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1. Introduction 

Peak electricity consumption in Norway has been increasing, and is expected to continue to 

increase in the years to come (Glende et al., 2005). However, since deregulation of the electricity 

market in 1991, new investment in power generation has been at a low level (Bye and Hope, 

2005). Periods with extreme cold weather have revealed a vulnerable production and distribution 

system, as consumption in such peak situations has been close to capacity. This calls for a flexible 

demand side with the potential of reducing loads in peak situations to relieve the constrained 

system. Demand response may consequently defer the need for costly augmentation of the 

electricity grid or power production.  

Direct load control and time-differentiated tariffs are two measures to obtain demand 

response that have been tested and used worldwide. A direct load control programme often 

involves customers who are willing to offer electricity-consuming appliances for load reduction if 

they are compensated economically. Traditional interruptible programmes have paid their 

customers in advance for participating, for example, through rate discounts. An example is an air 

conditioner and water heater load programme in the USA, where customers are provided with 

discounts on their electricity bill if they participate in the programme (Xcel Energy, 2005). The 

customers receive $US6 for each month in the summer if they allow 15–20 minutes cycling of 

their air conditioner in the hot summer months and an additional $US2 each month for the whole 

year if they allow their water heaters to be disconnected for six-hour periods on hot summer days 

or cold winter days. The utility is only allowed to control the appliances for a maximum of 300 

hours per year. In 2001, when approximately 280,000 residential customers were on the 

programme, electricity consumption was reduced by 330 MW in peak situations. Another example 

where water heaters are under direct control is an Australian programme involving 355,000 water 

heaters. This control reduces peak electricity consumption by 389 MW. The incentive for the 

customers to participate in the programme is lower rates for their water heating (Charles River 

Associates, 2003). A direct load control programme in the USA controls air conditioning, central 
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electric heaters, electric water heaters and swimming pool pumps. A total of 800,000 controlled 

points provides 1,000 MW of demand reduction in normal operation, and 2,000 MW in emergency 

situations (Malemezian, 2004). 

Direct load control is often combined with time-differentiated pricing, such as time-of-use 

or dynamic pricing, to assist reduction of consumption during high-priced peak periods. King 

(2004) found load reductions for programmes that integrated dynamic pricing with automated load 

control to be on average 53% larger than load reductions in programmes with load control alone. 

He further found the integrated programmes give 102% larger reductions than programmes with 

only dynamic pricing, i.e., over twice the reduction. 

Water heaters constitute approximately 10% of the electricity consumption in Norwegian 

households (Larsen and Nesbakken, 2005). Direct load control of water heaters may therefore have 

a large demand response potential which is important to quantify. This paper provides such 

estimates by studying data from a large-scale Norwegian project where load control of residential 

water heaters was applied. Hourly measurement of the electricity consumption from 475 

households, number of hours of daylight each day, and the local temperature and wind speed in a 

six-month period from November 2003 to May 2004, provide a large panel data set that we 

analyse with statistical methods. We develop a fixed effects regression model of hourly electricity 

consumption and use it to evaluate the impact of the water heater control on households’ load 

curves.  

The results from the analysis show significant electricity consumption reductions during 

disconnections of the water heaters. The results also indicate additional consumption when the 

heaters are reconnected due to the so-called “payback” or “cold load pickup” effect (which is 

explained in the next section) which may cause a new peak in the electricity system, suggesting 

cycling the control events may be necessary. 

Section 2 describes factors that may influence the load reducing potential and the payback 

effect experienced when applying direct load control of water heaters, Section 3 describes the 

experiment and the data that are analysed and Section 4 describes the method and the models that 

are used. The results are evaluated in Section 5 and the last section concludes. 
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2. Water heaters and load control 

When water heaters are used for direct load control, essentially all of the energy not supplied 

to the heaters when they are disconnected from the electricity supply will be required when they 

are reconnected. When switched on, all affected heaters that were supposed to be on during the 

control period, will start recovering from the interruption at the same time. Unless handled 

properly, this payback effect may have the undesired effect of creating a new peak in the 

electricity system. It is thus useful to discuss some causes for the effects experienced when water 

heaters are used for load control. This section describes some of these factors. 

A water heater is used to heat and store hot water. A typical Norwegian residential water 

heater holds 200 litres and has a rated heating element capacity of 2 kW. The heat loss from a tank 

is approximately 0.1 kWh/h at a temperature of 75°C (HiO, 2005). It takes approximately 2.3 

hours for a full heated tank to drop in temperature by 1°C in stand-by mode, i.e., when no hot 

water is drawn from the tank. The water heater’s thermostat is usually a bimetallic strip with a 

dead-band of approximately 4°C. This means that the heating element will start operating when 

temperature falls below 73°C and stop operating when the temperature exceeds 77°C. Due to the 

thermostat’s dead-band, a full heated tank in stand-by mode will require approximately nine hours 

before the thermostat activates the heating element as a result of heat loss. Orphelin and Adnot 

(1999) found that most heaters are operating due to the households’ usage of water rather than due 

to heat losses. 

When a household uses hot water, the water is drawn from the top of the tank. At the same 

time, cold water refills at the bottom of the tank. The thermostat is placed a few centimetres above 

the bottom, and will respond to a temperature drop by activating the heating element. A hand wash 

may use only a few litres of hot water. The energy use is accordingly low, and a heater will need to 

operate for only a few minutes to restore the energy used.1 A large family may use 14 kWh when 

all members are showering, which requires the heating element to operate for seven hours 

                                                      
1 However, small amounts of water use may not activate the heating element. This is explained below. 
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afterwards. Those two examples may represent a range of energy use due to hot water use during 

morning hours in different households. 

Because hot water can be stored for long periods of time without significant heat loss in a 

well-insulated tank, it is well suited to heat water at one period of the day and use this water at 

another period. Direct load control of water heaters has therefore been widely applied to reduce 

peak load. The idea is to turn off the electricity supply to a large number of heaters during peak 

periods. If all heaters have elements of 2 kW-rated capacity, the maximum theoretical load 

reduction achievable is 2 kWh/h per heater. However, the average reduction of load per household 

is likely to be less, due to diversity with respect to the timing of the hot water usage between 

households. 

Two principle outlines of energy recover in water heaters, with and without disconnections 

of the heaters, in hypothetical household groups with different usage (high and low) of hot water 

are shown in parts (a) and (b) of Fig. 1. The heating element capacity is assumed to be the same 

for all households. For illustrative purposes it is assumed that the starting point for hot water usage 

is distributed uniformly over the hours around the control event. 
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Fig. 1.  

Energy recovering of water heaters with and without disconnections for households with a high level 

of hot water consumption, 1,…,n (a), and low level of hot water consumption, 1,…,n (b) 
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Fig. 1 shows water heaters of two household groups with n households in each group. There 

is one heater at each “line”. The shaded and the white areas indicate the operating period for the 

heaters under normal conditions if a disconnection is not made. The shaded area indicates the 

period of hot water use (it is assumed that the heaters start operating immediately after hot water is 

drawn, i.e., at the beginning of the shaded area). The households use hot water at different times; 

in each group, number 1 starts consuming hot water first and number n last. A disconnection starts 

at t0 and finishes at t1, when the heaters are reconnected. The black area indicates the period when 

the heaters recover energy in the situation where a disconnection has occurred. The black area is 

simply the part of the energy recovery period that could not be accomplished due to the 

disconnection and which is postponed compared to the normal situation, without the 

disconnection. Approximately the same amount of energy that would normally be consumed 

during a disconnection will be consumed after the heater is reconnected.2 This demand will be 

added to the system load and give rise to consumption that would normally not exist if load control 

did not occur. This payback effect is therefore the result of a disturbance in the natural diversity of 

the heaters used for load control (see for example Rau and Graham (1979) and van Tonder and 

Lane (1996) for a similar discussion). 

Fig. 1(a) shows households with a high level of hot water usage. It can be seen that the 

disconnection affects the first water heater only slightly. The heater has nearly finished recovering 

the energy loss when it is disconnected; the final part of its restoration of the energy must wait 

until the heater is reconnected. Disconnection of this water heater will contribute little to load 

reduction in the electricity system. Nevertheless, the heater will contribute with its full-rated 

capacity at the time of reconnection, although only for a short time. To some extent, this will also 

be the case for the second and third heaters. The heaters in the middle of the figure will, however, 

contribute to a reduction with their rated capacity during the entire disconnection period. In 

addition, as these heaters start operating close to the time of disconnection and have a long 

                                                      
2 There will be a very small energy saving effect as the heaters are left for a period at a lower temperature than they 
otherwise would have been. 
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recovery period, their payback contribution occurs after t1. At every moment during the 

disconnection period, it can be seen that the disconnection affects 10 heaters. When reconnected, 

only five heaters contribute to the payback effect at every moment until t3. In this example the 

power demand added to the system load after a disconnection is therefore only half the size of the 

reduced power demand during the disconnection. The system load curve will return to normal 

shape after t3, when all heaters affected by the load control have restored the energy consumed by 

the hot water use. 

Fig. 1(b) shows households with a low level of hot water consumption. Their contribution to 

load reduction in the electricity system is small, and the disconnection has no effect on most of the 

heaters. For those that are affected, only one heater is disconnected in a certain time interval 

whereas five heaters will start operating simultaneously when reconnected, giving a payback effect 

from t1 to t2. The power demand added to the system load after a disconnection is five times the 

size of the reduced power demand during the disconnection. Furthermore, the size of the payback 

is the same as from the high hot water consumers in Fig. 1(a). The system load curve will however 

quickly return to normal shape (after t2), when all heaters affected by the load control have 

restored the energy consumed by the hot water usages. 

Parts (a) and (b) of Fig. 2 illustrate the discussion above with load curves during a day with 

and without disconnection of water heaters for the two customer groups. 
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Fig. 2.  

Load curves with and without disconnection for households with a high level of hot water 

consumption (a), and low level of hot water consumption (b) 
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These simplified examples indicate some effects experienced when heaters are used in load 

control programmes. Consumption is shifted out of the disconnection period to a later period. The 

payback effect will then give rise to extra consumption in the system load that would not have 

taken place otherwise. The figure illustrates that the low hot water consumers contribute little to 

reducing the load during the disconnection, but still create a high, although brief, peak when 

reconnected. This suggests that households with the highest consumption of hot water may be the 

target group in a direct load control programme. 

The above discussion illustrates some effects that may occur due to differing amounts of hot 

water consumption among households in a direct water heater load control programme. Further, 

the capacity of the heating elements of the water heaters will influence the effects. Given two 

consumer groups of equal size and with similar amounts of hot water consumption distributed 

equally over time, heaters with a low-rated heating element capacity will require a longer time to 

restore energy than those with high capacity, and the demand during restoration will be smaller. 

Heaters with a high heating element capacity will contribute the same demand reduction during the 

disconnection as those with the low-element capacity, but will yield a higher payback demand, 

although over a shorter period of time, before water temperature is restored. 

The inlet temperature of water to the tanks also influences the impact on the load curve from 

control events. Low inlet temperature will contribute to longer heating periods and vice versa. 

The frequency of hot water use may contribute to different impacts from load control, 

depending on the region where it is applied. A survey of Norwegians’ showering habits revealed 

that the frequency of showers differed between regions. For example, the percentages of citizens 

showering daily differed from 31% in one region to 66% in another region (Pettersen, 2006). 

The timing of the households’ hot water consumption may also be important. Most people in 

Norway start their day from 5 to 8 am (Vaage, 2002). This suggests that a large share of the water 

heaters in Norway are operating around these morning hours (around 7 to 9 am). For the evening, 

the proportion of people that are home from work and have a meal is highest around 4 to 5 pm. 

The proportion of households performing household work is highest around 6 pm. Disconnections 

occurring around those two periods of the day (morning and afternoon) may then give the largest 
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consumption reductions since this will probably affect a high proportion of the households’ 

heaters. 

The design of the heater may also be important. A tank will always contain a volume of 

water below the heating element that remains unheated, and this unheated volume will be larger if 

the heating element is installed horizontally than if it is tilted downwards inside the tank (the 

thermostat is placed above the element for both designs). When hot water is drawn, the unheated 

water will be pushed upwards and activate the thermostat. Therefore, because the unheated water 

is just below the thermostat in the horizontal design, use of even small volumes of hot water will 

activate the thermostat. In the downward-tilted design, the unheated water is further below and 

larger volumes of hot water use are allowed before the cold water reaches and activates the 

thermostat. Furthermore, some heaters are designed with a cold-water distributor, which decreases 

the velocity of the inlet water so that the water at the bottom is blended to a lesser degree. This 

allows larger volumes of hot water to be drawn without activating the heater. 

The length of a disconnection will also influence the size of the initial payback demand from 

all households affected by the control event, since a longer disconnection period affects more 

heaters. 

Therefore, load control carried out in different areas may give different load reductions and 

different payback effects if, for example, hot water consumption behaviour, types of water heaters, 

etc., differ between areas due to differing demographic characteristics of the households (see also 

Gustavson et al. (1993), for a discussion of some of these factors). 

3. Experimental data 

The project “End-user Flexibility by Efficient Use of Information and Communication 

Technology” (2001–2004) was a Norwegian large-scale project where automatic meter reading 

and direct load control technology were installed at electricity consumers’ premises (chiefly 

residential). We used data from this project to study the effect on households’ loads caused by 

direct load control of their water heaters. 



11 

3.1. Direct load control of water heaters 

The automatic meter reading and direct load control technology enabled hourly metering of 

each household’s electricity consumption throughout the test period and direct control of their 

water heaters. The automatic load disconnections were performed by a common signal from the 

network company to a relay in each household’s fuse box. The relay disconnected the heaters from 

the electricity until a new signal was sent for reconnection. This was tested on 12 different test 

days in hour 10 (9–10 am). There were also two test weeks with disconnections at different hours 

in the morning and the afternoon in order to study the load control impact for different hours. For 

two days disconnections were tested in hour 8 (7–8 am) and hour 17 (4–5 pm), two days in hour 9 

and hour 18, two days in hour 10 and hour 19, and two days in hour 11 and hour 20. If the 

households in the sample inquired, they were told they could find information on the timing of the 

tests on a web page, but no information was given directly. One can therefore assume that most 

did not know when the tests occurred, and therefore did not take any precautionary actions to 

compensate for the electricity being disconnected. 

3.2. The data 

We used a sample of households that had been exposed to automatic disconnection of their 

water heaters but had not faced time-differentiated tariffs. The households could voluntarily 

choose whether they wanted to participate. The sample consisted of 475 households where hourly 

electricity consumption for each customer had been metered in the period from 3 November 2003 

to 30 April 2004 (which corresponds to 180 days or 4,320 hours). Totally, the panel data set 

(unbalanced) consists of approximately 1.4 million hourly observations.3 

In addition to electricity prices and individual consumption data, we use information on 

numbers of hours of daylight each day, and temperature and wind on an hourly basis. Summary 

statistics of the data are shown in Table 3.1. 

 

                                                      
3 Missing observations occurred due to technical problems with the metering system. 
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Table 1. Summary statistics of the data 

Variable  Mean Std. dev. Min Max 

Energy [kWh/h]  2.8 1.6 0.1 17.3 

Price [NOK] 0.6 0.1 0.4 0.6 

Temp [°C] 0.5 5.6 –16.3 16.7 

Wind [m/s] 1.5 0.8 0.3 6.6 

Daylight [hours] 9.0 2.8 5.9 15.2 

Note: 1 NOK ≈ 0.12 EUR 

 

The variation in the weather variables was high with temperatures from –16 to +16°C, and 

wind speed approaching 7 m/s (hourly average). This variation captures much of the temperature 

and wind conditions that are often experienced in these seasons in Norway. The number of hours 

of daylight each day varies from 5.9 (in December) to 15.2 (in April), with an average of nine 

hours. 

4. Method and model 

The aim of the analysis was to quantify the average load reducing potential from load 

control of the households’ water heaters and the size of the payback effect due to simultaneous 

reconnection of the heaters. 

We used a regression model capable of predicting the average residential consumption for 

every hour throughout the test period. The disconnection and payback effects were captured by 

dummy variables for the hours in question. The households’ price response and the effect on 

consumption from variations in outside temperature and wind speed, number of hours of daylight, 

and the cyclical consumption patterns due to times of day, week and year are also accounted for in 

the regression. 
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4.1. Econometric specification 

We assumed the following specification for the hourly residential consumption of 

electricity: 
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 (4.1) 

i = 1,…,475, t= 1,....,4296, C = {17nov–21nov,18dec,19dec,14jan–16jan,15mar–18mar,26apr–

29apr}, D = {tue,wed,thu,fri,sat,sun}, H = {8–11,17–20}, M = {nov,dec,jan,feb,mar,apr},  

 

where: 

yit = hourly electricity consumption [kWh/h] at time t for household i; 

Dch,t  = dummy variables for the hour of disconnection, i.e., 1 if t is disconnection hour h, 0 

otherwise; 

Rch+1,t  = dummy variables for the hour following a disconnection, i.e., 1 if t is in reconnection 

hour h + 1, 0 otherwise; 

Rc10+j,t  = dummy variables for the five hours following a disconnection in hour 10, i.e., 1 if t is 

in reconnection hour 10 + j, j = 1,…,5, 0 otherwise; 

pit = electricity price [NOK] for household i at time t ; 

Tt = temperature [ºC] at time t; 

2
tT  = temperature, squared [ºC]2 at time t; 

TMAt = moving average of temperature in the previous 24 hours [ºC] at time t; 

2
tTMA  = moving average of temperature in the previous 24 hours, squared [ºC]2 at time t; 

Wt = wind [m/s] at time t; 

tWMA  = moving average of wind last 24 hours [m/s] at time t; 
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dlt = daylight variables; 1 between sunrise and sunset, 0 otherwise; 

Dwd,wdh,t = dummy variables; 1 if t is in hour wdh of a weekday, 0 otherwise; 

Dwe,weh,t = dummy variables; 1 if t is in hour weh of a weekend or holiday, 0 otherwise; 

Dd,t = dummy variables; 1 if t is in day d of the week, 0 otherwise; 

Dm,t = dummy variables; 1 if t is in month m of the year, 0 otherwise; 

DHd,t = dummy variables; 1 if t is in a holiday, 0 otherwise; 

Ddlc,t = dummy variable is 1 if t is in a day dlc where direct load control is carried out, 0 

 otherwise; 

γi = fixed time-invariant effect for household i; and 

εit = a genuine error term, assumed to be independently distributed across i and t with a 

constant variance.4 

 

To capture the drop in consumption caused by a disconnection we used dummy variables for 

the period in question. In addition, to capture the size of the expected payback effect in the hour of 

reconnection, we included a dummy variable for these hours. For the 12 days with disconnection 

in hour 10 we also included dummy variables for each of the five hours after the reconnection to 

study how long the payback effect lasts, and its size.5 The parameters of interest are therefore the 

coefficients for the disconnection (δDc) and reconnection (δRc) variables. The estimates of the 

coefficients related to the dummy variables may be interpreted as deviations from the normal 

consumption and they indicate directly the difference in kWh/h from the alternative of no 

disconnection. To isolate these effects it is important to control any other factors that may interfere 

with the dummy variables. The most important factors influencing electricity consumption 

included in the model are described briefly below. 

                                                      
4 The Huber/White/sandwich estimator was used to obtain robust estimates of the asymptotic variance–covariance 
matrix of the estimated parameters (StataCorp, 2005). 
5 The ability to estimate accurately the load control impact with the chosen model depends on the accuracy of the 
predictions of the load curve for the days of the load control events. We found that the model fits very well for the 
average of the 12 days with disconnections in hour 10, but has a somewhat poorer fit for the two test weeks with 
disconnections at other hours. Therefore, we only used the former days to study the length of the payback effect. 
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A fixed periodic/cyclical pattern, that often is assumed caused by the lifestyle of the 

households, can be modelled using dummy variables (Granger et al., 1979; Pardo et al., 2002) or 

trigonometric terms (Al-Zayer and Al-Ibrahim, 1996; Granger et al., 1979), or by the use of 

splines (Hendricks et al., 1979; Harvey and Koopman, 1993). We modelled the cyclical patterns 

with dummy variables; one set with dummy variables for the 24 hours of the working days and 

one set for the 24 hours of the non-working days. In addition, we controlled for the possible 

different levels in use between the different days of the week with day dummy variables, and with 

the same argument for the months we introduce monthly dummy variables. To avoid 

multicollinearity, the weekend hour 01–, Monday–, and November dummy variables were 

excluded. Dummy variables were also included for each of the days where load control was 

applied to adjust the consumption curve level for those days to obtain a better fit. 

A rich literature on the temperature’s effect on electricity consumption suggests that the 

impact of a temperature change has non-linear, as well as delayed effects; see, for example, 

Henley and Peirson (1997, 1998), Granger et al. (1979), Harvey and Koopman (1993), 

Ramanathan et al. (1997) and Pardo et al. (2002). Following Granger et al. (1979) we allowed for 

the current temperature by one term and its possible non-linear influence by a squared term. To 

account for the delayed effect of a temperature change we introduced a 24-hour moving average 

term, and also the square of this variable. 

Although most of the above studies have focused on temperature as the key weather 

variable, wind may also be important as it can increase a building’s heat loss (SINTEF, 1996). 

Both a current term and a 24-hour moving average term were included. They were not squared, as 

we anticipate wind to affect only the linear part of the heat transfer processes from the buildings 

(Mills, 1995). Because the customers in the sample are located within the same area (Drammen), 

we assumed all dwellings to be exposed to the same weather conditions. 

Daylight is also likely to influence the consumption of electricity, as it decreases the need 

for electric lights and electric heating (see, for example, Johnsen (2001)). To allow for varying 



16 

impact of daylight over the seasons, one variable for each month is included. Each variable was 

given the value 1 in the hours between sunrise and sunset for the existing month, and 0 otherwise.6 

Other seasonal changes, such as the change in humidity, rain or other seasonal factors, are 

picked up by the monthly dummy variables. In addition, because electricity prices are expected to 

influence behaviour when they vary, a price variable was included in the model.7 

Differing time-invariant characteristics of the households may cause different consumption 

patterns. Such variables can be assumed constant during the six months the experiment lasted. We 

do not comment on their impact on consumption because our choice of model presented in the 

next section allows for such time-invariant variables. 

4.2. Fixed effects estimation 

It is likely that the consumption pattern of the households will differ due to differences in, 

for example, dwelling size, age and standard of the dwelling, heating systems, number of members 

in the families, income, education, attitude to environmental issues, etc. All such variables cannot 

possibly be obtained, and omission of some in the model may influence the estimates of the other 

parameters of interest. The cross section time series dimension of the data invites us to take the 

household-specific factors into consideration by the use of a fixed-effects model. To present this 

idea, consider the simple model 

 

it it i ity X β γ ε= + + , (4.2) 

 

where yit represents consumption of electricity, Xit the vector of explanatory variables from (4.1), β 

is the vector of coefficients for the variables, and γi can be interpreted as fixed unobserved time-

invariant household-specific effects.8 If the covariance between Xit and γi is non-zero, an ordinary 

                                                      
6 In the sunrise or sunset hour, the value of a daylight variable is equal to the share of the hour that it is daylight, i.e., 
between 0 and 1. 
7 Prices vary between households, due to differing types of contracts. 
 
8 In X, only price varies between households. 
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least-squares estimation, where household-specific effects are neglected, will give biased 

estimators of β (Hsiao, 2003). However, by subtracting from each observation its household-

specific mean, we can eliminate the effect of the unobserved household-specific effects. 

 

( ) ( ) ( )it i it i it iy y X X β ε ε⋅ ⋅ ⋅− = − + − , (4.3) 

 

where iy ⋅ , iX ⋅ , and iε ⋅ indicate the mean value of the variables for each household. The 

transformation removes the household-specific effects. β can then be estimated consistently 

without bias by ordinary least squares on the transformed variables. The use of ordinary least 

squares on (4.3) is therefore robust to correlation between Xit and γi, which is not the case when 

ordinary least squares is used on (4.2) and γi is omitted from the equation. The resulting estimator 

is called the fixed effects estimator, or the within estimator.9 

5. Results 

The results from the fixed effects regression using Stata are shown in Table 2 (StataCorp, 

2005). 

                                                      
9 Note that the regressions are performed with the software Stata, which uses an alternative but equivalent formulation 
by introducing an intercept (see StataCorp, 2005 and Gould, 2001). The intercept represents the average value of the 
fixed effects. 
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Table 2. Results from the fixed effects (within) regression 

Variables Estimate t-value p-value
Dc hour 8 –0.466 –14.62 0.000
Dc hour 9 –0.580 –18.69 0.000
Dc hour 10 –0.497 –33.91 0.000
Dc hour 11 –0.355 –10.70 0.000
Dc hour 17 –0.414 –11.57 0.000
Dc hour 18 –0.489 –14.00 0.000
Dc hour 19 –0.596 –17.85 0.000
Dc hour 20 –0.178 –4.47 0.000
Rc hour 8+1 0.284 7.23 0.000
Rc hour 9+1 0.158 4.12 0.000
Rc hour 10+1 0.239 13.60 0.000
Rc hour 10+2 0.097 5.48 0.000
Rc hour 10+3 0.045 2.61 0.009
Rc hour 10+4 0.019 1.12 0.262
Rc hour 10+5 0.002 0.10 0.918
Rc hour 11+1 0.147 3.78 0.000
Rc hour 17+1 0.240 5.80 0.000
Rc hour 18+1 0.196 4.83 0.000
Rc hour 19+1 0.134 3.14 0.002
Rc hour 20+1 –0.017 –0.41 0.679
Price –0.246 –9.23 0.000
Temp –0.024 –65.18 0.000
Temp2 –0.001 –25.22 0.000
TempMA –0.043 –101.74 0.000
TempMA2 0.000 0.38 0.706
Wind 0.014 11.03 0.000
WindMA 0.069 31.59 0.000
Daylight: November –0.072 –10.75 0.000
Daylight: December –0.043 –6.83 0.000
Daylight: January –0.084 –13.20 0.000
Daylight: February –0.147 –25.72 0.000
Daylight: March –0.128 –24.97 0.000
Daylight: April –0.056 –10.57 0.000
Constant 2.529 123.13 0.000
R2:  within   = 0.2251 F(109,1498051)  = 3740.91 
  between  = 0.0047 Prob > F  = 0.0000
  overall  = 0.1124

Note: the effects of the holiday, control day, cyclical hour, day and month dummy variables are reported in the Appendix. 

Dc = Disconnection, Rc = Reconnection 
 



19 

The results show that most of the explanatory variables are highly significant. The 

hypothesis that all the slope coefficients are jointly 0, which is tested using an F-statistic, is 

rejected (see the bottom of the table). 

First we comment on the results for the load control in the two test weeks with control in 

different morning and afternoon hours, then we examine the impact of load control for the 12 days 

with disconnections in hour 10. 

5.1. Results for load control in different hours in two test weeks 

The estimates reported in Table 2 for the automatic load disconnection dummy variables all 

show the expected negative signs indicating consumption reductions, and all the reconnection 

dummies but the estimate for hour 20 are positive, indicating a payback effect in the first hour 

after a disconnection.10 Fig. 3 plots the estimates from Table 2 for the morning disconnections and 

the hour immediately after the disconnection when the water heaters are reconnected to the 

electricity supply. Fig. 4 illustrates the same for the evening load control events. 
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Fig. 3. Predicted effects (kWh/h) of disconnections and reconnections in the morning hours 

 

 

                                                      
10 The positive reconnection estimate of hour 20 is an anomaly and probably due to a small deviation between the 
predicted and the real load curve. However, the estimate is far from significant. 
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Fig. 4. Predicted effects (kWh/h) of disconnections and reconnections in the evening hours 

 

Our findings suggest that when a common signal for automatic disconnection of the water 

heaters is sent, one can anticipate an average load reduction of between 0.36 and 0.58 kWh/h per 

household for the morning hours, depending on the hour, and between 0.18 and 0.60 kWh/h in the 

afternoon, depending on which hour disconnections occur. Graabak and Feilberg (2004), analysing 

the impact of load control in one of the test weeks, found similar, but somewhat smaller effects.11 

Our results show that disconnection in hour 9 in the morning and in hour 19 in the evening give 

the largest load reductions. 

Assuming an average load reduction per customer of 0.5 kWh/h, the total load reducing 

potential in Norway from this measure can be inferred. Given that half of the Norwegian 

households (approximately 1 million) have their water heaters disconnected, and assuming 20% 

losses in the grid in a peak load situation, the potential is 0.5 kWh/h * 1,000,000 * 1.2 = 600 

MWh/h reduction of load for the whole Norwegian system (assumptions correspond to those used 

by Graabak and Feilberg, 2004). For comparison, the maximum measured load in Norway is 

23,054 MWh/h in hour 10, 5 February 2001. This suggests that consumption could be lowered to 

22,454 MWh/h this hour. 

                                                      
11 The differences between their results and ours may be due to different analysis methods (they compared load curves 
with those of a reference group) and they studied only one of the two test weeks. 
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The positive coefficients for the hour following a reconnection of the water heaters indicate 

the size of the payback effect, i.e., the electricity use that will be added to the system load curve 

after load control has occurred. We see that disconnections lead to surplus consumption of 

between 0.15 and 0.28 kWh/h in the morning and between 012 and 0.24 kWh/h in the evening, 

when the heaters are reconnected.13 Assuming the payback effect to be 0.24 kWh/h, the aggregated 

extra average demand for the Norwegian system can be inferred using a similar calculation to the 

above; 288 MWh/h for the first hour after the disconnection in hour 10. Imposing this value into 

the same day as above suggests that consumption could increase from 22,940 MWh/h (the load in 

hour 11 in the Norwegian system 5 February 2001) to approximately 23,230 MWh/h, that is, to a 

higher level than the previous peak. 

To illustrate how the automatic load control may affect the daily load curve for the 

households in this study, Fig. 5 shows the predicted mean hourly electricity use for one of the test 

days with disconnection in hour 8 and in hour 17. The payback effect is only indicated for the first 

hour following a disconnection. 
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Fig. 5. Predicted consumption for one day with disconnection in hour 8 and 17, with and without pre-

dicted disconnection and reconnection terms 

 

                                                      
12 Assuming the negative estimate of –0.017 is not logical. It is likely to be at least 0.  
13 Graabak and Feilberg (2004) found payback effects of between 0.09 and 0.29 kWh/h for the morning hours, and 
between 0.06 and 0.37 kWh/h for the evening hours. 
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As shown in Fig. 5, disconnections cause significant reductions in consumption. In addition, 

the post-peak in the hour after the water heaters have been reconnected is evident. 

5.2. Results for load control in hour 10 in twelve test days 

Section 2 indicates that the size of the post-peak is likely to be largest in the first minutes 

after reconnection and then diminish. However, since our data are measured with an hourly 

sampling frequency, we only know the average effects over hourly intervals and not the 

instantaneous power demand at the moment the heaters are reconnected, or the following 

evolvement of the payback effect. Nevertheless, we know the likely range for the instantaneous 

power demand. Since most heaters in Norway have heating elements with rated capacities of 2 

kW, the maximum possible average payback demand at reconnection is likely not to be higher 

than 2 kW. In addition, using hour 10 as an example, we know from the estimated hourly average 

payback demand for the first hour after a disconnection, that the additional power demand is not 

likely to be less than 0.239 kW. 

However, our estimates for the five hours after the hour 10 disconnections allow us to 

indicate the payback size at the time of reconnection. From Table 2 we can see that the hourly 

payback is highest in the first hour and diminishes over the following hours. The estimates for the 

fourth and fifth hours are not significantly different from 0. We can then anticipate that it will take 

at least three hours before all energy is restored, on average, in all the water heaters affected by the 

disconnection. This supports our description in Section 2 regarding the distribution of the time the 

water heaters use to restore the energy in the tanks; some heaters use a short time to recover from 

an energy loss, whereas others require a longer time. 

We indicate a possible real-time power demand curve after reconnection by plotting the 

estimates for four hours after reconnection and fitting a simple exponential trend line to the hourly 

estimates (the fifth hour is excluded as it is highly insignificant). The intersection with the y-axis 

for the trend line will indicate the size of the instantaneous water heater demand at the moment of 

reconnection. There is a high degree of uncertainty related to this curve and its intersection, so one 

must be cautious about transferring our results from the hour 10 disconnections to other hours of 
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the day or to other customer areas. Nonetheless, it is useful as a starting point for discussion and as 

an illustration of how the real payback demand curve may look. In addition, bear in mind that we 

use averaged data for 12 days to indicate the instantaneous payback effect, which makes it likely 

that some of these 12 days experienced higher instantaneous peaks. 

Fig. 6 illustrates the hourly averaged estimates for the subsequent four hours after a 

disconnection and the fitted line suggests the real-time payback power demand. 
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Fig. 6. Estimated average payback consumption for four hours following a disconnection, and a fitted 

exponential trend curve, the potential real-time payback power demand 

 

Using the four estimates to fit the exponential trend line, we find the power demand at the 

time of reconnection to be approximately 0.36 kW.14 By visual inspection, the area (i.e., the energy 

use) under the trend line for each hour is quite similar to the area under the hourly estimates. This 

indicates that the trend line is sensible. 

In the literature, the payback effect has been described using data from actual field tests and 

by simulation models. For example, Bische and Sella (1985) found that a load shedding of 25 MW 

of water heaters can build up to an initial payback demand of 80–90 MW. Another example is 

found in Lee and Wilkins (1983). Using their model, water heater electricity consumption 15 

minutes after a one-hour disconnection would be nearly twice the size that would have occurred if 

                                                      
14 Using only the three estimates that are significant at the 10% level, we find it to be 0.35 kW, and if all five estimates 
are used, the intersection is at 0.57 kW. 
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no load control had been applied, and three times the size after a two-hour disconnection.15 The 

plots in Reed et al. (1989) indicate that the percentage of water heaters operating can be 

approximately 2.5 times higher immediately after a two-hour disconnection than if no 

disconnection is applied. In Ryan et al. (1989), the payback effect is approximately three to four 

times higher than the normal water heater load, after a four-hour disconnection. 

Compared with the instantaneous power demand at the moment of reconnection found in 

this literature, our indication of the water heater power demand immediately after a reconnection 

seems to be quite low. The size of the payback demand found is approximately 0.7 times higher 

than during normal operation, while the examples from the literature range from two to four times 

higher.16 One reason may be that the rated power of the heating elements in water heaters used in 

experiments abroad is higher than in Norway. For example, heating elements with rated power of 

4.5 kW are common in the USA (Orphelin and Adnot, 1999). Norwegian households, which 

usually have 2 kW heating elements, will then have comparably lower instantaneous power 

demand and longer recovering periods for the same amount of hot water use. Another reason is 

probably that some of the disconnections referred to have a longer disconnection period. 

Whether payback effects due to load control of residential water heaters induce new so-

called post-peaks in the electricity system higher than the targeted peak depends on the total load 

in the system. If the total load curve has a pattern such that the load is low enough in the same 

period as the post-peak appears, it may offset the payback effect. However, this may vary from day 

to day, depending on a number of variables, as, for example, temperature. A strategy to control the 

payback effect is to divide the heaters into groups and cycle the control events between the groups, 

i.e., disconnect and reconnect the groups at different times during the control period. The principle 

is that when some heaters are reconnected, others will be allowed to recover. By disconnecting one 

or more groups of heaters when the system load reaches a pre-defined level and reconnecting on a 

first-off first-on basis when the load is sufficiently low again, load reductions can be achieved 

                                                      
15 Displaced energy during disconnection is assumed to be 0.5 kWh/h. 
16 The value 0.7 is found by dividing the power demand (0.36 kW) by the disconnected demand (0.5 kWh/h) for hour 10 
(assuming the water heater power demand to be a constant 0.5 kW). 
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while a critical post-peak can be avoided (van Tonder and Lane, 1996; see also Bische and Sella 

(1985), Lee and Wilkins (1983), Rau and Graham (1979), Salehfar and Patton (1989), Weller 

(1988) and Gomes et al. (1999) for descriptions of cycling strategies). 

5.3 Results for temperature, wind and daylight 

From the other results shown in Table 2 we first see the importance of controlling for the 

current and moving average temperature, as the estimates are highly significant. There is a 

decreasing impact from a temperature change on electricity consumption for the current term when 

temperature falls. The moving average of temperature influences consumption only linearly 

because the squared term is insignificant. Second, the wind speed coefficients are highly 

significant, indicating that increased wind speed increases energy use, as expected. Third, the 

estimates attached to the hours of daylight variables are negative, which indicates that more 

daylight reduces electricity consumption, as expected. Fourth, the price coefficient indicates that a 

price increase of 0.01 NOK/kWh will decrease consumption by 0.003 kWh/h. 

6. Conclusions 

Estimates of the impact of load reduction indicate that direct load control of households’ 

water heaters can be an effective tool in decreasing peak load consumption. Disconnection of the 

heaters from the electricity grid for the sample of households analyzed in this paper can be 

expected to give an average reduction in load per household of between 0.36 kWh/h and 0.58 

kWh/h in the morning hours and between 0.18 kWh/h and 0.60 kWh/h in the evening hours. As 

described in this paper, the interruption of the natural diversity of the water heater electricity 

consumption during a disconnection gives rise to a payback effect, which leads to an additional 

consumption in a period after reconnection. For the first hour after a reconnection we found that 

the average extra consumption can reach up to 0.28 kWh/h per household. Note that the data are 

measured on an hourly sampling frequency, and that the instantaneous demand at the instant of 

reconnection is likely to be higher than the hourly estimates of the payback effect. By using the 
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hourly payback demand estimates for the subsequent hours after disconnection in hour 10, we 

have indicated an average power demand per household at the instant of reconnection to be 0.36 

kW more than it would be if no load control had been applied. This payback demand may have the 

adverse consequence of causing a new peak in the system, which suggests it may be necessary to 

re-establish the diversity of the loads in a controlled manner by cycling the control events. 
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Appendix 

Table A1. Results from the fixed effects regression 

Coefficient Variable Explanation Estimate t-value p-value
δDc,8 Dc8 Dummy, disconnection, hour 8 –0.466 –14.62 0.000
δDc,9 Dc9 Dummy, disconnection, hour 9 –0.580 –18.69 0.000
δDc,10 Dc10 Dummy, disconnection, hour 10 –0.497 –33.91 0.000
δDc,11 Dc11 Dummy, disconnection, hour 11 –0.355 –10.70 0.000
δDc,17 Dc17 Dummy, disconnection, hour 17 –0.414 –11.57 0.000
δDc,18 Dc18 Dummy, disconnection, hour 18 –0.489 –14.00 0.000
δDc,19 Dc19 Dummy, disconnection, hour 19 –0.596 –17.85 0.000
δDc,20 Dc20 Dummy, disconnection, hour 20 –0.178 –4.47 0.000
δRc,8+1 Rc8+1 Dummy, reconnection, hour 8+1 0.284 7.23 0.000
δRc,9+1 Rc9+1 Dummy, reconnection, hour 9+1 0.158 4.12 0.000
δRc,10+1 Rc10+1 Dummy, reconnection, hour 10+1 0.239 13.60 0.000
δRc,10+2 Rc10+2 Dummy, reconnection, hour 10+2 0.097 5.48 0.000
δRc,10+3 Rc10+3 Dummy, reconnection, hour 10+3 0.045 2.61 0.009
δRc,10+4 Rc10+4 Dummy, reconnection, hour 10+4 0.019 1.12 0.262
δRc,10+5 Rc10+5 Dummy, reconnection, hour 10+5 0.002 0.10 0.918
δRc,11+1 Rc11+1 Dummy, reconnection, hour 11+1 0.147 3.78 0.000
δRc,17+1 Rc17+1 Dummy, reconnection, hour 17+1 0.240 5.80 0.000
δRc,18+1 Rc18+1 Dummy, reconnection, hour 18+1 0.196 4.83 0.000
δRc,19+1 Rc19+1 Dummy, reconnection, hour 19+1 0.134 3.14 0.002
δRc,20+1 Rc20+1 Dummy, reconnection, hour 20+1 –0.017 –0.41 0.679
βp  p Price –0.246 –9.23 0.000
βT

 T Temperature –0.024 –65.18 0.000
βT

2 T2 Temperature, squared –0.001 –25.22 0.000
βTMA TMA Temperature, moving average –0.043 –101.74 0.000

βTMA
2 TMA2 Temperature, moving average,

squared 0.000 0.38 0.706

βW W Wind 0.014 11.03 0.000
βWMA

 WMA Wind, moving average 0.069 31.59 0.000
βdl,nov Dnov dl Daylight: November –0.072 –10.75 0.000
βdl,dec Ddec dl Daylight: December –0.043 –6.83 0.000
βdl,jan Djan dl Daylight: January –0.084 –13.20 0.000
βdl,feb Dfeb dl Daylight: February –0.147 –25.72 0.000
βdl,mar Dmar dl Daylight: March –0.128 –24.97 0.000
βdl,apr Dapr dl Daylight: April –0.056 –10.57 0.000
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Table A1. (continued) 

Coefficient Variable Explanation Estimate t-value p-value
βwd,2 Dwd,2 Dummy, weekday, hour 2 –0.138 –23.67 0.000
βwd,3 Dwd,3 Dummy, weekday, hour 3 –0.191 –33.32 0.000
βwd,4 Dwd,4 Dummy, weekday, hour 4 –0.195 –34.29 0.000
βwd,5 Dwd,5 Dummy, weekday, hour 5 –0.175 –30.63 0.000
βwd,6 Dwd,6 Dummy, weekday, hour 6 –0.073 –12.49 0.000
βwd,7 Dwd,7 Dummy, weekday, hour 7 0.163 26.21 0.000
βwd,8 Dwd,8 Dummy, weekday, hour 8 0.477 70.06 0.000
βwd,9 Dwd,9 Dummy, weekday, hour 9 0.538 75.55 0.000
βwd,10 Dwd,10 Dummy, weekday, hour 10 0.505 64.08 0.000
βwd,11 Dwd,11 Dummy, weekday, hour 11 0.429 54.08 0.000
βwd,12 Dwd,12 Dummy, weekday, hour 12 0.374 47.27 0.000
βwd,13 Dwd,13 Dummy, weekday, hour 13 0.308 39.31 0.000
βwd,14 Dwd,14 Dummy, weekday, hour 14 0.286 36.57 0.000
βwd,15 Dwd,15 Dummy, weekday, hour 15 0.343 43.36 0.000
βwd,16 Dwd,16 Dummy, weekday, hour 16 0.458 61.53 0.000
βwd,17 Dwd,17 Dummy, weekday, hour 17 0.617 86.13 0.000
βwd,18 Dwd,18 Dummy, weekday, hour 18 0.699 98.69 0.000
βwd,19 Dwd,19 Dummy, weekday, hour 19 0.708 101.48 0.000
βwd,20 Dwd,20 Dummy, weekday, hour 20 0.707 102.31 0.000
βwd,21 Dwd,21 Dummy, weekday, hour 21 0.685 102.03 0.000
βwd,22 Dwd,22 Dummy, weekday, hour 22 0.627 95.62 0.000
βwd,23 Dwd,23 Dummy, weekday, hour 23 0.473 74.43 0.000
βwd,24 Dwd,24 Dummy, weekday, hour 24 0.240 38.62 0.000
βwe,2 Dwe,2 Dummy, weekend, hour 2 –0.143 –17.10 0.000
βwe,3 Dwe,3 Dummy, weekend, hour 3 –0.214 –26.01 0.000
βwe,4 Dwe,4 Dummy, weekend, hour 4 –0.247 –30.42 0.000
βwe,5 Dwe,5 Dummy, weekend, hour 5 –0.257 –31.86 0.000
βwe,6 Dwe,6 Dummy, weekend, hour 6 –0.229 –28.31 0.000
βwe,7 Dwe,7 Dummy, weekend, hour 7 –0.158 –19.14 0.000
βwe,8 Dwe,8 Dummy, weekend, hour 8 –0.033 –3.84 0.000
βwe,9 Dwe,9 Dummy, weekend, hour 9 0.185 20.11 0.000
βwe,10 Dwe,10 Dummy, weekend, hour 10 0.451 44.60 0.000
βwe,11 Dwe,11 Dummy, weekend, hour 11 0.620 58.78 0.000
βwe,12 Dwe,12 Dummy, weekend, hour 12 0.663 62.28 0.000
βwe,13 Dwe,13 Dummy, weekend, hour 13 0.641 60.34 0.000
βwe,14 Dwe,14 Dummy, weekend, hour 14 0.600 56.42 0.000
βwe,15 Dwe,15 Dummy, weekend, hour 15 0.605 57.00 0.000
βwe,16 Dwe,16 Dummy, weekend, hour 16 0.628 61.63 0.000
βwe,17 Dwe,17 Dummy, weekend, hour 17 0.660 65.81 0.000
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Table A1. (continued) 

Coefficient Variable Explanation Estimate t-value p-value
βwe,18 Dwe,18 Dummy, weekend, hour 18 0.686 68.50 0.000
βwe,19 Dwe,19 Dummy, weekend, hour 19 0.700 70.16 0.000
βwe,20 Dwe,20 Dummy, weekend, hour 20 0.675 68.73 0.000
βwe,21 Dwe,21 Dummy, weekend, hour 21 0.599 63.55 0.000
βwe,22 Dwe,22 Dummy, weekend, hour 22 0.500 54.53 0.000
βwe,23 Dwe,23 Dummy, weekend, hour 23 0.362 40.58 0.000
βwe,24 Dwe,24 Dummy, weekend, hour 24 0.175 19.56 0.000
βtue Dtue Dummy, Tuesday 0.013 4.06 0.000
βwed Dwed Dummy, Wednesday 0.023 7.47 0.000
βthu Dthu Dummy, Thursday –0.001 –0.28 0.782
βfri Dfri Dummy, Friday –0.007 –2.19 0.028
βsat Dsat Dummy, Saturday 0.055 6.95 0.000
βsun Dsun Dummy, Sunday 0.095 12.09 0.000
βdec Ddec Dummy, December 0.085 22.65 0.000
βjan Djan Dummy, January 0.156 36.39 0.000
βfeb Dfeb Dummy, February 0.036 8.43 0.000
βmar Dmar Dummy, March –0.046 –10.43 0.000
βapr Dapr Dummy, April –0.249 –48.23 0.000
βHd DHd Dummy, Holiday 0.096 11.94 0.000
β17nov D17nov Dummy, control day, 17 November –0.064 –5.19 0.000
β18nov D18nov Dummy, control day, 18 November –0.047 –3.83 0.000
β19nov D19nov Dummy, control day, 19 November 0.033 2.84 0.004
β20nov D20nov Dummy, control day, 20 November 0.004 0.35 0.729
β21nov D21nov Dummy, control day, 21 November 0.040 3.21 0.001
β18dec D18dec Dummy, control day, 18 December 0.010 1.05 0.295
β19dec D19dec Dummy, control day, 19 December 0.081 8.19 0.000
β14jan D14jan Dummy, control day, 14 January –0.044 –4.28 0.000
β15jan D15jan Dummy, control day, 15 January –0.115 –10.52 0.000
β16jan D16jan Dummy, control day, 16 January –0.141 –11.05 0.000
β15mar D15mar Dummy, control day, 15 March 0.031 2.95 0.003
β16mar D16mar Dummy, control day, 16 March 0.026 2.48 0.013
β17mar D17mar Dummy, control day, 17 March –0.041 –3.96 0.000
β18mar D18mar Dummy, control day, 18 March –0.066 –6.22 0.000
β26apr D26apr Dummy, control day, 26 April 0.084 7.03 0.000
β27apr D27apr Dummy, control day, 27 April 0.151 12.89 0.000
β28apr D28apr Dummy, control day, 28 April 0.030 2.61 0.009
β29apr D29apr Dummy, control day, 29 April –0.060 –5.24 0.000
  Constant 2.529 123.13 0.000
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