SdMC(�̂�) =

√√√√ 1
R − 1

R∑

r=1

(
�̂�
(r) − ̄̂

𝜷
)2
.

For the variance estimation methods, we compute the Monte Carlo estimates of standard deviation

Ŝd =

√√√√ 1
R

R∑

r=1
V̂
(r)(
�̂�
(r))
,

with V̂
(r)

a variance estimator computed on the r-th sample. The Monte Carlo estimate of standard deviation is compared
to the true standard deviation Sd(�̂�), approximated by SdMC(�̂�).

3.3 Simulation results

3.3.1 One block situation

In this section, we consider the situation when the data sets are generated as presented in Section 3.1, with V = 1 block
only. We consider two cases. In the first one, the sample sizes nA = 1,000 and nB = 2,000 are held fixed, and we let the
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VO et al. 7

T A B L E 1 Simulation results in case 1 with three different values for the probability of correct link 𝛼 ∈ {0.75, 0.85, 0.95}.

𝜷1 𝜷2

𝜶 Methods Fails BMC SdMC Ŝdmpl ŜdAEE CP BMC SdMC Ŝdmpl ŜdAEE CP

* Theoretical 0 0.000 0.039 0.040 0.961 0.003 0.080 0.080 0.950

0.75 Naive 0 0.147 0.041 0.039 0.050 0.143 0.081 0.081 0.577

Validation 0 0.017 0.160 0.156 0.941 0.003 0.318 0.302 0.936

TAEE 0 0.007 0.072 0.041 0.069 0.945 0.013 0.124 0.081 0.129 0.957

AEE 4 0.009 0.082 0.041 0.085 0.962 0.015 0.131 0.081 0.138 0.962

0.85 Naive 0 0.092 0.040 0.039 0.347 0.088 0.081 0.080 0.799

Validation 0 0.016 0.149 0.146 0.955 0.000 0.296 0.283 0.931

TAEE 0 0.002 0.055 0.041 0.059 0.964 0.007 0.103 0.080 0.113 0.969

AEE 0 0.005 0.063 0.041 0.066 0.969 0.010 0.110 0.080 0.118 0.972

0.95 Naive 0 0.033 0.041 0.040 0.862 0.029 0.083 0.080 0.928

Validation 0 0.015 0.139 0.137 0.961 0.004 0.276 0.266 0.939

TAEE 0 0.001 0.045 0.040 0.051 0.965 0.003 0.089 0.080 0.101 0.977

AEE 0 0.000 0.048 0.040 0.054 0.973 0.004 0.090 0.080 0.103 0.981

probability of correct link 𝛼 vary in {0.75, 0.85, 0.95}. In the second one, the probability of correct link is held fixed, equal
to 0.85. We let nA vary in {500, 1000, 2000}, with nB = 2nA.

The simulation results obtained in Case 1 are presented in Table 1. As expected, the Theoretical method leads
to an unbiased estimation of the parameters. The Naive method leads to severely biased estimators, especially with the
smaller value 𝛼 = 0.75. The bias ranges from 0.029 to 0.147, corresponding to an absolute relative bias between 5.8% and
29.0%. This bias decreases as the probability of correct link increases, as expected. The proposed methods TAEE and AEE
lead to approximately unbiased estimation of the parameters, with a larger variability for AEE as expected. The bias under
AEE ranges from 0.000 to 0.015, corresponding to a reduction of the relative bias (as compared to Naive) ranging between
5.0% and 27.6%. We note that the variability under both TAEE and AEE is but only moderately increased, as compared to
Theoretical. The Validation method also leads to unbiased estimators of the Cox regression coefficients, but with
a larger variability than both TAEE and AEE.

We now turn to the variance estimators. The variance estimator V̂mpl(�̂�) (3) performs well for Theoretical, Naive
and Validation, but underestimates the variability of the estimators obtained under TAEE and AEE. This is due to
the fact that this variance estimator only accounts for the variability of the sample-based estimating equation. On the
other hand, the proposed variance estimator performs well, except for 𝛽1 when 𝛼 = 0.75, in which case the variance
is underestimated. We have also computed coverage probabilities (CP) for normality-based confidence intervals with
a nominal coverage of 95%. We note that the coverage probability is very poorly respected in case of Naive, even in
situations when the bias is moderate.

The simulation results obtained in Case 2 are presented in Table 2. We observe no qualitative difference compared to
Case 1. The TAEE and AEE lead to almost unbiased estimations for the regression coefficients, and the proposed variance
estimator performs well for both methods. The bias obtained under the Naive method does not decrease as the sample
size increases. As could be expected, the variability obtained under any estimation method decreases as the sample size
increases.

3.3.2 Multiple blocks

In this section, we consider the situation when the data sets are generated as presented in Section 3.1, with V = 3 blocks
only. We take

(
nA1 ,nA2 ,nA3

)
= (250,500, 250) and

(
nB1 ,nB2 ,nB3

)
= (500, 1000,500). Also, we consider a first scenario

where (𝛼1, 𝛼2, 𝛼3) = (0.6, 0.7, 0.8); a second scenario where (𝛼1, 𝛼2, 𝛼3) = (0.7, 0.8, 0.9); a third scenario where (𝛼1, 𝛼2, 𝛼3) =
(0.8, 0.9, 1.0).
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8 VO et al.

T A B L E 2 Simulation results in case 2 with three different values for the sample size nA.

𝜷1 𝜷2

nA Methods Fails BMC SdMC Ŝdmpl ŜdAEE CP BMC SdMC Ŝdmpl ŜdAEE CP

500 Theoretical 0 0.002 0.056 0.057 0.954 0.005 0.113 0.114 0.955

Naive 0 0.089 0.057 0.056 0.636 0.087 0.113 0.114 0.876

Validation 0 0.033 0.222 0.215 0.951 0.024 0.435 0.419 0.949

TAEE 0 0.009 0.078 0.058 0.085 0.963 0.010 0.145 0.114 0.161 0.972

AEE 1 0.015 0.104 0.058 0.104 0.976 0.015 0.161 0.114 0.172 0.977

1000 Theoretical 0 0.000 0.039 0.040 0.961 0.003 0.080 0.080 0.950

Naive 0 0.092 0.040 0.039 0.347 0.088 0.081 0.080 0.799

Validation 0 0.016 0.149 0.146 0.955 0.000 0.296 0.283 0.931

TAEE 0 0.002 0.055 0.041 0.059 0.964 0.007 0.103 0.080 0.113 0.969

AEE 0 0.005 0.063 0.041 0.066 0.969 0.010 0.110 0.080 0.118 0.972

2000 Theoretical 0 0.000 0.028 0.028 0.945 0.000 0.056 0.057 0.960

Naive 0 0.092 0.029 0.028 0.111 0.092 0.056 0.057 0.640

Validation 0 0.006 0.103 0.100 0.932 0.003 0.197 0.197 0.948

TAEE 0 0.001 0.039 0.029 0.041 0.953 0.000 0.071 0.057 0.080 0.971

AEE 0 0.002 0.043 0.029 0.046 0.964 0.001 0.075 0.057 0.082 0.969

Let 𝛼 be the weighted average of 𝛼1, … , 𝛼v defined as

𝛼 =
∑V

i=1nAv𝛼v
∑V

i=1nAv

.

This leads to a percentage of correct links approximately equal to 𝛼 = 70% in Scenario 1, 𝛼 = 80% in Scenario 2 and
𝛼 = 90% in Scenario 3. In this context, we also consider two additional versions of our proposed methods, when we are
unable to access to the value 𝛼v of each block, but we have only access to their weighted average: TAEE-𝛼 where the TAEE
is used with V = 1 and true value of 𝛼, and AEE-𝛼 where the AEE is used with V = 1 and estimated value of ̂𝛼.

The simulation results are presented in Table 3, and confirm the good results of the proposed methods observed in
the situation of one block. Scenarios 1 and 2 are the cases when the behaviour of the Naive method is particularly poor,
with a very large bias due to a larger number of false links, and very poor coverage for the confidence intervals. On the
other hand, AEE performs well in reducing the estimation bias even in this situation. The proposed variance estimator
also performs well in these cases. The standard errors of TAEE and AEE estimators decrease as 𝛼 increase, that is, by going
from Scenario 1 to Scenario 3 in Table 3. As explained in Section 2.4, there are three sources of variance in the estimation
process: (a) the variability associated to solving a sample-based estimating equation, (b) the variability associated to the
linkage process, and (c) the variability associated to the estimation of the probabilities 𝛼v. Since the sample size is kept
constant, the term (a) is likely not affected by the value of 𝛼v. The term (b) decreases as 𝛼v increases, as the variance in
the hit-miss model (4) does so. The term (c) also decreases as 𝛼v increases, as illustrated by the fact that V̂ 1 depends on
(1 − 𝛼)∕𝛼3, which is decreasing as 𝛼 → 1. Concerning the coverage probability of normality-based confidence intervals, we
note that they are well respected under the proposed methods, although the confidence intervals are slightly conservative
when the variance estimators are so.

When the block-specific true link rate is not correlated with the block-specific distribution of T and X, for example,
this multiple blocks simulation set up, a single-𝛼 adjustment (TAEE-𝛼 and AEE-𝛼) can still perform well. The main result
in Table 3 concerning AEE and AEE-𝛼 is that they both lead to virtually unbiased estimators. The bias is indeed always
smaller with AEE-𝛼, but the difference is no greater than 0.009, which is very small as compared to the value of the
parameters (𝛽1 = 0.5 and 𝛽2 = −0.5). Closeness between TAEE and TAEE-𝛼 confirms the somewhat favourable simulation
setup of non-informative linkage error. Reduced bias of AEE-𝛼 compared to AEE-𝛼 may be due to the non-linearity of
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VO et al. 9

T A B L E 3 Simulation results with three blocks with different linkage quality.

𝜷1 𝜷2

Scenario Methods Fails BMC SdMC Ŝdmpl ŜdAEE CP BMC SdMC Ŝdmpl ŜdAEE CP

* Theoretical 0 0.002 0.040 0.039 0.953 0.002 0.078 0.078 0.944

1 Naive 0 0.171 0.041 0.039 0.010 0.171 0.082 0.081 0.440

Validation 0 0.021 0.161 0.161 0.961 0.002 0.322 0.315 0.945

TAEE 1 0.018 0.097 0.042 0.136 0.944 0.013 0.143 0.081 0.144 0.947

AEE 17 0.030 0.136 0.042 0.128 0.961 0.022 0.177 0.081 0.183 0.960

TAEE-𝛼 0 0.017 0.086 0.043 0.139 0.943 0.013 0.139 0.081 0.141 0.951

AEE-𝛼 9 0.021 0.108 0.042 0.144 0.964 0.016 0.153 0.081 0.168 0.963

2 Naive 0 0.118 0.041 0.039 0.167 0.120 0.084 0.080 0.660

Validation 0 0.018 0.151 0.150 0.948 0.002 0.294 0.293 0.946

TAEE 0 0.007 0.066 0.041 0.064 0.952 0.003 0.118 0.080 0.122 0.953

AEE 1 0.015 0.086 0.041 0.081 0.969 0.010 0.129 0.080 0.135 0.961

TAEE-𝛼 0 0.007 0.064 0.041 0.063 0.955 0.003 0.116 0.080 0.120 0.959

AEE-𝛼 0 0.009 0.073 0.041 0.075 0.966 0.006 0.123 0.080 0.127 0.963

3 Naive 0 0.060 0.041 0.040 0.662 0.061 0.082 0.080 0.882

Validation 0 0.016 0.143 0.140 0.945 0.006 0.272 0.275 0.950

TAEE 0 0.005 0.052 0.041 0.056 0.965 0.004 0.097 0.080 0.108 0.967

AEE 0 0.007 0.058 0.041 0.062 0.973 0.006 0.102 0.080 0.112 0.971

TAEE-𝛼 0 0.004 0.051 0.041 0.055 0.965 0.004 0.096 0.080 0.107 0.972

AEE-𝛼 0 0.005 0.055 0.041 0.060 0.970 0.005 0.099 0.080 0.109 0.973

adjustment, such that the additional variance of AEE-𝛼 adjustment is manifested in terms of the bias of adjustment.
Moreover, a single-𝛼 adjustment can provide a smaller variance. In practice, this is very helpful when the analyst cannot
conduct auditing, and when the linker can only provide a single overall estimate of 𝛼. However, the linkage error may be
informative, such as when 𝛽 and 𝛼 vary across the blocks in a correlated manner. Block-specific adjustment would then
be clearly more helpful at reducing the bias than adjustment by a single 𝛼.

Some additional simulation results are presented in the supplementary material. In particular, we have studied the
situation when the non-informative assumption is not true. The simulation results in Tables S1 and S2 indicate that the
Cox parameters estimated under TAEE and AEE wil be more biased when 𝛼 is dependent on variables from the Cox
model. This is especially true when 𝛼 is small and dependent on T̃ (see Table S2). This emphasizes the importance of
the non-informative linkage error assumption. We note, however, that the proposed methods still perform better in this
case than the Naive method. We have also performed a sensitivity analysis, evaluating the performance of TAEE with
incorrect values for the parameter 𝛼. The results are presented in Table S3. As could be expected, the bias in the estimated
parameters increases with the error in 𝛼, but the estimator remain less biased than with the Naive method if the error is
moderate.

4 APPLICATION

4.1 Data description

The proposed model is fitted to a linked dataset between a registry of strokes, denoted by AVC ("Accident Vasculaire
Cérébral"), and an extraction of the national health information system of France, denoted by SNDS ("Système national
des données de santé"). The AVC recorded all stroke cases of patients aged 15 years and older, who have lived in the Brest
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10 VO et al.

T A B L E 4 Description of the linkage process.

Steps Number of agreements among nine matching variables Number of record pairs

1 9 1,792

2 8 170

3 7 11

4 6 1,500

5 5 58

6 4 4

Total 3535

T A B L E 5 Description of the linked database.

Variable Description Source

Time Time (in days) between the first stroke and death or end of follow-up (31/12/2018) AVC

Censoring If the patient died before 01/01/2019: 1 = Yes, 0 = No AVC

Age Age (in years) at the first stroke SNDS

Gender Sex: 0 = Male, 1 = Female SNDS

Type AVC Type of stroke (0 = Ischemic, 1 = Hemorrhagic) SNDS

area from 2008 to the end of 2018. SNDS is an extraction from the French health information system, and contains patients
for whom at least one medical service or hospitalization were recorded since 2008 while they were living in the Brest
area. Due to the limited information in the registry, there is a demand of linking AVC and SNDS to enrich the registry for
further analyses.

The linkage was performed by a separate team, and due to confidentiality restrictions, we were not allowed to access
to the matching data and have limited knowledge about the linkage. A deterministic record linkage method was used.
This is the simpler linkage approach, which ideally requires agreement on all matching variables, or otherwise on a
(large) subset of these variables. In the linkage process, there are nine matching variables, and the linkage is imple-
mented sequentially. In the first step, it is required that the nine matching variables agree for a pair to be viewed as
a link. The corresponding pairs are then suppressed, and among the remaining ones it is asked that eight matching
variables agree for a pair to be viewed as a link. The procedure continues on similarly. The process is summarized
in Table 4.

After performing the linkage process, a dataset of 3,535 patients has been obtained. It contains the survival time, the
censoring indicator and three covariates (age, gender, type of stroke). We suppose that these covariates were obtained from
SNDS by the linkage process, and may therefore be affected by linkage errors. A description of the dataset is presented
in Table 5. In this application, we are interested in comparing the risk of death after the first stroke between males and
females, taking into account the age and the type of stroke.

4.2 Cox regression analysis

In this application, we use the Cox regression model (1) to model the relationship between the survival time and three
explanatory variables (age, gender, type of stroke). We consider AVC as database A and SNDS as database B in our proposed
model. In the naive approach, we use the linked data as if it was directly observed. However, the simulation results in
Section 3.3 show that linkage errors lead to biased estimators of the regression coefficients. Therefore, we also use the
adjusted estimating Equation (6).

For the record pairs obtained at each step, the percentage of matching variables which are in agreement are seen as
a proxy of the probability that the matching is correct. For example, for the 1,500 pairs obtained at step 4, the probability
that the matching is correct is estimated as 6∕9 = 0.667. We suppose that the linked dataset is comprised of two blocks, so
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VO et al. 11

T A B L E 6 Estimated coefficients (coef), estimated standard deviation of the estimated coefficients (SD), and the hazard ratio (hr =
exp(coef)) of the naive method and the AEE method from linked data.

Naive method AEE

coef SD hr coef SD hr

Age 0.059 0.002 1.061 0.070 0.001 1.073

Sex −0.120 0.047 0.887 −0.145 0.067 0.865

Type AVC 0.773 0.058 2.165 0.846 0.082 2.330

as to avoid the possibility of dependency between the linkage process performed into the different blocks. The estimates
of 𝛼v for each block v are obtained as follows:

• Block 1: 1,792 record pairs are obtained from Step 1, with �̂�1 = 9∕9 = 1.

• Block 2: 1,743 remaining record pairs, with �̂�2 =
170 × 8∕9 + 11 × 7∕9 + 1500 × 6∕9 + 58 × 5∕9 + 4 × 4∕9

1743
≃ 0.694.

Besides, because the covariates are not available for any units in the SNDS, the adjustment terms in (7) cannot be
computed since the proposed approach requires full access to the set of covariates in database B. We therefore use the
proxy solution suggested in Equation (C1), which requires that the covariates are known on the linked dataset only.
Simulations in Appendix C show that if the database A may be seen as a random sample from the database B, or when the
sampling leading to A is independent of the covariates, this method leads to comparable results as the method proposed
in Section 2.3.

In Table 6, we present the estimations arising from both the Naive and the AEEmethods. The two methods decidedly
lead to different estimations. If the Naive method is used, the hazard ratio of sex is 0.887, which means that given the
same age and the same type of stroke, the female’s risk of death after the first stroke is 0.887 times smaller than male’s.
On one hand, this ratio from the adjusted estimating equation approach is just 0.865.

5 DISCUSSION

In this work, our simulations proved that the naive use of linked data may lead to substantial bias in a Cox regression
model. Therefore, under the secondary analysis position where the analyst can access to linked data only, we have pro-
posed an adjusted estimating equation for linked data, which can correct the bias from the naive estimating equation.
A variance estimator, which can capture three sources of variability has also been proposed. However, proving the
asymptotic normality of the resulting estimators remains challenging.

Through various simulation scenarios with one block and also multiple blocks, the proposed adjusted estimating
equation is shown to lead to substantial bias reductions as compared to the naive estimating equation. Additional
simulations study the non-information linkage assumption and the sensitivity analysis of �̂� are also presented in the
Supplementary material.

In our modeling, it is assumed that the probability of correct linkage is identical within blocks. The assumption may
not be completely realistic, since the linkage errors vary over different individuals. However, the detrimental effect may
be limited as long as the linkage errors are non-informative, as shown both by simulation and with real-life linkage data
in Reference 23. It would be desirable to study modelling approaches that allow for individual linkage errors, as well as to
carry out empirical validations of adjustment methods derived under the simplified assumption of linkage errors. A key
to both would be the possibility to work with the data linkers directly on such problems.

We have also proposed different variants of the approach for scenarios where information is limited. For example,
when the block-specific linkage rate 𝛼v is not available for each block, our method still works well by using the average
true link rate 𝛼. If the analysts are not able to fully access the covariates in database B, we proposed to use the adjustments
in (C1) in the Appendix, which still maintain the good performance of the AEE if A is a random sample from B. Detailed
simulation results are presented in Table S4 of the Supplementary material. In addition, a linear approximated estimating
equation (LAEE), which can provide better estimation than AEE with small sample size, is given in Table S5 of the
Supplementary material.
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12 VO et al.

Although the proposed method has improved on the naive estimation, there are perspectives that need to be devel-
oped. In this work, we assumed that observations on survival time are already available and all explanatory variables are
obtained from another database. In practice, there are some cases when a part of the covariates is also available in A, and
only a part of the covariates is acquired from B by linkage. In addition, the covariates can be obtained from several sources
with different linkage processes. The proposed model should be developed to adapt to these cases.

We also supposed that the survival time and the censoring indicator are observed in database A, while the explanatory
variables are obtained from database B by a linkage process. However, the opposite situation may occur in practice: the
covariates may be available for the units in A, while the survival time needs to be obtained from another database B
by a linkage process. The proposed adjustment in Equation (6) only accounts for the error associated to Zi. If Ti and 𝛿i
are linked from dataset B, they are prone to linkage errors which need to be accounted for in modifying the estimating
equation. This requires a different adjustment approach.
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Our R programs for simulation results are available at Github, https://github.com/thanhhuanVO/Cox-regression-with-
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privacy or ethical restrictions.
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APPENDIX A. EXPECTATION OF THE ADJUSTED ESTIMATING EQUATION

The proposed adjusted estimating equation is given by

H(𝜷) ≡ 1
nA

V∑

v=1

∑

i∈Av

𝛿i

⎧
⎪
⎨
⎪
⎩

X∗
i (𝛼v) −

∑V
v=1

∑
j∈Av

Yj(Ti)h∗j (𝛼v, 𝜷)
∑V

v=1
∑

j∈Av
Yj(Ti)g∗j (𝛼v, 𝜷)

⎫
⎪
⎬
⎪
⎭

= 0. (A1)

Let =
{
(Ti, 𝛿i), i = 1, … ,nA and Xj, j = 1, … ,nB

}
denote the information related to the duration times and censoring

indicators for the units in A, and to the true values of covariates for all the units in B. We have

E{H(𝜷)|} = 1
nA

V∑

v=1

∑

i∈Av

E

⎧
⎪
⎨
⎪
⎩

𝛿i

⎡
⎢
⎢
⎣
X∗

i −

∑V
v=1

∑
j∈Av

Yj(Ti)h∗j (𝛼v, 𝜷)
∑V

v=1
∑

j∈Av
Yj(Ti)g∗j (𝛼v, 𝜷)

⎤
⎥
⎥
⎦

||||


⎫
⎪
⎬
⎪
⎭

= 1
nA

V∑

v=1

∑

i∈Av

𝛿i

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

E(X∗
i | )

⏟⏞⏟⏞⏟

E1

− E

⎛
⎜
⎜
⎝

∑V
v=1

∑
j∈Av

Yj(Ti)h∗j (𝛼v, 𝜷)
∑V

v=1
∑

j∈Av
Yj(Ti)g∗j (𝛼v, 𝜷)

||||


⎞
⎟
⎟
⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

E2

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

(A2)

For each i ∈ Av and j ∈ Bv, let lij be an indicator equal to 1 if unit i and j are linked, and to 0 otherwise. Then for each
i ∈ Av, we have Zi =

∑
j∈Bv

lijXj, and

E(Zi| ) =
∑

j∈Bv

XjE(lij| ).

Under the non-informative assumption for the linkage process, we obtain from the hit-miss model (4) that

E(lii| ) = 𝛼v + (1 − 𝛼v)(nB)−1
,

E(lij| ) = (1 − 𝛼v)(nB)−1 for j ∈ B ⧵ {i},
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14 VO et al.

which leads to

E(Zi| ) = 𝛼vXi + (1 − 𝛼v)XBv

From Equation (7) and under the non-informative linkage assumption, we have

E1 = E

{
𝛼
−1
v Zi − (𝛼−1

v − 1)XBv |
}

= 𝛼−1
v E(Zi| ) − (𝛼−1

v − 1)XBv

= 𝛼−1
v

[
𝛼vXi + (1 − 𝛼v)XBv

]
− (𝛼−1

v − 1)XBv

= Xi. (A3)

By using a first order Taylor approximation, we have up to negligible factors of order Op(n−1
A ):

E2 ≈
E

{∑V
v=1

∑
j∈Av

Yj(Ti)h∗j (𝛼v, 𝜷)
|||

}

E

{∑V
v=1

∑
j∈Av

Yj(Ti)g∗j (𝛼v, 𝜷)
|||

} (A4)

where

E

{ V∑

v=1

∑

j∈Av

Yj(Ti)h∗j (𝛼v, 𝜷)
||||||


}

=
V∑

v=1

∑

j∈Av

E

{
Yj(Ti)h∗j (𝛼v, 𝜷)|

}

=
V∑

v=1

∑

j∈Av

Yj(Ti)E
{

h∗j (𝛼v, 𝜷)|
}

=
V∑

v=1

∑

j∈Av

Yj(Ti)h(𝜷,Xj).

Similarly:

E

( V∑

v=1

∑

j∈Av

Yj(Ti)g∗j (𝛼v, 𝜷)
||||||


)

=
V∑

v=1

∑

j∈Av

Yj(Ti)g(𝜷,Xj).

Therefore,

E2 ≈
∑V

v=1
∑

j∈Av
Yj(Ti)h(𝛽,Xj)

∑V
v=1

∑
j∈Av

Yj(Ti)g(𝛽,Xj)
(A5)

By plugging (A3) and (A5) into (A2), we obtain

E

{
H(𝜷)|||

}
≈ 1

nA

V∑

v=1

∑

i∈Av

𝛿i

{

Xi −
∑V

v=1
∑

j∈Av
Yj(Ti)h(𝜷,Xj)

∑V
v=1

∑
j∈Av

Yj(Ti)g(𝜷,Xj)

}

= H0(𝜷). (A6)

APPENDIX B. VARIANCE ESTIMATION FOR THE PROPOSED ADJUSTED ESTIMATOR

In this appendix, the derivation of the variance estimator is explained. For simplicity, we focus on the case V = 1 when a
single block is used. The extension to multiple blocks is straightforward.
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VO et al. 15

We first recall the main notations. A database B of size nB is first obtained, and the covariates Xi are observed for all
the units in B. We use the notations

XB =
1

nB

nB∑

i=1
Xi,

gB(𝜷) =
1

nB

nB∑

i=1
g(𝜷,Xi),

hB(𝜷) =
1

nB

nB∑

i=1
h(𝜷,Xi).

We also note XB ≡ {Xi}i∈B for the set of auxiliary variables in B.
A subsample A of size nA is then selected in B, and the variable Ti is obtained for any unit i ∈ A. We note TA ≡ {Ti}i∈A

for the set of outcome values in A. The auxiliary variables are obtained in A by using record linkage, leading to the pseudo
auxiliary variables Zi for any unit i ∈ A. We note ZA ≡ {Zi}i∈A for the set of pseudo values in A.

Finally, a validation sample V of size nV is selected in A by simple random sampling, and the true auxiliary variables
Xi are obtained for the units i ∈ V . By comparing the pseudo values Zi and the true values Xi in V , we obtain an unbiased
estimator �̂� for the parameter 𝛼.

B.1 Global estimating equation
Using the unbiased estimator �̂� for the parameter 𝛼 (see Equation 4), the global estimating equation for the parameter 𝛽 is

H(𝜷) ≡ 1
nA

nA∑

i=1
𝛿i

{

X∗
i (�̂�) −

∑nA
j=1Yj(Ti)h∗j (�̂�, 𝜷)

∑nA
j=1Yj(Ti)g∗j (�̂�, 𝜷)

}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Hi(𝜷)

= 0, (B1)

where

X∗
i (�̂�) =

Zi

�̂�

− 1 − �̂�
�̂�

XB,

g∗j (�̂�, 𝜷) =
g(𝜷,Zj)
�̂�

− 1 − �̂�
�̂�

gB(𝜷),

h∗j (�̂�, 𝜷) =
h(𝜷,Zi)
�̂�

− 1 − �̂�
�̂�

hB(𝜷). (B2)

Let us denote by 𝜷0 the true value of the parameter. Then we have

H(�̂�) −H(𝜷0) = −H(𝜷0) ≃ {E∇H(𝜷0)}{�̂� − 𝜷0},

with ∇H(𝜷) the differential of H(𝜷). We obtain

�̂� − 𝜷0 ≃ −{E∇H(𝜷0)}−1 ×H(𝜷0).

It is thus sufficient to obtain a variance estimator for H(𝛽0), from which we can use the sandwich variance estimator

V̂(�̂�) = {∇H(�̂�)}−1 × V̂{H(𝜷0)} × {∇H(�̂�)}−1
. (B3)

The derivation of V̂{H(𝜷0)} is explained in the next sections.
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16 VO et al.

B.2 Accounting for the estimation of 𝜶
Since we have

1
�̂�

= 1
𝛼

× 1
1 + �̂�−𝛼

𝛼

= 1
𝛼

[
1 − �̂� − 𝛼

𝛼

+ op
(

n−0.5
V

)]

= 1
𝛼

− �̂� − 𝛼
𝛼2 + op(n−0.5

V ),

we may rewrite the quantities in (B2) as

X∗
i (�̂�) =

1
𝛼

(Zi − XB) + XB

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

X∗
i (𝛼)

− �̂� − 𝛼
𝛼2 (Zi − XB) + op

(
n−0.5

V
)
,

g∗j (�̂�, 𝜷0) =
1
𝛼

{
g(𝜷0,Zj) − gB(𝜷0)

}
+ gB(𝜷0)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

g∗j (𝛼,𝜷0)

− �̂� − 𝛼
𝛼2

{
g(𝜷0,Zj) − gB(𝜷0)

}
+ op

(
n−0.5

V
)
, (B4)

h∗j (�̂�, 𝜷0) =
1
𝛼

{
h(𝜷0,Zj) − hB(𝜷0)

}
+ hB(𝜷0)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

h∗j (𝛼,𝜷0)

− �̂� − 𝛼
𝛼2

{
h(𝜷0,Zj) − hB(𝜷0)

}
+ op

(
n−0.5

V
)
. (B5)

Let us denote 𝜖 = �̂�−𝛼
𝛼2 . By plugging (B4) and (B5) into Equation (B1), we have

∑nA
j=1Yj(Ti)h∗j (�̂�, 𝜷)

∑nA
j=1Yj(Ti)g∗j (�̂�, 𝜷)

=

∑nA
j=1Yj(Ti)h∗j (𝛼, 𝜷) − 𝜖

∑nA
j=1Yj(Ti)

[
h(𝜷0,Zj) − hB(𝜷0)

]

∑nA
j=1Yj(Ti)g∗j (𝛼, 𝜷) − 𝜖

∑nA
j=1Yj(Ti)

[
g(𝜷0,Zj) − gB(𝜷0)

]

+ op
(

n−0.5
V

)
.

After some algebra, this leads to:

H(𝜷0) = H1(𝜷0) −
(
�̂� − 𝛼
𝛼2

)
H2(𝛼, 𝜷0) + op

(
n−0.5

V
)
, (B6)

where

H1(𝜷0) =
1

nA

nA∑

i=1
𝛿i
{

X∗
i (𝛼) − R∗i (𝛼, 𝜷0)

}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

H1i(𝜷0)

(B7)

with R∗i (𝛼, 𝜷0) =
∑nA

j=1Yj(Ti)h∗j (𝛼,𝜷)
∑nA

j=1Yj(Ti)g∗j (𝛼,𝜷)
, and with

H2(𝛼, 𝜷0) =
1

nA

nA∑

i=1
𝛿i

⎡
⎢
⎢
⎢
⎣

(Zi − XB) −

∑nA
j=1Yj(Ti)

{[
h(𝜷0,Zj) − hB(𝜷0)

]
− R∗i (𝛼, 𝜷0)

[
g(𝜷0,Zj) − gB(𝜷0)

]}

∑nA
j=1Yj(Ti)g∗j (𝛼, 𝜷0)

⎤
⎥
⎥
⎥
⎦

. (B8)
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VO et al. 17

By neglecting the terms which are op(n−0.5
V ), we obtain from (B6) that

V

[
H(𝜷0)

]
= V

[
E

{
H(𝜷0)

|||XB,TA,ZA

}]
+ E

[
V

{
H(𝜷0)

|||XB,TA,ZA

}]

≃ V

[
H1(𝜷0)

]
+ E

[
H2(𝜷0)V

{
�̂� − 𝛼
𝛼2

||||
XB,TA,ZA

}
{H2(𝜷0)}⊤

]
. (B9)

Under the assumption that the validation sample SV is selected in A by simple random sampling without replacement,
we have

�̂� = 1
nV

∑

i∈SV

𝜇i where 𝜇i =

{
1 if linkage is correct,
0 otherwise.

Since 𝜇i is a binary variable, it follows from standard results in survey sampling theory that an unbiased estimator for
V{ �̂�|XB,TA,ZA} is

V̂(�̂�) =
(

1
nV

− 1
nA

)
nV

nV − 1
�̂�(1 − �̂�).

Hence the second term in the right-hand side of (B9) may be estimated by

V̂1

[
H(𝜷0)

]
= H2(�̂�, �̂�){H2(�̂�, �̂�)}⊤ ×

(
1

nV
− 1

nA

)
nV

nV − 1
1 − �̂�
�̂�

3 , (B10)

where H2(𝛼,�̂�) is obtained from (B8) by replacing 𝜷0 with �̂� and 𝛼 with �̂�. This is the component of the variance estimator
which accounts for the estimation of 𝛼.

B.3 Accounting for the linkage and estimation error
In this section, we focus on the first term in the right-hand side of (B9). We have

V

[
H1(𝜷0)

]
= V

[
E

{
H1(𝜷0)

|||XB,TA

}]
+ E

[
V

{
H1(𝜷0)

|||XB,TA

}]
. (B11)

It follows from Equation (A6) in Appendix A that

E

{
H1(𝜷0)

|||XB,TA

}
≃ 1

nA

nA∑

i=1
𝛿i

{

Xi −

∑nA
j=1Yj(Ti)h(𝜷0,Xj)

∑nA
j=1Yj(Ti)g(𝜷0,Xj)

}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Hti(𝜷0)

, (B12)

which is the function associated to the theoretical estimating equation that we would solve if the covariates Xi were
known without linkage error for the units i ∈ A. Secondly, note that conditionally on XB and TA, the terms H1i(𝜷0) are
approximately uncorrelated for i = 1, … ,nA. More precisely, it can be proved after some algebra that for any i ≠ j =
1, … ,nA, we have

Cov
(
𝛿i
{

X∗
i (𝛼) − R∗i (𝛼, 𝜷0)

}
, 𝛿j

{
X∗

j (𝛼) − R∗j (𝛼, 𝜷0)
}||||

XB,TA

)
= Op(n−1

A ).

Therefore, we obtain that

V

{
H1(𝜷0)

|||XB,TA

}
≃ 1
(nA)2

nA∑

i=1
V
{

H1i(𝜷0)||XB,TA
}
. (B13)
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18 VO et al.

where H1i(⋅) is defined in (B7). From (B11), (B12) and (B13), we obtain that

V

[
H1(𝜷0)

]
≃ V

(
1

nA

nA∑

i=1
Hti(𝜷0)

)

+ E

[
1

(nA)2

nA∑

i=1
V
{

H1i(𝜷0)||XB,TA
}
]

. (B14)

Now, we consider the sample dispersion term given by

s2
H(𝜷0) =

1
nA − 1

nA∑

i=1

{

Hi(𝜷0) −
1

nA

nA∑

j=1
Hj(𝜷0)

}2

= 1
2nA(nA − 1)

nA∑

i≠j=1

{
Hi(𝜷0) −Hj(𝜷0)

}2
. (B15)

where Hi(⋅) is defined in (B1).
We have

E

{
s2

H(𝜷0)
nA

}

= EE

{
s2

H(𝜷0)
nA

|||||
XB,TA

}

= E

[
1

2n2
A(nA − 1)

nA∑

i≠j=1
E{Hi(𝜷0) −Hj(𝜷0)||XB,TA}2

]

+ E

[
1

2n2
A(nA − 1)

nA∑

i≠j=1
V{Hi(𝜷0) −Hj(𝜷0)||XB,TA}

]

≃ E

[
1

2n2
A(nA − 1)

nA∑

i≠j=1
{Hti(𝜷0) −Htj(𝜷0)}2

]

(where Hti(⋅) is defined in (28))

+ E

[
1

2n2
A(nA − 1)

nA∑

i≠j=1
V{Hi(𝜷0)||XB,TA} +V{Hj(𝜷0)||XB,TA}

]

= E

[
1

nA(nA − 1)

nA∑

i=1

{

Hti(𝜷0) −
1

nA

nA∑

j=1
Htj(𝜷0)

}2

+ 1
n2

A

nA∑

i=1
V{Hi(𝜷0)||XB,TA}

]

≃ V

[
H1(𝜷0)

]
, (B16)

where the last line in (B16) follows from a comparison with Equation (B14). Therefore, V

[
H1(𝜷0)

]
may be approximately

unbiasedly estimated by replacing in (B15) the unknown parameter 𝜷0 with �̂�, which leads to

V̂2

[
H(𝜷0)

]
=

s2
H(�̂�)
nA

. (B17)

This is the component of the variance estimator, which accounts for both the linkage and estimation errors.

B.4 Global variance estimator
By plugging (B10) and (B17) into (B9), we obtain:

V̂{H(𝜷0)} = V̂1{H(𝜷0)} + V̂2{H(𝜷0)}.
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VO et al. 19

The global variance estimator is therefore obtained from (B3) as:

V̂(�̂�) = {∇H(�̂�)}−1 ×
{

V̂1{H(𝜷0)} + V̂2{H(𝜷0)}
}
× {∇H(�̂�)}−1 (B18)

APPENDIX C. SAMPLING AFFECTATIONS

To compute XBv , gBv
(𝜷) and hBv (𝜷) in (7), the AEE requires access to all the X-vectors in B. In some cases, this may not

be possible due to confidentiality reasons. In that case, we have access to only the linked dataset A. In this situation, we
propose to approximate

XBv with ZAv =
1

nAv

∑

i∈Av

Zi,

gBv
(𝜷) with gAv

(𝜷) = 1
nAv

∑

i∈Av

exp(Z⊤i 𝜷),

hBv(𝜷) with hAv(𝜷) =
1

nAv

∑

i∈Av

exp(Z⊤i 𝜷)Zi. (C1)

If Av is a random sample of Bv, (C1) can be a good approximation. A simulation study is presented in Table S4 of the
Supplementary material.
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