
Romanian Statistical Review nr. 4 / 2017 129

Methods library of embedded R
functions at Statistics Norway
Øyvind Langsrud (Oyvind.Langsrud@ssb.no)

Statistics Norway

ABSTRACT
 Statistics Norway is modernising the production processes. An important el-

ement in this work is a library of functions for statistical computations. In principle,

the functions in such a methods library can be programmed in several languages. A

modernised production environment demand that these functions can be reused for

different statistics products, and that they are embedded within a common IT system.

The embedding should be done in such a way that the users of the methods do not

need to know the underlying programming language. As a proof of concept, Statistics

Norway soon has established a methods library offering a limited number of methods

for macro-editing, imputation and confi dentiality. This is done within an area of munici-

pal statistics with R as the only programming language. This paper presents the details

and experiences from this work. The problem of fi tting real word applications to simple

and strict standards is discussed and exemplifi ed by the development of solutions to

regression imputation and table suppression.

 Keywords: Offi cial statistics, R; Common Statistical Production Architecture,

Generic Statistical Information Model, Validation and Transformation Language, Impu-

tation, Statistical disclosure control

 JEL Classifi cation: C18, C88

1 INTRODUCTION
 Statistics Norway has started a process to modernise the statistical

production and a long term modernisation program covering all aspects has been

established. A fi rst step towards building new IT systems has already started within

a project dealing with municipality state reporting (KOSTRA). This involves a

collection of 20 statistical areas about services provided by the municipalities and

the accounting for these services. These statistics are based on several sources:

municipality survey, fi les from local administrative systems and registers. Within

this project a modern platform for common metadata and data storage has been

built. Validation and Transformation Language (VTL) will be one of the main

tools for working with the data (SDMX Technical Working Group, 2016). In

addition a methods library has been built to offer common methods throughout

the production process. These methods are made to be compatible with the

Common Statistical Production Architecture (CSPA) described in UNECE

(2017a). The methods will be made available within the IT system in a way that

is independent of the underlying programming language. Within the so-called

Romanian Statistical Review nr. 4 / 2017130

administrative module, technical information about the methods (parameters) and

short descriptions for users are stored. The methods are supposed to be functions

that take a single data set as input in addition to parameters. Output is also a single

data set. In principle, the functions in the methods library can be programmed in

several languages. So far the new system is limited to R as the only programming

language. Within the IT system, Java interacts with R via RServe installed on a

Linux platform. The possibility of using Renjin, which is a Java implementation

of R, was also investigated. However, at present, many common R-packages for

offi cial statistics are not compatible with Renjin. The architects are also looking at

OpenCPU as a possible future interface to R.

 The experiences obtained within the KOSTRA project will be very

useful for planning the future expansion of the methods library. Below

we describe some details and discuss some experiences from the work of

establishing a methods library in R. Other and less R oriented details are

presented in Foss et al. (2017). Section 2 describes the programming standards

used for the embedded R functions. Sections 3 and 4 contain some details about

the implemented methods for regression imputation and table suppression.

Section 5 remarks that the R functions can be useful in several ways. Finally

Section 6 ends with conclusions and discussions.

2. STANDARD FOR R PROGRAMMING
 2.1 Strict standard for the library functions

 It is important that the R functions used within the IT system follow

a standard. From an R-programmers viewpoint the standards were set to be

rather strict, but this makes building an interface to the methods easy. As

earlier documented in Foss et al. (2017) the standard says:

 • The fi rst input parameter is a data set of type data.frame.

 • The other parameters must be vectors (normally of length one) of

type character, numeric, integer or logical.

 • A special variant of the character type is variable name, referring to

variables in the input data set.

 • One such variable name parameter represents a unique identifi er of

observations.

 • Another special variant of the character type is list, which means

that a list of allowed input elements is pre-specifi ed.

 • When input is numeric or integer, the minimum and/or maximum

can be specifi ed.

 • Output is a single data set of type data frame.

 According to the discussion below, the data frame type was chosen

as the standard for input and output data sets. The system in which the

Romanian Statistical Review nr. 4 / 2017 131

functions are embedded handles a single data set at a time. That is, only a

single data frame can be input and only a single data frame can be output.

In many applications within offi cial statistics one may view this as a strange

limitation. For example some methods need both population data and sample

data as input. Furthermore, several methods produce output at two or more

hierarchical levels. It is always possible to force several data frames into a

single data frame by using replicated and/or missing values. In the actual

project, this solution was applied in order to produce output in some cases.

Although, in more general future systems we believe that the single data set

standard is too strict.

 The other input parameters are ordinary data types. We have avoided

using factor as a data type since this can be complicated and confusing in

external communication. For the same reason we think it may be best to avoid

using factor as data type in the output data frame (stringsAsFactors=FALSE).

We have distinguished between numeric and integer as data types, but the

exact data type is not the point. The important distinction is whether input and

output are restricted to be whole numbers or not.

 Since all the data are passed to the function via a data frame, parameters

referring to variables in the data frame are needed. The standard is to pass

these as variable names, but variable number could also be used. In fact, we

made an implementation where both names and numbers can be used.

 2.2 A general R programming standard

 We have developed an internal R programming guide. The starting

point was Google’s R style guide. We collect the R code in packages and the

functions are documented using roxygen2 which means that documentation

and code are side-by-side on the source fi les.

 An important part of the guidance is to implement computations in

functions that only do computations. Plotting and reading and writing of data

are done separately or in functions that make a call to a computing function.

 Another part of the guidance is to make the code as portable as

possible. This is in accordance with the CRAN repository policy which says:

“Package authors should make all reasonable efforts to provide cross-platform

portable code”. I practice one can say that the code is as portable as possible

if the code is compatible with Renjin (a java implementation of R). This is

an important reason for choosing data frame as the input and output standard

for library functions. Internally in the functions, when a general data set is

needed (instead of matrix), we also use data frame as standard. Operations in

R involving data frames can, however, be rather slow and memory consuming

compared to alternative implementations. In particular, the packages data.

Romanian Statistical Review nr. 4 / 2017132

table and dplyr offer effi cient alternatives to data frame. Such packages can be

used if this in practise makes very important improvements. Note that in many

cases there are good reasons to make use of other packages not compatible

with Renjin.

 2.3 Function signature and input checking

 We can say that a documented function consists of three parts: the head,

the body and the function documentation. In general the function signature

needed to integrate the function into another system cannot be captured from

the function head alone. As an example, the head of an ordinary R function is

var(x, y=NULL, na.rm=FALSE, use). We can only read variable

names and default values from the head. In the function documentation we

can fi nd out that the last parameter is optional and must be one of the strings

“everything”, “all.obs”, “complete.obs”, “na.or.complete”, or “pairwise.

complete.obs”. The head of a related function is cor(x, y=NULL,
use=”everything”, method= c(“pearson”,”kendall”,”spe
arman”)). In this case one may think that the default of the last parameter is

a vector of length three. But the documentation says that the parameter is one

of “pearson” (default), “kendall”, or “spearman”. This function is an example

where the function match.arg is used inside the body. Then the specifi cation in

the head has another meaning and allowed input is specifi ed together with the

default. In this case an appropriate error message is produced when the input

is not valid. One could make use of this functionality in the methods library

functions, but match.arg is limited to the character type.

 To do input checking in general we need another approach and the aim

is twofold. First, the input should be checked according to the requirements.

Second, it should be easy to capture the requirements from the source fi le

in the sense that it is should be both human readable and machine readable.

We have discussed two possibilities. One way is to make an extended variant

of match.arg so that everything is visible in the function head, both variable

type and allowed input. We chose an easier a more straightforward variant.

A function named CheckInput was made to be used at the beginning of the

function body. Below are three example lines.

 • CheckInput(var1, type=”character”, alt=c(“pe
arson”,”kendall”,”spearman”))

 • CheckInput(var2, type=”integer”, min=0,
max=99, okSeveral=TRUE)

 • CheckInput(var3, type=”varNrName”, data=data)

Romanian Statistical Review nr. 4 / 2017 133

 The fi rst line corresponds to the parameter “method” in the function

“var” mentioned above. The default value (“pearson”) cannot be seen in this

line, but this appears in the function head. The second line requires a vector

of nonnegative whole number(s) below 100. The parameter that is checked in

the third line refers to a variable in the data frame, “data”. A special type is

constructed that allows both variable names and variable numbers. Alternative

variable types are “varNr” and “varName”. Sending the whole data frame to

the function when only the variable names are needed may look superfl uous.

But note that even if the syntax is pass-by-value, the data frame will not be

copied in memory.

 The function CheckInput is constructed to produce standardised

error messages. In addition, by looking at the function head together with

the lines with CheckInput, we can see a detailed signature of the function. It

is also possible to make programs that read this information automatically.

As simple example of extracting this information is lapply(as.
list(parse(text=s)),as.list), where “s” is a character vector

whose elements are lines with CheckInput.

 A drawback is that, since CheckInput is in the body, the content will

not be visible in the function documentation. In practise the information will be

repeated in the documentation text. So far, at Statistics Norway, the information

is also repeated manually in the administrative module. This module contains

necessary information about the methods needed to create a user interface in

Norwegian. Thus, the English function and parameter names are translated

to Norwegian. Short user documentation is also given in Norwegian in this

module. More comprehensive user documentation is available on an internal

wiki page.

 By using CheckInput the checking is limited to other parameters than

the data set. Checking the input data frame according to the requirements

are more advanced and we have, so far, not set a standard for this. One

possibility is to make use of the package checkmate (Lang, 2017), but such a

standardisation will be a part of future discussions.

 2.4 Function internal data

 As an example, suppose that we have a function that performs ordinary

linear regression (y~x). Within the function it is appropriate to write the code

using the names x and y even if other names are used in the input data. It is also

natural that the output data set use standard names such as “fi tted”, “resid”

and “rstudent”. When y is a matrix with an arbitrary number of columns, the

original names may be needed in output. Internally within the function one

would then use a matrix named y with column names from input. Similarly

Romanian Statistical Review nr. 4 / 2017134

x could be a matrix. This means that sometimes input names are visible in

output and sometimes not.

 Extracting x and y from the input data using the input parameters are

straightforward. However, we have decided to use a standardised function,

GetData, for this. In the fi rst place the programmers can assume that this

function is defi ned as

 GetData <- function(data, ...) {
 a <- unlist(list(...))
 b <- data[, a, drop=FALSE]
 colnames(b) <- names(a)
 b }

 This function returns a data frame with only the required columns

and with new column names. For example, GetData(data, x=xVar,
y=yVar), returns a data frame with variable names “x” and “y” instead of

the original names represented by xVar and yVar. In practise, a more advanced

version of GetData is used. With vector input (e.g. y=c(yVar1, yVar2)),

the returned data frame contain a matrix embedded in one variable.

 To discuss another problem we can assume that the original data

frame contain the variables idVar, xVar, yVar and yearVar. Suppose that we

want to run regression with y taken from year 2017 and x from year 2016. In

this case one possibility is to create a new data set beforehand, possibly within

a wrapper function. How to solve this problem is part of a bigger discussion

of how to create an interface between R and the other system.

 The chosen solution for us was to extend the functionality of

GetData. In this case one could make this call: GetData(data, id
= list(id=”idVar”), x=list(“xVar”, yearVar=2016),
y=list(“yVar”, yearVar=2017)). The ordinary character input

is replaced by list output with the variable name as the fi rst element. This

element is unnamed except in the case of the identifi er variable. Other

elements are used to specify rules for extracting the data. The output data is

created in a way that uses the identifi er variable when matching. A function

that makes use of GetData can similarly be called by using lists instead of

variable names. The programmer of the function does not need to thick about

this. When implementing a function in practise, one may or may not make

use of this functionality. The system at Statistics Norway makes use of the

advanced functionality in some cases.

Romanian Statistical Review nr. 4 / 2017 135

 2.5 Wrapping functions to fi t the standards

 Assume that a researcher has developed a method that is to be

programmed as a methods library function. In such cases the standard for the

methods library can be viewed as being too strict. The best approach is then

to make a good function without considering the standards. This function can

be made very general and several ideas can be included. Such a function may

also be shared with others (within a published package). To fi t the standards,

this function can be wrapped into one or several library functions. It is much

easier to make a restricted function from a general function than it is to go the

other way around.

 Instead of programming a method from scratch, code already available

in an open source package may be re-used. The programming job is then to

wrap available function(s) into a library function. Many packages have been

programmed in an object oriented way which is somewhat different from the

single function approach of the methods library. Then, several functions need

to be called. Typically, an initial object is fi rst created from the input data and

thereafter other functions are called.

3 REGRESSION IMPUTATION
 The starting point for this work was to re-implement in R the imputing

methodology that has been used in practice for several years (Thorud et al.,

2011). The two most important methods are ordinary linear regression and

the ratio model (weighted regression without a constant term). Within this

approach, the observations are categorised into three groups:

 • Representative: These observations are used for imputation

modelling.

 • Non-representative: These observations are not used for imputation

modelling, but the values are kept.

 • Missing or wrong: These observations are to be imputed.

 Obviously, missing observations are in the last group. Beyond

that, the categorisation of the observations is normally based on externally

studentized residuals. This means that two limits are needed. Observations

with studentized residuals below limitModel are considered as representative.

Similarly, observations with studentized residuals above limitImpute are

considered as wrong. However, extreme values infl uence the calculation of

the studentized residuals and therefore we decided to introduce a third limit. In

an iterative process, observations with studentized residuals above limitIterate

are successively thrown out of the model.

 Instead of implementing the specifi c requested methods directly, a

general function, named LmImpute, was made. In addition to the data set

Romanian Statistical Review nr. 4 / 2017136

and the three limit parameters, model is an important input parameter to

this function. This parameter is a general formula that can involve several

dependent variables and several independent variables. LmImpute also

supports transformations and weights. Furthermore, LmImpute can calculate

total estimates with standard errors within requested groups of observations. It

was decided to call lm within LmImpute, but this choice was not obvious. The

support for multiple responses when using lm is limited and sometimes wrong

results are produced.

 By making LmImpute very general it could be the working horse

within several library functions. The function ImputeRegression performs

imputations within several strata and a limited number of pre-specifi ed

models can be chosen. Another function, ImputeRegression2, performs

imputation in two rounds. First a primary dependent variable is used

and thereafter a secondary variable is used for cases where the primary is

missing. The standard error estimates take into account variability from

both imputation models. In this function, observations imputed in the fi rst

round are forced to be non-representative (see above) in the second round.

The function ImputeRegressionMulti performs simultaneous imputation of

several dependent variables. Direct imputation of the most resent non-missing

historical value is performed by the function ImputeHistory. Then, standard

error estimates are based on the naive model where the difference between

the current and the historical value is assumed to be pure error. A trick is used

to utilize the function LmImpute also in this case. Finally, we also have a

function called OutlierRegression which is similar to ImputeRegression, but

imputation is not performed. This function is only used to fi nd outliers using a

limit for studentized residuals.

4. TABLE SUPPRESSION
 The request was to make an R function for the methods library that

could do table suppression according to a frequency rule. The starting point

of this work was the package sdcTable (Meindl, 2017). This is an example of

a package programmed in an object oriented way. Then, in order to satisfy the

standards for the methods library, several functions need to be combined into

a single function.

 One of the input parameters needed by sdcTable is much more

complicated than our standard input types. The parameter dimList contains

necessary information about level-hierarchy coded in a certain way. For our

problems, this information is hidden in the data and it is possible to create

dimList automatically. Sorting of unique row is one element of such automatic

methodology. As an example, suppose that a data frame, m, contains the three

Romanian Statistical Review nr. 4 / 2017 137

hierarchically related categorical variables, county, municipal, and school

district. Then unique(m[order(m[,1],m[,2],m[,3]),]) produces

a table that can be used as a basis for the level-hierarchy coding. In a general

application we have several dimensions and several hierarchies. Another point

is that, within the actual project, municipals are grouped in two ways (county

is one of them). When doing table suppression this means that two so-called

linked tables are needed. This makes the input needed even more complicated.

When working with this, new ideas came up and it turned out that, for our

needs, generic automation was possible.

 A single function for the methods library could then be made.

Specialised functions for each problem were not needed. Nevertheless,

the interface between R and the other system was challenging. The

multidimensional nature of the table suppression problems makes it more

complicated than the other functions that were integrated. The decision about

how to organise input and output changed a few times. A request was that

input and output data should be organised in a wide (unstacked) way so that a

standard of having municipals as rows could be met. The possibility of having

input and output organised this way was also programmed and additional

problems were automated.

 All in all, the resulting function named ProtectTable contains

additional functionality on the top of sdcTable. It can be view as a limited

wrapper of the function protecTable in sdcTable or an easy interface to

some of the functionality in sdcTable. Using variable numbers (instead of

names) an example of a call to ProtectTable is: ProtectTable(data,
dimVar=1:4, freqVar=5, maxN=3, method=”OPT”). The

fi fth column contains the frequencies. The four preceding columns will be

interpreted by the automatic methodology to fi nd hierarchical relationships.

The parameter maxN defi nes the suppression rule and method is the algorithm

to be used.

 It is clear that the new functionality can be useful for others outside

Statistics Norway. The programmed code was therefore released as a package

named easySdcTable (Langsrud, 2017). In reality, two packages were released.

The basic functions of the new methods were included in the package SSBtools

which is compatible with Renjin (see above). Only the actual wrapping to

sdcTable was included in easySdcTable. This way, the functions for the easy

user interface and more specifi c functions are separated. In particular, SSBtools

contains the function FindDimLists which generates the level-hierarchies that

can be derived from a data frame with the relevant variables. The package

SSBtools also contain functions not needed by easySdcTable. A policy is to

publish several functions in SSBtools for possible re-use by others. Note that

Romanian Statistical Review nr. 4 / 2017138

the package easySdcTable has been extended with a graphical user interface

based on shiny. This will not be included in the IT system embedding the

methods library. It is meant for other types of usage as described below.

 Quite recently, the possibility of calling routines in the non-R

program, tau-Argus, has been included in sdcTable. In the future several

methods (such as “OPT” above) may also be removed from sdcTable. The

function ProtectTable needs to be changed accordingly. This means the valid

strings for the parameter method will change. In fact, the possibility of calling

tau-Argus has already been implemented in easySdcTable. In particular, the

method “TauArgusOPT” directs ProtectTable to use sdcTable to do optimal

cell suppression by calling tau-Argus.

5. SPIN-OFF USAGE
 R functions programmed for the methods library are meant to be used

within the general IT system. However, useful functions may be useful in

several ways.

 The code may, of course, be used directly by R users. Therefore, when

developing an R package, it can be a good idea to make not only the methods

library functions visible (export). In the case of regression imputation

described above, the function LmImpute has been re-used in other projects.

 Often SAS users would like the functionality to be available within

SAS. It is possible to call R form SAS within PROC IML. This can sometimes

be a practical solution.

 Another possibility is to make a separate graphical user interface. In

the case of table suppression, a graphical user interface has been developed

using the package shiny. The interface can be used to produce suppressed

tables in practise. It can also be used to generate strings with R function calls

that can be copied for later usage.

 One possibility is to call R in batch mode. The user may not call R

directly. Instead a script fi le (windows or linux) that makes call to R could be

run.

6. CONCLUSIONS AND DISCUSSIONS
 Using R as the programming language within the methods library

has been successful. Requested methods have been implemented according

to demanded standards. Within the KOSTRA project some methods for

macro-editing, imputation and confi dentiality have been implemented in

the methods library. The project has involved new types of collaborations

between statistical methodologists and IT experts. This has been encouraging,

but also sometimes frustrating. The standards were very strict and it seems

Romanian Statistical Review nr. 4 / 2017 139

that the complexity of the statistical methods that are needed in a statistical

production process has been underestimated. Better knowledge when planning

the system would have prevented some of these problems. Having IT oriented

statistical methodologists and statistical methodology oriented IT experts

(knowing R) will be very advantageous. So far the methods library is at an

early stage and, according to the modernisation program, the methods library

will play a key role in the future production system of Statistics Norway. A lot

of collaboration between statistical methodologists and IT will be needed. A

common ground of knowledge will result in better solutions. One step towards

this is the development of a statistical information model within Statistics

Norway based on the Generic Statistical Information Model (GSIM) described

in UNECE (2017b). This will create a common vocabulary and support the

communication between different types of subject areas and disciplines.

 Within the KOSTRA project R has only been used as a programming

language for implementing computational functions. In a modernised system

R may also be used in other ways, for example to produce interactive graphics

using shiny. Other countries are also planning similar systems as Norway.

Common standards, sharing and reuse are important key words. We look

forward to exchanging experiences and to discuss solutions.

References
 1. Foss, A. H., Langsrud, Ø. and Seierstad, A., 2017, “Methods Library as part of the

modernization of the statistical production in Norway”, Work Session on Statistical

Data Editing, The Hague, Netherlands, 24-26 April 2017, https://statswiki.unece.org/

download/attachments/125436234/Paper_hague.doc?version=1&modifi cationDate

=1487336416148&api=v2

 2. Lang, M., 2017. “checkmate: Fast Argument Checks for Defensive R Programming.”

The R Journal, 9(1), pp. 437–445. https://journal.r-project.org/archive/2017/RJ-

2017-028/index.html.

 3. Langsrud, Ø., 2017, “easySdcTable: Easy Interface to the Statistical

Disclosure Control Package”, R package on CRAN, https://cran.r-project.org/

package=easySdcTable

 4. Meindl, B., 2017, “sdcTable: Methods for Statistical Disclosure Control in Tabular

Data”, R package on CRAN, https://cran.r-project.org/package=sdcTable

 5. SDMX Technical Working Group, 2016. “VTL – version 1.1”, https://sdmx.org/wp-

content/uploads/VTL-1-1-review-User-Manual-20161017-fi nal.pdf, https://github.

com/statisticsnorway/java-vtl

 6. Thorud, A. B, Fløysvik, T, Abrahamsen, D., Tønseth, H., Berge, G., Foss, A. H.
and Hagemo. J. O. J., 2011, “System for beregning av nasjonale tall i KOSTRA II”

Notater2011/50, Statistics Norway (Norwegian only), https://www.ssb.no/offentlig-

sektor/artikler-og-publikasjoner/_attachment/99930?_ts=13d2044d230

 7. UNECE, 2017a, “Common Statistical Production Architecture”, https://statswiki.

unece.org/display/CSPA/Common+Statistical+Production+Architecture

 8. UNECE, 2017b, “GSIM Version 1.1”, https://statswiki.unece.org/display/gsim/Generi

c+Statistical+Information+Model

