

N
O

T
A

T
E

R
 / D

O
C

U
M

E
N

T
S

Documentation of
ModelSolver
A Python class for analysing dynamic algebraic models

Magnus Kvåle Helliesen

2024/13

In the series Documents, documentation, method descriptions, model descriptions and standards are
published.

© Statistics Norway
Published: 22 February, 2024
ISBN 978-82-587-1929-5 (electronic)
ISSN 2535-7271 (electronic)

Symbols in tables Symbol
Category not applicable .
Figures do not exist at this time, because the category
was not in use when the figures were collected.
Not available ..
Figures have not been entered into our databases or
are too unreliable to be published.
Confidential :
Figures are not published to avoid identifying persons
or companies.
Decimal punctuation mark .

Documents 2024/13 Documentation of ModelSolver

Preface
Statistics Norway is in the process of moving from proprietary software run on own servers to open-source
languages run on Google Cloud. Therefore, we need to translate all programs into Python and/or R code.
The national accounts division make use of an input/output model in compiling the monthly and quarterly
national accounts. There does not seem to exist any package for this kind of models in either Python or
R, therefore Statistics Norway has developed such a package inhouse. Documentation of the package has
previously been published and will be maintained on GitHub.

Statistics Norway, February 16, 2024
Lasse Sandberg

3

https://github.com/statisticsnorway/ssb-model-solver

Documents 2024/13 Documentation of ModelSolver

Abstract
This paper documents the Python class ModelSolver. ModelSolver lets the user define a model object in
terms of equations and endogenous variables. It contains methods to solve the model subject to data (in a
Pandas DataFrame), as well as analysing the model using graph theory and network plots.
What sets ModelSolver apart from other similar solvers is that it does not require the equations of the
model to be written in any particular way, or that the user associates equations with endogenous variables.
Most other solvers require that either 1) the model is normalised (i.e., that the model is written in terms of
endogenous variables), or 2) that the user explicitly associates equations with endogenous variables. This
is non-trivial for models with lots of equations. ModelSolver, however, reads equations in whatever form
they may be written, and performs the necessary analyses, without any input from the user other than lists
of equations and endogenous variables.
ModelSolverwas developed to facilitate solving an input-output model for the Norwegianmonthly national
accounts. 1 It analyses and solves the model’s more than 15,500 equations over more than 30 periods in
under a minute on a laptop computer.

1A detailed inventory of the Norwegian monthly national accounts can be found here: https://www.ssb.no/nasjonalregnskap-og-konjunkturer/nasjonalregnskap/artikler/quarterly-national-accounts.

4

https://www.ssb.no/nasjonalregnskap-og-konjunkturer/nasjonalregnskap/artikler/quarterly-national-accounts
https://www.ssb.no/nasjonalregnskap-og-konjunkturer/nasjonalregnskap/artikler/quarterly-national-accounts

Table of contents
Preface ... 3

Abstract.. 4

1. Introduction .. 6

2. Theoretical background ... 7
2.1. The model .. 7
2.2. Block analysis and ordering... 7
2.3. Simulation code .. 9
2.4. Solution .. 10

3. Examples of use.. 11
3.1. Solving the model ... 11
3.2. Analysing the model ... 11

4. Dependencies.. 14

A. Proofs .. 15

5

Documents 2024/13 Documentation of ModelSolver

Model classes/features
Supported Not supportedLinear, non-linearStatic, dynamic 2
Explicit, implicitDiscrete ContinuousDeterministic Stochastic

Table 1.1 Model classes/features supported/not supported by ModelSolver

1. Introduction
The national accounts (NA) in Statistics Norway (SSB) make use of an input-output (I/O) model in the
production of the monthly (and quarterly) national accounts (MNA/QNA). At present, the NA use a
proprietary software package to define, analyse and solve the model. As a part of SSB’s IT strategy, we are
in the process of moving away from proprietary software towards open source languages, such as Python
and R. A challenge that arose is that there does not seem to exist any packages in either language that meet
the NA’s particular needs with regards to the I/O model. Therefore, I started exploring the possibility to
develop such a package myself—this work, which begun around 2021/2022, resulted in the Python package
ModelSolver. At present, ModelSolver contains all the necessary methods to handle the NA’s I/O model,
but new features will be added to the package intermittently.
Although ModelSolverwas developed in order tomeet the particular needs of SSB’s MNA/QNA, the package
can handle a variety of models. Table 1.1 lists what model classes/features ModelSolver supports and does
not support. The main strength of ModelSolver is that the equations of the model can be read in whatever
form they may be formulated (not normalised in any way), that the equations may be non-linear, and that
it handles fairly big models (more than 15,000 equations).

2Equations may contain lags.

6

Documents 2024/13 Documentation of ModelSolver

2. Theoretical background
2.1 The model

Consider a model consisting of n equations, 3

L1(xt|zt) = R1(xt|zt),

L2(xt|zt) = R2(xt|zt),
...

Ln(xt|zt) = Rn(xt|zt),

for t = T0, T0+1, . . . , T1, where xt = (x1,t, x2,t, . . . , xn,t) is a vector of endogenous variables (and, the way it
is written, the values for which solve the model), and zt = (z1,t−k1 , z2,t−k2 , . . . , zm,t−km , . . . , xi,t−κi , . . .), for
ki ≥ 0 and κi > 0, is a vector of contemporaneous and lags of exogenous variables and lags of endogenous
variables (or taken together: predetermined variables). 4 It’s convenient to formulate the model using a
vector function F : Rn 7→ Rn, 5

F(xt|zt) =

F1(xt|zt)

F2(xt|zt)...
Fn(xt|zt)

 =

L1(xt|zt)−R1(xt|zt)

L2(xt|zt)−R2(xt|zt)...
Ln(xt|zt)−Rn(xt|zt)

 ,

with the solution to the model being given by {xt}T1

t=T0
such that

F(xt|zt) = 0 for t = T0, T0 + 1, . . . , T1.

On the face of it, this is a problem which the Newton-Raphson-algorithm handles well. The issue, however,
is that n might be quite large. In the Norwegian national accounts, for instance, n is greater than 15,500.
Therefore, it is useful to analyse the system of equations before solving it, in order to break it down into
minimal simultaneous blocks that can be solved in a particular order.

2.2 Block analysis and ordering

In order to analyse and divide the model into blocks, we use results from graph theory.
First, we construct a bipartite graph (BiGraph) that connects endogenous variables with equations; i.e.,
B = (U, V,E), where U is a set containing nodes representing endogenous variables, V is a set containing
nodes representing equations, andE is a set containing edges between nodes inU and V . This is illustrated
in Figure 2.1 for an arbitrary model with four equations (we omit time subscripts, exogenous variables and

3Li and Ri denote the left and right hand side of equation i, respectively. Li or Ri may be as simple as xj,t or a constant, orsomething more complicated involving many endogenous variables.4Note that zt may contain only zi,t−ki
’s or xi,t−ki

’s or be empty.5We say thatFmaps from Rn because exogenous variables (contemporaneous and lags) and lags of the endogenous variables aretaken as given in any given period, i.e., predetermined.

7

Documents 2024/13 Documentation of ModelSolver

Figure 2.1 Bipartite graph (BiGraph of model)

U

x1

x2

x3

x4

V

F1(x1, x2)

F2(x1, x2)

F3(x2, x3)

F4(x2, x3, x4)

Figure 2.2 Maximum Bipartite Match (MBM) of BiGraph

U

x1

x2

x3

x4

V

F1(x1, x2)

F2(x1, x2)

F3(x2, x3)

F4(x2, x3, x4)

lags for notational convenience as they are not necessary for the analysis).
Next, we applymaximum bipartite matching (MBM), which assigns each endogenous variable to one and only
one equation. Formally, MBM results in a function or mapping M , with M(xi) = Fj and M−1(Fj) = xi for
xi ∈ U and Fj ∈ V (i.e., M is a one-to-one mapping from endogenous variables to equations, M : U 7→ V

and M−1 : V 7→ U). The MBM is arbitrary (B may have as many as n! MBMs), and Figure 2.2 shows one
possible solution for our arbitrary model.
We use the MBM to determine what endogenous variables impact what other endogenous variables. We do
this by 1) assigning endogenous variables to equations (or ‘labeling’ the equations ‘as’ endogenous variables)
usingM−1, and 2) removing the MBM edges (the MBM edges simply imply that each endogenous variable
impacts itself, which, although not altering the end result, is non-informative).
This procedure leaves us with a new BiGraph B′ = (U, V ′, E′), where the nodes in V ′ are the re-labeled
nodes in V (i.e., V ′ = {M−1(Fj)|Fj ∈ V }), and E′ contains all the edges except the MBM edges (i.e.,
E′ = {(xi,M

−1(Fj))|(xi, Fj) ∈ E \M}). This is illustrated in Figure 2.3 for our arbitrary model. Note that,
although the MBM is arbitrary, the description of what endogenous variables affect what other endogenous
variables E′ is not (see proof).
Next, we use B′ to construct a directed graph (DiGraph) that shows how the endogenous variables impact
each other (the causality goes from U to V in B′), i.e., D = (U,E′), where U (still) contains nodes
representing endogenous variables, and E′ now is interpreted as directed edges or arcs from endogenous
variables to other endogenous variables. The DiGraph is shown in Figure 2.4 for our arbitrary model.

8

Documents 2024/13 Documentation of ModelSolver

Figure 2.3 Graph of what endogenous variables impact what other endogenous variables

U

x1

x2

x3

x4

V

x2

x1

x3

x4

Figure 2.4 Directed graph (DiGraph) of what endogenous variables impact what other endoge-
nous variables

x1

x2

x3

x4

Finally, we find the strong components of D, as shown in Figure 2.5 for our arbitrary model. A strong
component is a set of nodes that are connected such that every node can be reached from every other
node in the set (traversing the arcs). A condensation of the DiGraph is a (new) DiGraph with each node being
a strong component (of the former). The condensation can be illustrated as in Figure 2.6 for our arbitrary
model. Each node of the condensation corresponds to a block of themodel, and the arcs decide the order in
which the blocks are to be solved. See Gilli (1992) for a discussion of strong components and block analysis.
Note that, since the MBM is a one-to-one-mapping, we may draw the DiGraph and condensation labeling
the nodes with endogenous variables or equations, switching back and forth using the MBM.
In our arbitrary model, x1 and x2 must be solved first in one simultaneous block. Next, x3 is solved (taking
x1 and x2 as given, being predetermined by the solution to block 1). Finally, x4 is solved (taking x1, x2 and
x3 as given, being predetermined by the solutions to block 1 and 2).

2.3 Simulation code

With the blocks of the model as given by the condensation of the model DiGraph, as previously discussed,
we can generate simulation code for each block. That is either

• a symbolic function (definition) that takes predetermined input and returns the endogenous value (if
the block is a definition, as described below), or

• a symbolic objective function and Jacobian matrix that take predetermined input and (initial) values for

9

Documents 2024/13 Documentation of ModelSolver

Figure 2.5 Strong components of DiGraph

x1

x2

x3

x4

1

2

3

Figure 2.6 Condensed DiGraph

Block 1: x1, x2 Block 2: x3 Block 3: x4

the endogenous variables, which are to be sent to a Newton-Raphson algorithm, which in turn returns
the endogenous value(s)

A block is a said to be a definition if and only if it 1) consists of one equation and 2) the only thing on the left
hand side of the equation is the endogenous variable of that equation (and that endogenous variable does
not show up on the right hand side of that equation too).

2.4 Solution

In order to solve the model numerically, we loop (nested) over time periods (chronologically) and blocks
(according to the order dictated by the condensation of the model DiGraph).
If the block to be solved is a definition, as discussed above, the solution is given straight forwardly by the
function defining it (given predetermined input).
If the block to be solved is not a definition, it is sent to a Newton-Raphson algorithm, which in turn returns
the solution (given predetermined input, and initial values for the endogenous variables).
The k + 1st iteration of the Newton-Raphson algorithm is given by

x
(k+1)
t = x

(k)
t − J−1

F (x
(k)
t |zt)F(x(k)

t |zt),

where JF(xt|zt) is the Jacobian matrix of F(xt|zt) evaluated at xt and zt. The algorithm stops and returns
x
(k+1)
t if max

(∣∣∣x(k+1)
t − x

(k)
t

∣∣∣) ≤ ε, where ε is a tolerance level. If it so happens that F(x(0)
t |zt) = 0, then

the initial values solve the model, and as such x
(0)
t is returned as the solution.

10

Documents 2024/13 Documentation of ModelSolver

3. Examples of use
The ModelSolver object is instantiated by
model = ModelSolver(equations , endogenous)

where equations and endogenous are lists containing equations and endogenous variables as strings, e.g.,
equations = [

'x1 = a1',

'x2 = a2',

'0.2*x1+0.7*x2 = 0.1*ca+0.8*cb+0.3*i1',

'0.8*x1+0.3*x2 = 0.9*ca+0.2*cb+0.1*i2',

'k1 = k1(-1)+i1',

'k2 = k2(-1)+i2'

]

endogenous = ['x1', 'x2', 'ca', 'cb', 'k1', 'k2']

Note that the (-#)-syntax denotes lags of a variable; ModelSolver does not support leads. Mathematical
functions supported are max(), min(), log() and exp(). Note also that the equations are written in a form
that is neither normalised, nor associates equations with endogenous variables.
It is possible to switch endogenous and exogenous variables using
model.switch_endo_vars(old_endo_vars , new_endo_vars)

where old_endo_vars and new_endo_vars are lists. Upon invoking switch_endo_vars, a tuple of
endogenous variables stored inside the model object is created, and ModelSolver immediately performs
block analysis on the updatedmodel, such that it can be solved for the updated list of endogenous variables.

3.1 Solving the model

Let input_df be a Pandas DataFrame containing exogenous variables and initial values for the endogenous
variables. Then
solution_df = model.solve(input_df)

solves themodel and stores the results in solution_df, which is a Pandas DataFrame identical to input_df,
but where the endogenous variables are the solutions to the model.

3.2 Analysing the model

ModelSolver contains a number of methods that let the user analyse the model:
model.describe() describes themodel in terms of number of equations and blocks, alongwith information
about the blocks, e.g.,

11

Documents 2024/13 Documentation of ModelSolver

Model consists of 6 equations in 5 blocks

4 of the blocks consist of simple definitions

4 blocks have 1 equations

1 blocks have 2 equations

model.find_endo_var(<endogenous variable>[, noisy=False]) returns the block in which the endoge-
nous variable is solved for.
model.show_block(<block number>) returns information about the block—endogenous variables, exoge-
nous and predetermined variables and equations—e.g.,
Block consists of an equation or a system of equations

2 endogenous variables:

cb ca

4 exogenous or predetermined variables:

i2 i1 x1 x2

2 equations:

0.8*x1+0.3*x2 = 0.9*ca+0.2*cb+0.1*i2

0.2*x1+0.7*x2 = 0.1*ca+0.8*cb+0.3*i1

model.show_blocks() returns information about all the blocks of the model.
model.trace_to_exog_vars(<block number>[, noisy=True]) traces the model DiGraph from the block
back to the nodes of origin and reports what exogenous variables determine those nodes.
model.trace_to_exog_vals(<block number>, <period index>[, noisy=True]) traces the model Di-
Graph back from the block to the nodes of origin, finds what exogenous variables determine those nodes,
and reports values for those variables for the chosen period index (0, 1, ...).
model.draw_blockwise_graph() draws a network graph as shown in Figure 3.1. The method takes as
arguments a variable name, and the maximum number of ancestor and descendant nodes, and maximum
number of nodes in total.
model.sensitivity(<block number>, <period index>[, method=’std’, exog_subset=None]) analyzes
sensitivity of endogenous variables to exogenous variables for a specific period index (0, 1, ...). The method
varies the exogneous variable by one standard deviation or one per cent (depending on option choseon by
user) and reports the deviations in the block endogenous variables from the original solution.

12

Documents 2024/13 Documentation of ModelSolver

Block 5:
cb
ca

Block 4:
x1

Block 3:
x2

i2

i1

a1

a2

(a) model.draw_blockwise_graph(’ca’)

Block 5:
ca
cb

Block 3:
x2

a2

(b) model.draw_blockwise_graph(’x2’)

Figure 3.1 Examples of network plots

13

Documents 2024/13 Documentation of ModelSolver

4. Dependencies
ModelSolver is built using the following packages:

• NumPy
• NetworkX
• Pandas
• SymEngine
• Numba
• collections
• functools
• Matplotlib

14

https://numpy.org/
https://networkx.org/
https://pandas.pydata.org/
https://pypi.org/project/symengine/
https://numba.pydata.org/
https://docs.python.org/3/library/collections.html
https://docs.python.org/3/library/functools.html
https://matplotlib.org/

Documents 2024/13 Documentation of ModelSolver

A. Proofs
Theorem 1. All MBMs M1,M2, . . . result in the same description of what endogenous variables impact what

other endogenous variables E′
1 = E′

2 = . . . = E′.

Proof. Suppose we have a BiGraph B = (U, V,E), with

U = {x1, x2, . . . , xn},

V = {F1, F2, . . . , Fn},

E = {(xp, Fr), (xp, Fs), (xq, Fr), (xq, Fs)} ∪ Ẽ,

where Ẽ is a set containing any other edges between endogenous variables (where we omit time subscripts)
and equations (or functions) F than the ones explicitly given (Ẽ must contain at least n − 2 edges for the
system of equations to have a solution). Suppose further thatB has two MBMs (B may have more MBMs—
in fact as many as n!—but we shall only concern ourselves with these two for the purpose of this proof),
6

M1 = {(xp, Fr), (xq, Fs)} ∪ M̃,

M2 = {(xp, Fs), (xq, Fr)} ∪ M̃,

that is,M1 andM2 are identical, except for two matches (the ones associating xp and xq with Fr and Fs; M̃
is a set containing all other matches). We use the MBMs to ‘label’ equations F ‘as’ endogenous variables x
in E, usingM−1(Fj) = xi for Fj ∈ V and xi ∈ U , as discussed in the main text, i.e.,

E′
1 = {����(xp, xp), (xp, xq), (xq, xp),����(xq, xq)} ∪ Ẽ′,

E′
2 = {(xp, xq),����(xp, xp),����(xq, xq), (xq, xp)} ∪ Ẽ′.

where prime denotes that the set contains equations ‘labeled as’ endogenous variables. (We ignore the
mappings from an endogenous variable onto itself.) Note that Ẽ′ is the same for E′

1 and E′
2. This follows

because we have chosen M̃ to be the same forM1 andM2. Therefore, we see that E′
1 = E′

2. Since we can
go from any MBM to any other switching two and two edges repeatedly, it follows that anyMBMM1,M2, . . .

gives the same result as any other E′
1 = E′

2 = . . . = E′, which is what we set out to prove.

6As we can choose xp, xq , Fr and Fs, this is always the case, unless the MBM is unique (which would render the proof superfluous).

15

Documents 2024/13 Documentation of ModelSolver

References
Gilli, M. (1992). Causal ordering and beyond. International Economic Review, 33(4):957–971.

16

	Preface
	Abstract
	Introduction
	Theoretical background
	The model
	Block analysis and ordering
	Simulation code
	Solution

	Examples of use
	Solving the model
	Analysing the model

	Dependencies
	Proofs

