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Modeling and Estimation Methods for Household Size in the Presence of 
Nonignorable Nonresponse Applied to the Norwegian Consumer 

Expenditure Survey 

Liv Belsby, Jan Bjørnstad and Li-Chun Zhang 1 

Abstract 

This paper considers the problem of estimating, in the presence of considerable nonignorable nonresponse, the number of 
private households of various sizes and the total number of households in Norway. The approach is model-based with a 
population model for household size given registered family size. We account for possible nonresponse biases by modeling 
the response mechanism conditional on household size. Various models are evaluated together with a maximum likelihood 
estimator and imputation-based poststratification. Comparisons are made with pure poststratification using registered family 
size as stratifier and estimation methods used in official statistics for The Norwegian Consumer Expenditure Survey. The 
study indicates that a modeling approach, including response modeling, poststratification and imputation are important 
ingredients for a satisfactory approach. 
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1. Introduction  
This work is motivated by the considerable nonresponse 

rate in the Norwegian Consumer Expenditure Surveys 
(CES) for private households, for example 32% in the 1992 
survey. Nonresponse involves both noncontact and refusal. 
We focus on the problem of nonignorable nonresponse that 
occurs when estimating the number of households of 
various sizes and the total number of households.  

We shall consider a completely model-based approach; 
modeling and estimating the distribution of household size 
given registered family size and the response mechanism 
conditional on the household size. This model takes into 
account that the nonresponse mechanism may be nonigno-
rable, in the sense that the probability of response is allowed 
to depend on the size of the household. The response model 
is used to correct for nonresponse. Model-based approaches 
with nonresponse included, sometimes called the prediction 
approach, have been considered by, among others, Little 
(1982), Greenlees, Reece and Zieschang (1982), Baker and 
Laird (1988), Bjørnstad and Walsøe (1991), Bjørnstad and 
Skjold (1992) and Forster and Smith (1998).  

For various models of household size and response we 
consider mainly two model-based approaches, a maximum 
likelihood estimator and imputation-based poststratification 
after registered family size. These methods are compared to 
pure poststratification and the methods in current use in 
CES. 
  

The main issue here is a comparison of models and 
methods with estimation bias as the basic problem. In 
addition, standard errors of the estimates and differences of 
the estimates, conditional on the sizes of post-strata 
determined by family size, are estimated using a bootstrap 
approach. In addition to assessing the statistical uncertainty 
of the estimators, this is done to help evaluate the extent to 
which differences between the proposed estimators are 
attributable to sampling error, nonresponse bias or both. 
However, in this evaluation we keep in mind the following 
quote from Little and Rubin (1987, page 67): “It is impor-
tant to emphasize that in many applications the issue of 
nonresponse bias is often more crucial than that of variance. 
In fact, it has been argued that providing a valid estimate of 
sampling variance is worse than providing no estimate if the 
estimator has a large bias, which dominates the mean 
squared error.” 

Section 2 describes the data-structure and the sample 
design of CES, and Section 3 considers modeling issues. 
Section 3.1 presents the various models for household size 
and response to be considered for the 1992 CES, Section 3.2 
describes the maximum likelihood method for parameter 
estimation, and in Section 3.3 the models are evaluated. A 
family size group model for household size and a logistic 
link for the response probability using household size as a 
categorical variable give the best fit of the models under 
consideration. Section 3.4 gives the estimated household 
size distributions for different family sizes and estimated 
response probabilities for different household sizes. 
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Section 4 considers model-based estimation, the impu-
tation method, imputation-based estimators and the variance 
estimation method. It is shown that for the chosen model for 
household size from Section 3.3, the maximum likelihood 
estimator and the imputation-based poststratified estimator 
are identical. 

Section 5 deals with the main goal of estimating the total 
number of household of various sizes based on the 1992 
CES, using the estimators in Section 4. The model that gave 
the best fit seems to work well for our estimation problem. 
We conclude that poststratification, response modeling and 
imputation are key ingredients for a satisfactory approach.  

 
2. Norwegian Consumer Expenditure Survey  
The population totals within household-size categories 

provide a more correct number of dwellings than the totals 
within family-size categories from the Norwegian Family 
Register. Furthermore, the authorities for evaluating even-
tual policy intervention aimed at housing construction use 
the estimated number of households. Estimating household-
size totals is therefore an important issue in social planning. 
It is invariably affected by nonignorable nonresponse, no 
matter what kind of survey one uses. Hence, it is a good 
illustration for how to handle nonresponse bias. We shall 
base our estimation on the Norwegian Consumer Expen-
diture Surveys (CES), where it is important to gain infor-
mation about the composition of households, since house-
hold size influences consumption. 

The actual CES, the survey for expenditure variables, is a 
sample of private households from all private households in 
Norway. This is done by selecting a sample of persons and 
including the whole households these persons belong to. 
Persons older than 80 years old are excluded since they 
often live in institutions. For our purpose, the units of inter-
est in the survey are persons between the ages of 16 and 80 
living in private households, and the variable of interest is 
the size of the household the person belongs to, which is 
observed only in the response sample of the persons 
selected.  

The sample design is a three-stage self-weighting sample 
of persons. That is, every person in the population has the 
same inclusion probability to the total sample. The first two 
stages select geographical areas in a stratified way, while at 
the third stage persons are selected randomly from the 
chosen geographical areas. The primary sampling units 
(PSU) at stage 1 consists of the municipalities in Norway. 
Municipalities with less than 3,000 inhabitants are grouped 
together such that each PSU consists of at least 3,000 
persons. The PSUs are first grouped into 10 regions and 
within each region stratified according to size (number of 
inhabitants) and type of municipality (i.e., industrial 

structure and centrality). Totally, we have 102 strata. Towns 
of more than 30,000 inhabitants are their own strata and 
therefore selected with certainty at stage 1. For the other 
strata, one PSU is selected with probability proportional to 
size. At the second stage, the selected PSUs are divided into 
three smaller areas (secondary sampling units, SSU) and 
one of these is selected at random. Finally, at the third stage, 
for each of the selected SSU, a random sample of persons is 
selected. The sample sizes for each selected SSU are 
determined such that the resulting total sample of persons is 
self-weighting. 

Our application is based on the data from the 1992 CES. 
CES is a yearly survey and since 1992 a modified Horvitz-
Thompson estimator, including a correction for nonresponse 
by estimating response probabilities given household size, 
has been employed (see Belsby 1995). The weights equal 
the inverse of the probability of being selected multiplied 
with the conditional probability of response given selected. 
Since 1993 the probability of response is estimated with a 
logistic model with auxiliary variables being place of 
residence (rural/urban), and household size. For most of the 
nonrespondents the family size is used as a substitute for the 
household size. 

A household is defined as persons having a common 
dwelling and sharing at least one meal each day (having 
common board). For a complete description of CES we 
refer to Statistics Norway (1996). In CES, the auxiliary 
variables known for the total sample, including the 
nonrespondents, are the family size, the time of the survey 
(summer/not summer), and the place of residence (urban/ 
rural). Families are registered in Norwegian Family Reg-
ister, (NFR), and may differ from the household the persons 
in the family belong to, both by definition and because of 
changes not yet registered. Hence, the registered family size 
from NFR differs to some extent from the household size. 
Initially, based on experience from previous surveys, all the 
auxiliary variables and household size are assumed to affect 
the response rate. 

Table 1 shows the data for the 1992 CES with a total 
sample of 1,698 persons. The households with size five and 
greater are collapsed due to the low frequency in the sample 
of households. We base our modeling and estimation on two 
corresponding tables, one for the persons in rural areas and 
one for the persons in urban areas. These data are given in 
table A1 in appendix A1. 

For example, the number 48 in cell (1,2) means that of 
the 162 persons registered to live alone in the response 
sample, 48 are actually living in a two-persons household. 
This is explained mostly by young people’s tendency to 
cohabitate without being married; see Keilman and 
Brunborg (1995). 
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Table 1 
Family and household sizes for the 1992 Norwegian Consumer Expenditure Survey 

 

Household size 

Family size 
 

 
1 

 
2 

 
3 

 
4 

 
≥ 5 

 
Total 

 
Nonresponse 

 
Response rate 

1 83 48 20 9 2 162 153 0.514 
2 9 177 37 4 3 230 160 0.590 
3 10 25 131 40 6 212 91 0.700 
4 2 13 37 231 17 300 123 0.709 
≥  5 1 4 4 17 181 207 60 0.775 

Total 105 267 229 301 209 1,111 587 0.654 

 

 

3. Modeling of Household Size and Nonresponse  
We shall assume a population model for the household 

size, given auxiliary variables, i.e., we model the conditional 
probability. To take nonresponse into account in the statis-
tical analysis, we must model the response mechanism, i.e., 
the distribution of response conditional on the household 
size and auxiliary variables. The sampling mechanism for 
persons is ignorable for the survey we consider, i.e., is 
independent of the population vector of household sizes. 
The statistical analysis is therefore done conditional on the 
total sample, following the likelihood principle (see 
Bjørnstad 1996). Hence, probability considerations based on 
the sampling design is irrelevant in the statistical analysis. 
This is the so-called prediction approach. However, when 
evaluating the estimation methods with regard to statistical 
uncertainty, we do this from a common randomization per-
spective as described in Section 4.3. 

For CES, the auxiliary vector consists of the family size, 
place of residence divided into rural and urban areas, and 
time of the data collection.  
3.1 The Models  

Let us first consider a simple model for the household 
size, denoted by Y. Let x  denote all auxiliary variables. The 
household size is assumed to depend only on the family size 
x, and as such is a model with a restricted parametric link 
function, but with no additional assumptions,   

,)|()|( , ixyiii pxyYPyYP ==== ix
 

(3.1) 

where 

 . of  valuepossibleeach for  , 1 , i
y

xy xp
i

=∑  

The model (3.1) is flexible in the sense that it does not 
include any restrictions on the assumed model function of 

.ix  The drawback is the high number of parameters 
compared with a model using a logistic type model with a 
linear, in ,x  link function (the function linking =YP(  

).with) xy  If nonresponse is ignored the estimates in this 
model would simply be the observed rates.  

Household size defines ordered categories. Thus a natural 
choice for a model is the cumulative logit model, known as 
the proportional-odds model (see McCullagh and Nelder 
1991), assuming (with yθ  increasing in )y  
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However, a goodness of fit test, with x  consisting of 
family size and place of residence, indicated that this model 
fits the data badly. Thus we choose to reject it. 

It is assumed that the probability of nonresponse may 
depend on the household size. For example, one-person 
households are less likely to respond than households of 
larger size since larger households are easier to “find at 
home”. Nonresponse is indicated by the variable ,R  where 

1=iR  if person i  responds and 0 otherwise. Let sR  be the 
vector of these indicators in the total sample. From 
Bjørnstad (1996), the response mechanism (RM), i.e., the 
conditional distribution of sR  given the x – values in the 
population and the y – values in the total sample, is defined 
to be ignorable if it can be discarded in a likelihood-based 
analysis. This means that RM is ignorable if this conditional 
distribution of sR  does not depend on the unobserved 

,values−y  coinciding with the definition used by Little and 
Rubin (1987, pages 90, 218). For our case it is assumed that 
all pairs ),( ii RY  are independent. Then RM is ignorable if 

iY  and iR  are independent. Hence, nonignorable response 
mechanism is equivalent to 

).|(  fromdifferent  areboth  then and

)1,|()0,|(

iii

iiiiiiii

yYP

ryYPryYP

x

xx

=

==≠==
 

Thus estimating the parameters in the model for =YP(  
)| xy  using only the response sample, ignoring that the 

probability of response depends on the household size, would 
most likely give biased estimates for the unknown para-
meters. Also the poststratification estimator would give 
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biased estimates because it assumes that the distribution of R  
only depends on the auxiliary .x  E.g., the observed lower 
response rate among one-person families indicates that the 
same may hold for one-person households. If so, the esti-
mated probability of household size 1, based on respondents 
only, would be too small. Poststratification with respect to 
family size will most likely correct only some of this bias. 

The model for the probability of response, given 
auxiliary variables and household size ,iy  is assumed to be 
logistic. It depends on the auxiliary variables ,iz  which 
includes part of ,ix  expressed by  

.
)exp(1

1
),|1(

 : ),RM1(

i
i

z
z

z

t
i

ii
y
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y
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(3.2)

 

Here, α  and γ  are scalar parameters and ψ  is a vector. 
The variable iy  has an order. Motivated by this fact, and to 
avoid introducing many parameters, iy  is used in (3.2) as 
an ordinal variable rather than a class variable. Thus the 
logit function, 

,
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is linear in .iy  To avoid the assumption of linear logit in 
,iy  we also consider a model with iy  as a categorical 

variable, i.e., 
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where the indicator variable )( iy yI  equals 1 if yyi =  and 
0 otherwise. The drawback with this model is that it 
includes three parameters more than model (3.2).  
3.2 Maximum Likelihood Parameter Estimation  

All the selected persons in the sample are from different 
households (duplicates have been removed), The population 
model then assumes that the household sizes iY  are 
statistically independent. For this variable, interviewer- or 
cluster- effect plays no role. 

Let us consider the likelihood function for estimating the 
unknown parameters, assuming that all pairs ),( ii RY  are 
independent and response model RM1 given by (3.2). To 
simplify notation we relabel the observations such that 
observations 1 to rn  are the respondents and observations 

1+rn  to n  are the nonrespondents. With response model 
RM2 the expression for the likelihood is of the same form 
with (3.3) replacing (3.2).  

For the respondents let ).|1( ix=∩== iiii RyYPL  
Then, for model (3.1)  

rxyt
i

i nip
y

L
ii
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For the nonrespondents let ).|0( iii RPL x==  Then 
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 (3.5) 

The likelihood function for the entire sample of persons 
from different households is given by  

.),,,,(
1∏ =

=ψγαβθ n

i iLL  (3.6) 

For ir Lni ,...,,1=  is according to (3.4) and for =i  

ir Lnn ,...,,1+  is given by (3.5). 
Estimates are found by maximizing the likelihood 

function (3.6). The maximization was done numerically 
using the software TSP (1991) see Hall, Cummins and 
Schnake (1991). The optimizing algorithm is a standard 
gradient method, using the analytical first and second 
derivatives. These are obtained by the program, saving us a 
substantial piece of programming. The model fitting is 
based on the chi-square statistic and on the ,values−t  
provided by TSP, where the standard errors are derived 
from the analytical second derivatives. The values−t  have 
to be interpreted with some care, since the unbiasedness of 
the estimated standard errors depends on how well the 
model is specified as well as the number of observations 
compared with the number of parameters.  
 
3.3 Evaluation of the Models for Household Size and 

Response  
We present the fit of the models with the Pearson 

goodness-of-fit statistics. The model study is based on the 
1992 CES. The parameters are considered to be significant 
when the absolute values−t  are greater than 2. However, 
we do not want a model that is too restrictive, and therefore 
some variables are kept even though their absolute  

values−t  are less than 2. 
In the response models RM1 and RM2 we use the 

variable ,z=z  place of residence. We let 0=z  if rural area 
and 1=z  if urban area. It was observed in the CES 

881986 −  and CES 1992 – 94, see Statistics Norway (1990, 
1996), that there is more nonresponse during the summer. 
Therefore, the time of the survey was also included in the 
model, that is whether or not the data were collected in the 
period May 21 – August 12. However, the time of the 
survey was found to be nonsignificant, with value−t  
clearly less than 2. Also the family size was found to be 
nonsignificant. But if the household size is omitted in the 
response model then the family size turns out to be 
significant. 
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Ideally, we want to take a look at the empirical logit 
function for response with respect to the household size. 
However, household size is unavailable for the non-
respondents. As a replacement we plot the logit-function 
against the family size; see figure 1. From family size one to 
two the two functions for rural and urban families increase 
in a fairly parallel way . However, for family size three and 
four the logit functions depart from being linear and parallel. 
Thus we suspect that coding the household size as a 
categorial variable, as in model RM2, will give better fit 
than restricting the logit functions to be parallel for rural and 
urban and linear with respect to the household size, as in 
model RM1.  

In order to test the goodness of fit of the models, we 
consider the Pearson chi-square statistic, conditional on the 
auxiliary variables ., zx  Given rural or urban type of 
residence and registered family size, there are six possible 
outcomes; household sizes 5...,,1  and nonresponse. 
Altogether there are ten multinomial trials and sixty cells. 
For family sizes (1,2) and (4,5), the extreme household sizes 
(4,5) and (1,2), respectively, are combined because the 
expected sizes under the models are too small. This reduces 
the number of cells to 52. The degrees of freedom (d.f.) is 

calculated as: number of cells – number of trials – number 
of parameters. For model (3.1) & RM1 ),,( zy  d.f. = −52  

−10 (20 + 3) = 19, and for (3.1) & RM2 ),,( zy  d.f. = 
−52 −10 (20 + 6) = 16. For model (3.1) & RM1 ),( zy  

the Pearson statistic 2χ  is 26.35 and the value−p  is 0.121. 
And for model (3.1) & RM2 ),( zy 2χ  is 21.77 and the 

−p value is 0.151.  
By studying the standardized residuals, (observed- 

expected) / ,)observedar(V̂  we find that the main reason 
for the better fit is that model (3.1) & RM2 ),( zy  does a 
better job of predicting the observed counts for the urban 
area where the response rate is lowest (see appendix A1). 
Thus the data indicates that coding the household size as a 
categorial variable, as in RM2, improves the fit compared to 
using it as an ordinal variable. The model (3.1), with the 
restricted parametric link function, combined with RM2 is 
the best of the models we have considered so far.  
3.4 Estimated Household Size Distribution and 

Response Probabilities  
Table 2 displays the estimates for the population model 

(3.1) together with the logistic response model RM2 in 
(3.3).

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 1.  The logit function for the empirical response rate with respect to family size 1, ..., 5 in urban and rural areas, 
respectively. The computation is based on respondents and nonrespondents from Table 1 in Appendix A1. 

 
Table 2 

1992 CES. Parameter Estimates, in Percentages, for the Population Model with a Restricted Parametric  
Link Function, ,, xyp  Combined with the Logistic Response Model RM2 ).,( zy  In Parentheses  

are the Estimates for the Population Model, Ignoring the Response Mechanism 
 

Household size 
Family size, x 1 2 3 4 5 or more 
1 60.01 (51.23) 26.75 (29.63) 8.35 (12.35) 4.09 (5.56) 0.80 (1.23) 
2 5.27 (3.91) 79.80 (76.98) 12.48 (16.09) 1.47 (1.74) 0.98 (1.30) 
3 7.53 (4.72) 14.45 (11.79) 56.67 (61.79) 18.85 (18.87) 2.50 (2.83) 
4 1.06 (0.67) 5.31 (4.33) 11.38 (12.33) 77.20 (77.00) 5.05 (5.67) 
5 or more 0.84 (0.48) 2.60 (1.93) 1.96 (1.93) 9.05 (8.21) 85.55 (87.44) 
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Let us interpret some of the values in the household 
model. Taking the response mechanism into account has 
largest effect on the estimated household distribution for 
one-person families. The probability that a household size 
equals one, given that the family size is one, is estimated as 
60.01%. The estimate based on the traditional approach, 
ignoring the nonresponse, is 51.23%. The response model 
“adjusts” the observed rate among the respondents to a 
higher value. This seems reasonable since the rate of non-
respondents is higher for small households. The estimated 
probability of household size five or more, given family size 
of five or more is 85.55%, which differs little from the 
observed rate among the respondents, 87.44%. This 
indicates that, given family size five or more, the household 
size distribution is about the same among respondents and 
nonrespondents. 

Table 3 presents the estimated response probabilities 
based on RM2 in combination with the population model 
(3.1). Furthermore, we present estimated response proba-
bilities based on a saturated model, with perfect fit,  
presented in Section 4.2. The model, defined by (4.9), 
assumes that the response probability for persons with the 
same household size within rural/urban area, respectively, is 
identical for different family sizes. Moreover, the model for 
household size depends on place of residence and family 
size, but with no restriction on the link function. We note 
that RM2 ),( zy  satisfies (4.9b), but is more restrictive. 
Model (4.9) allows for more freedom than model (3.1) with 
RM2 ).,( zy   
 

Table 3 
Estimated Probability of Response Based on the Logistic  
Model RM2 in Combination with (3.1), and the Saturated 

Model (4.9). The Estimates are Given in Percentages 
 

Household size 
Place of residence 1 2 3 4 5 or more 
 Estimated response probabilities for 

model RM2 
Rural 47.77 60.90 79.16 73.26 81.52 
Urban 38.92 52.04 72.44 65.62 75.46 
 Estimated response probabilities for 

the saturated model 
Rural 50.79 62.37 76.90 70.57 83.07 
Urban 35.17 50.85 74.79 70.68 72.89  
The estimated response probabilities reflect the lower 

response rate among one-person households, and the lower 
response rate in urban areas. Households of size five and 
higher have the highest response rate. The models estimate, 
surprisingly maybe, that the the probability of response is 
higher for households of size three than for households of 
size four. This may be explained by the fact that women 
often choose to have two children, and that three-person-
households mostly consist of mother, father and a small 
child. Such a family will tend to stay at home and thus be 

more accessible than a typical four-persons-family with two 
older children.   

The higher estimated response rate for households of size 
three compared to size four is equivalent to the ratio 

)0|3(/)1|3( ==== RYPRYP  being greater than the ratio 
).0|4(/)1|4( ==== RYPRYP  This is consistent with 

the household distribution in table 2, where we estimate that 
),1|4()4( ==≈= RYPYP  i.e., ≈== )0|4( RYP =YP(  

)1|4 =R . On the other hand, the estimates in table 2 indicate 
that )3()1|3( =>== YPRYP  which means that =YP(  

)0|3()1|3 ==>= RYPR . 
We see that the logistic model RM2 combined with the 

population model with the restricted parametric link xyp ,  
acts as a smoother of the estimates based on the saturated 
model in (4.9), because of the added assumption of parallel 
logits of the response probabilities for urban and rural areas. 

 
4. Estimators for Household Size Totals  

In this section we present the estimators for household 
size totals and the method for variance estimation. We use a 
maximum likelihood estimator with the restricted para-
metric link function in (3.1) as population model. It is 
shown that this estimator is identical to an imputation-based 
poststratified estimator, which again turns out as a standard 
poststratification when the response mechanism is ignored. 
Furthermore, we present an imputed poststratified estimator, 
based on a saturated model for household size and response 
probability.   
4.1 Estimators Based on a Restricted Parametric 

Link Function as Population Model  
With yN  denoting the total number of persons living in 

households of size ,y  the number of households of size y  
equals ./yNH yy =  The total number of households is 
denoted by ∑= y yHHH .,   

The statistical problem is to estimate yH  for 
Jy ...,,1=  and .H  The largest size J is chosen such that 

there are few households of size greater than .J   Strictly 
speaking, JH  is the number of households of size J  or 
more, and likewise for .JN  In our application we choose 

5=J  due to the low frequency in the sample of households 
of size greater than five. We can write ,)(1∑ = == N

i iy yYIN  
where the indicator function =iYI ( 1) =y  if ,yYi =  and 0 
otherwise. Hence, with ),...,,( 1 Nxxx =  

.)|(
1

)|(
1
∑

=
==

N

i
iiy yYP

y
HE xx  

A maximum likelihood based estimator for yH  can be 
obtained by estimating ),|( xyHE  i.e., replacing 

=iYP( )| iy x  by the maximum likelihood estimator 
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).|(ˆ
ii yYP x=  The data is stratified according to family 

sizes ,...,,1 K  where the last category contains persons 
belonging to families of sizes .K≥  Using the model with 
the restricted parametric link function, defined in (3.1), Y  is 
assumed to depend only on the family size ,x  and the 
estimator takes the form 

∑ = == K

x xy xyYPM
y

H
1

)|(ˆ1ˆ  (4.1) 

where )( Kx MM  denotes the number of persons in the 
population with registered family size ).( Kx ≥  The xM ’s 
are known auxiliary information from the Norwegian 
Family Register.   

A common approach to correct for nonresponse is by 
imputation of the missing values in the sample.  Based on 
the estimated distribution for Y  for a given family size and 
place of residence for the nonrespondents, ,|(ˆ xyYP =  

),0, =rz  we assign the nonrespondents to the values 
5...,,1  in proportions given by )0,,|(ˆ == rzxyYP  for 

.5...,,1=y  Let )0(*
xyn ))1(( *

xyn  be the number of 
imputed values with family size x  and household size ,y  
for rural (urban) areas and let )0(xum ))1(( xum  be the 
number of missing observations for persons in rural (urban) 
areas with family size .x  Then 

1.0,   ,)0,,|(ˆ)()(* ===⋅= zrzxyYPzmzn xuxy  (4.2) 

and 
)1()0( ∗∗∗ += xyxyxy nnn  

is the total number of imputed values with family size x  
and household size ,y  i.e., ∗

xyn  is the estimated expected 
number of households of size ,y  given family size x  and 

.0=r  
The following general result holds, showing that with 

population model (3.1), the maximum likelihood estimator  
(4.1) is identical to an imputation-based poststratified 
estimator.   
Theorem. Assume model (3.1) for .Y  That is, =YP(  

=),| zxy xyp ,  is independent of ,z  but otherwise the 

xyp , ’s are completely unknown with the only restriction 
,1, =∑ y xyp  for all values of .x  The response mechanism 

is arbitrarily parametrized, i.e., no assumption is made about 
).,,|1( zxyYRP ==  Then the maximum likelihood 

estimates for xyp ,  
are given by, for ,...,,1 Kx =  

xux

xyxy
xy mm

nn
p

+
+

=
∗

,ˆ , 

where xyn  is the number of respondents belonging to a 
family of size x  and household size )(, Kx mmy  is the 
number of respondents belonging to families of size 

),( Kx ≥  and ).1()0( xuxuxu mmm +=   

Proof. See Appendix A2.  
The theorem implies that the estimator can be written as the 
imputation-based poststratified estimator, using family size 
as the stratifying variable , 

.
1ˆ

1post, ∑ =

∗

+
+

= K

x
xux

xyxy
x

I
y mm

nn
M

y
H  (4.3) 

Assuming ignorable response mechanism and using the 
model (3.1), the likelihood function is given by 

).|(1 iii
n
i xyYPr =∏ =  Then the maximum likelihood esti-

mate =YP (ˆ )| xy  is simply the observed rate among the 
respondents with household size ,y  given family size .x  
Thus the maximum likelihood estimator turns out to be 
identical to the standard poststratified estimator, with family 
size as the stratifying variable, 

.
1ˆ

1post, ∑ == K

x
x

xy
xy m

n
M

y
H  (4.4) 

For a general study of poststratification see, for example 
Holt and Smith (1979) and Särndal, Swensson and Wretman 
(1992, chapter 7.6). 

To illustrate the effects of nonresponse modeling and 
poststratification, we also present estimates based on the 
regular expansion estimator, given by 

r

y

ey n

n
N

y
H ⋅= 1ˆ

,  (4.5) 

and the imputation-based expansion estimator given by 

.
1ˆ

, n

nn
N

y
H

yyI
ey

∗+
⋅=  (4.6) 

Here, yn  is the number of respondents in households of 
size rny ,  is the total number of respondents, and 

=∗
yn .∑ ∗

x xyn  The estimator (4.5) does not seek to correct 
for nonresponse nor use the family population distribution 
as a post-stratifying tool to improve the estimation, while 
estimator (4.6) tries to take the response mechanism into 
account, but cannot correct for nonrepresentative samples.  
4.2 Imputation-based Poststratification with a 

Saturated Model  
We now proceed to an intuitive method of imputation 

that was used to estimate response probabilities for a 
modified Horvitz-Thompson estimator in the official 
statistics from the 1992 CES (described in Belsby 1995). 
We will use this imputation method for the poststratified 
estimator (4.3). 

The imputation method consists of distributing, within 
rural/urban area, the )( zmxu  nonresponse units over the 
household sizes 5...,,1  in such a way that, given 
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household size, the rate of nonresponse is the same for all 
family sizes. It implicitly assumes that the response 
probability for persons with the same household size within 
rural/urban area is identical for different family sizes. 
Denote the number of nonresponse persons with family size 
x  and household size y  and place of residence z  obtained 
in this manner by ).( zhxy  The corresponding number 
among the respondents is ).( znxy  The values of )( zhxy  
are determined by the equations 

1.0,  ,
)()(

)(

)()(

)(
=

+
=

+
z

znzh

zh

znzh

zh

iyiy

iy

xyxy

xy

 

(4.7) 

When ,0)( =znxy  we let .0)( =zhxy  The equation 
(4.7) is solved under the conditions  

1.0,  and5 4, 3, 2, 1,   );()( ===∑ zxzmzh
y

xuxy  (4.8) 

Solving (4.7) and (4.8) requires, for each value of ,z  one 
row ...,),(),(( 21 znzn xx ))(5 znx  of nonzeros, which 
holds for our case. The imputed values )( zhxy  determined 
by (4.7) and (4.8) correspond to the imputation method 
described by (4.2) for the following model: 

zxypzxyYP ,,  ) ,|( ==  with no restrictions (4.9a) 

,  ) ,  ,|1( , zyqzxyYRP ===  independent of .x  (4.9b) 

This can be seen as follows: 
For the ten multinomial trials determined by the different 

−),( zx values, we have 50 unknown cell probabilities 
).,|1,(, zxRyYPzyx ===π  With no restrictions on cell 

probabilities, the maximum likelihood estimates (mle) are 
given by observed relative frequencies,  

.
)()(

)(
ˆ , zmzm

zn

xux

xy
zyx +

=π  

This also holds when .0)( =znxy  Now, it can be shown 
that there is a one-to-one correspondence between =π  

),( 10 ππ  and ,),,,( 1100 qpqp  where =π= yzyxz :( ,π  
,)5...,,1;5...,,1 =x )5...,,1;5...,,1:( , === xyp zyxzp  

and .)...,,( ,5,1 zzz qq=q  Since ,,,, yzzxyzyx qp ⋅=π  the 
mle of zyxp ,  and zyq ,  must satisfy 

)()(

)(
ˆˆ ,, zmzm

zn
qp

xux

xy
zyzyx +

=⋅
 

(4.10) 

and are uniquely determined by zyx,π̂ . 
Consider ),( zhxy  given by (4.5) & (4.6). Let 

∑= x xyy zhzh )()(  and .)()( ∑= x xyy znzn  From (4.7), 

0. )(if,
)()(

)(

)()(

)(
>

+
=

+
zn

znzh

zh

znzh

zh
xj

xjxj

xj

jj

j

 

(4.11) 

From (4.10) and (4.11) we have that the following 
intuitive estimates also are mle. 

)()(

)(
ˆ , zhzn

zn
q

yy

y
zy +

=  (4.12) 

)()(

)()(
ˆ ,, zmzm

zhzn
p

xux

xyxy
zxy +

+
=  (4.13) 

(also when ).0)()( == zhzn xyxy   

(We can also show (4.12) and (4.13) by maximizing the 
loglikelihood directly.) Next, we show that the imputed 
values (4.2) for the model (4.9) equal h zxy ( ) . From (4.2), 
we have ⋅=∗ )()( zmzn xuxy ).0,,|(ˆ == rzxyYP  Under 
model (4.9) and estimates (4.12) and (4.13), we find that 

,
)(

)(

)(

)()()(

ˆ1

ˆˆ

),|0(ˆ
),|1,(ˆ),|(ˆ

)0,,|(ˆ

,

,,

zm

zh

zm

znzhzn

p

zxRP

zxRyYPzxyYP

RzxyYP

xu

xy

xu

xyxyxy

y zyx

zyxzyx

=
−+

=

π−
π−

=

=
==−=

===

∑
 

and it follows that )()( zhzn xyxy =∗ . If ,0)( =zn xy  then 
,0ˆˆ ,,, =π= zyxzxyp  and .0)( =∗ zn xy  We note that model 

(4.9) is saturated and will, from (4.10), give perfect fit. 
The imputation-based expansion estimates (4.6), with 

model (4.9), are identical to the modified Horvitz-
Thompson estimates with )]()([/)(ˆ , znznznq yyyzy

∗+=  
(from (4.12)) as the estimated response probabilities, used in 
the official statistics from the 1992 CES. This follows from 
the fact that the modified Horvitz-Thompson estimator of 

yN  is given by 

,
)(ˆ

HT, ∑
∈ π

=
=

rsi i

i
y

yYI
N  

where Pi =π ( person i  is selected to the sample and 
responds). Hence,  

izyiiiii q
N
n

yYzxRP
N
n

,ˆ),,|1(ˆ ====π  

and 

.
ˆ

)1(

ˆ

)0(
ˆ

1,0,
HT, ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

y

y

y

y
y q

n

q

n

n
N

N  (4.14) 

Here, 

.

))1()1(/()1(

)1(

))0()0(/()0(

)0(

ˆ
HT,

n

nn
N

nnn

n

nnn

n

n

N

N

yy

yyy

y

yyy

y

y

∗

∗∗

+
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+

+

=
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So this modified Horvitz-Thompson estimator suffers 
from the same negative feature as the imputation-based 
expansion estimator (4.6); it cannot correct for the bias in an 
unrepresentative sample. For a general description of the 
modified Horvitz-Thompson method see, e.g., Särndal et al. 
(1992, chapter 15).  
4.3 Variance Estimation  

Variance estimation of the various estimates are obtained 
by bootstrapping. It  can be carried out under the modeling 
or quasi-randomization framework (Little and Rubin 1987). 
For instance, to estimate the variance under model (3.1) and 
RM1 (3.2), we may apply the parametric bootstrap with the 
estimated parameters (Efron and Tibshirani 1993). How-
ever, it is not clear how to compare the variances estimated 
under the alternative models. We have therefore chosen to 
estimate the variances of the different estimators under a 
common quasi-randomization framework. We assume 
simple random sampling conditional to the family size, 
which is the only assumption we make for variance 
estimation. Unconditionally we have a self-weighting, but 
not simple random, sample, and therefore this is a rather 
crude approximation to the actual conditional sampling 
design. However, for a comparative study of the estimators 
the approximation will serve this purpose well. The 
nonresponse indicator ir  is considered to be a constant 
associated with person i . We draw the bootstrap sample, 
resampling ),1,,( =iii rzy )0,( =ii rz  randomly with 
replacement, as described by Shao and Sitter (1996, Section 
5), within each post-stratum of }.;{ xxi ï =  While the sizes 
of the sample post-strata are fixed, both the number of 
nonrespondents and the number of persons from urban or 
rural areas vary from one bootstrap sample to another. We 
calculate the bootstrap estimates in the same way as based 
on the observed data. In particular, the bootstrap data are 
imputed in the same way as the original data if the estimator 
is imputation-based. Finally, the estimated variances and 
standard errors are obtained by the usual Monte Carlo 
approximation based on 500 independent bootstrap samples. 

 
5. Estimated Number of Households of Different 
       Sizes Based on the 1992 Norwegian Consumer 

        Expenditure Survey  
In this section we present the estimated number of 

households of sizes one to five and more, and the total 
number of households for the population in Norway aged 
less than eighty years old. The estimation uses the data from 
CES 1992, and is based on the estimators considered in 
Section 4. To compute the estimates we need the number of 
families of different sizes in the population, i.e., ,xM  at the 
time of the 1992 survey. The actual number at the time of 

the survey is not recorded. As an approximation we use the 
numbers at January 1, 1993. These are given in table 4.   

Table 4 
Families and Persons with Age Less than 80 Years  

in Norway at January, 1993 
 

Number of persons in family Families Persons 
1 person 793,869 793,869 
2 persons 408,440 816,880 
3 persons 261,527 784,581 
4 persons 266,504 1,066,016 
5 or more persons 127,653 670,528 
Total 1,857,993 4,131,874  

Note that the average family size for families with 5 or 
more persons is 670,528/127,653 = 5.25. We use 5.25 as an 
estimate of the average household size for households of 
size 5 or more, and divide by 5.25 instead of 5 in all esti-
mates of .5H  

 
5.1 Maximum Likelihood Estimation and 

Poststratification  
The estimated household distributions are presented in 

table 5. The estimates are based on the maximum likelihood 
(m.l.) estimator (4.1) using the population model with the 
restricted parametric link function xyp ,  in combination with 
the response models RM1 ),( zy  and RM2 ).,( zy  To 
illustrate the effect of nonresponse modeling versus post-
stratification we also present the standard poststratified 
estimator (4.4). We recall that this is the maximum likely-
hood estimator when ignoring the response mechanism. 
Furthermore, we present the estimated household size 
distribution based on the imputation-based poststratification 
(4.3) with the saturated model (4.9). For assessing the 
sampling variability of the different estimators, the esti-
mated standard errors are also included. 

The three models that take the response mechanism into 
account give higher total number of households. They also 
give considerable higher numbers of one-person-house-
holds. This seems sensible since we expect the one-person 
households to have the highest nonresponse rate. And thus, 
these estimates are most influenced by taking the response 
mechanism into account. We note that the restricted para-
metric link model (3.1) together with the logistic response 
model RM2 ),( zy  gives practically the same poststratified 
estimates as model (4.9), with also approximately the same 
standard errors. Because of the freedom of model (4.9), with 
perfect fit, it seems that model (3.1) & RM2 ),( zy  works 
well for estimating the number of households of different 
sizes. Regarding the uncertainty of the estimates, we see as 
one might expect that the standard errors typically seem to 
increase with the number of unknown parameters in the 
underlying model. Also, the total number of households is 
rather accurately estimated, not counting possible bias, 
while it’s clearly most difficult to estimate the number of 
one-person households.  
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In order to evaluate the extent to which the differences 
between the estimates are due to sampling error or non-
response bias, we consider the estimated standard errors of 
the differences of the point estimates. Some of these are 
given in table 6, using mostly the imputation-based post-
stratification with the saturated model as a reference. For 
short, we use the terms Est1 – Est4 for the estimates defined 
as they appear in table 5: 
 

Est1: M.l. estimator based on population model xyp ,  
and response model RM1 

 

Est2: M.l. estimator based on population model xyp ,  
and response model RM2 

 

Est3: Imputation-based poststratification based on the 
saturated model (4.9) 

 

Est4: Poststratified estimator without imputation.  
Based on tables 5 and 6 we can conclude that Est4 and 

Est3 have different expected values in estimating ,, 31 HH  
.and5 HH  Regarding the other comparisons, we see that 

in estimating 3H  there is a significant difference between 
Est1 and Est2/Est3, and note from earlier discussions in 
Section 3.3 that RM2 gives a better fit to the data than RM1.  

The estimates based on the expansion estimator eyH ,
ˆ , 

given by (4.5), in 100’s, are 390,500, 496,500, 283,900, 
279,900, 148,000 and 1,598,800 with estimated standard 
errors equal to 33,100, 21,700, 14,600, 11,600, 6,100 and 
23,700 for ,and...,, 51 HHH  respectively. The standard 
errors for the differences between these estimates and the 
Est3-estimates are 52,800, 30,900, 19,100, 10,800, 5,400 
and 32,000 for HHH and...,, 51  respectively. These 
expansion estimates indicate serious bias due to non-
response, especially the estimates for ,and, 51 HHH  

with poststratification correcting for some of the bias 
(probably about 50% for the estimates of ).and1 HH  We 
also note that the standard errors for the poststratified 
estimator and this simple expansion estimator are about the 
same. So by reducing the bias with poststratification one 
reduces the total error as well. 

Poststratification corrects for the bias caused by the 
discrepancy between the family size distributions in the 
response sample and the population. From table 1 and table 
4 we see that these family size distributions are given by (in 
percentages), for :5...,,1=x  

Response sample: 14.6 – 20.7 – 19.1 – 27.0 – 18.6 
Population: 19.2 – 19.8 – 19.0 – 25.8 – 16.2. 

Since the number of one-person families is much too low 
in the response sample, so will the expansion estimate of 

1H  be. With post strata determined by family size, post-
stratification corrects for the family size bias in the response 
sample, but does implicitly assume that nonrespondents and 
respondents have the same household size distribution, for a 
fixed family size. Or, in other words, the respondents are 
treated as a random subsample of sampled units with the 
same family size, as mentioned by Little (1993). This is 
most likely not the case. We recall that the family size 
variable was not significant when the household variable 
was included in the response models. Thus it seems 
reasonable to assume, as in our response models, that 
response rates will vary with the actual household sizes 
rather than the registered family sizes. Typically, estimates 
of the number of one-person households will be biased 
when the nonrespondents are ignored.  

 
Table 5 

Estimated Household Totals for Persons Aged Less than 80 Years in Norway at January 1, 1993, in Units of 100. 
In Parentheses, the Estimated Standard Error of the Estimates 

 

 Maximum likelihood estimator with nonignorable response 
mechanism 

Imputation-based 
poststratification 

Ignoring the response 
mechanism 

Household 
size, y 

Population model 
xyp ,

 
and 

response model 
RM1 ),( zy  

  

% Population model 
xyp ,

 
and  

response model 
RM2 ),( zy  

% Saturated population 
and response model 

% Poststratified 
estimator 

% 

1 558,800 
(38,900) 

32 595,400 
(48,000) 

34 596,600 
(53,500) 

34 486,000 
(35,800) 

29 

2 520,200 
(20,600) 

30 525,800 
(27,400) 

30 523,600 
(29,800) 

30 507,800 
(20,000) 

30 

3 278,900 
(13,800) 

16 249,100 
(20,300) 

14 250,000 
(19,800) 

14 286,200 
(14,100) 

17 

4 258,900 
(9,800) 

15 269,000 
(11,600) 

15 268,900 
(11,500) 

15 270,600 
(10,100) 

16 

≥ 5 125,800 
(4,700) 

7 126,000 
(5,100) 

7 126,200 
(5,000) 

7 131,300 
(4,700) 

8 

Total 1,742,600 
(25,600) 

100 1,765,300 
(29,700) 

100 1,765,300 
(31,900) 

100 1,681,900 
(23,300) 

100 

 
 

Survey Methodology, December 2005                                                                                                                                13



 

 
Statistics Canada, Catalogue No. 12-001

Table 6 
Estimated Standard Errors of the Differences of the Point Estimates in Table 5 

 

Household size Est1 – Est2 Est1 – Est3 Est2 – Est3 Est4 – Est3 
1 29,700 37,000 16,600 42,400 
2 19,300 22,200 8,800 23,100 
3 15,400 15,200 5,300 15,500 
4 6,700 6,500 1,800 6,600 
≥ 5 1,700 1,700 500 1,900 
Total 15,300 18,800 8,900 23,300 

 
After having corrected for nonresponse bias by com-

pleting the sample with imputed values, the sample itself 
may be skewed compared to the population. To illustrate the 
effect of poststratification to correct for this, we shall 
compare, using the saturated model (4.9), the imputation-
based poststratified estimates Est3 with the imputation-
based expansion estimates given by (4.6): 583,900, 567,700, 
244,300, 259,300, 122,400 and 1,777,600 for ...,,1H  

,and5 HH  respectively. As noted in Section 4.2, see 
(4.14), these estimates are identical to the modified Horvitz-
Thompson estimates. The standard errors for these estimates 
are practically the same as for Est3. Hence, the alternative 
poststratified estimation methods based on nonignorable 
response models have standard errors at least no worse than 
the modified Horvitz-Thompson estimator. So if one 
reduces the bias with the alternative methods, one reduces 
the total error too. The standard errors of the differences 
between Est3 and this modified Horvitz-Thompson esti-
mator in the estimates of ...,,1H 5H Hand  are 3,500, 
2,200, 1,100, 600, 200 and 2,100 respectively. Clearly these 
two methods give significantly different estimates for all 
household size totals. In this comparison, one feature stands 
out. The expansion estimate of the number of two-persons 
households, 567,700, is clearly too high, as seen by com-
paring the family size distributions in the total sample and 
the population (in percentages), for :5...,,1=x   

Population: 19.2 – 19.8 – 19.0 – 25.8 – 16.2  
Sample: 18.6 – 23.0 – 17.8 – 24.9 – 15.7.  

The sample proportion of persons in two-persons fami-
lies is much too high, and even though we have corrected 
for nonresponse bias, the expansion estimator, and then also 
the modified Horvitz-Thompson estimator cannot correct 
for a nonrepresentative sample. This will necessarily lead to 
biased estimates of .2H  We need poststratification to 
correct for a skewed sample. One can regard the difference 
in expected values for these estimators of 2H  as being 
close to the bias for the modified Horvitz-Thompson esti-
mator, and note that an approximate 95% confidence 
interval for this difference is (39,800, 48,400). 

For robustness considerations we also present the esti-
mates from the cumulative logit model mentioned in Sec-
tion 3.1 together with RM1 ),,( zy  which we know fits the 

data poorly. They are, in 100’s: 591,800, 501,000, 265,200, 
267,300, 128,200 and 1,753,500 for ...,,1H  ,and5 HH  
respectively. Compared to table 5, this seems to indicate that 
a reasonable model for response plays a more important role 
than a good population model. It is also evident that 
nonresponse modeling makes a difference, as seen when 
compared to poststratification and simple expansion.   
5.2 Comparison with the Currently Used Estimates 

in CES, the Quality Survey for the 1990 Census 
and a Projection Study  

Since 1993, an alternative, computationally simpler, 
modified Horvitz-Thompson estimator of type (4.14) has 
been in use in the production of official statistics from CES, 
see (Belsby 1995). We recall from Section 2 that the 
weights are the inverse sampling probabilities of the 
households, multiplied with the estimated probability of 
response. The response probabilities are estimated using a 
logistic model similar to RM2 ),( zy  with place of residence 
and household size as explanatory variables. For the 
nonrespondents with unknown household size the registered 
family size is used instead, replacing (3.5). Thus, the 
weights may be regarded as an approximation to using (3.5). 
Of course, (3.5) is possible only when a population model is 
considered, which CES has not done. Table 7 presents 
estimated household distribution based on this CES-
modified Horvitz-Thompson estimator.  

The quality survey for the Census 1990, PES 1990, 
contains 8,280 respondents and uses practically the same 
household definition as CES. The response rate was 95%. 
The yH – estimates uses poststratification with respect to 
household size in the Census. However, no attempts were 
made to correct for possible nonresponse bias with respect 
to actual household size. PES deals with the whole 
population. Table 7 has the estimates for the 0 – 79 age 
group with the same poststratification method as in PES. 

Table 7 also presents estimates based on the Household 
Projections study by Keilman and Brunborg (1995). This 
study simulates household structure for the period 1990 to 
2020. The data sources are 28,384 individuals from the 
1990 Population and Housing Census and 1988 Family and 
Occupation Survey. Keilman and Brunborg project for the 
whole population in 1992. We adjust their estimates to the 
0 – 79 age group.  
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Table 7 
Estimated Household Size Totals for Persons Less than 80 Years in Norway at January 1, 1993  

with CES-modified Horvitz-Thompson, PES 1990 and Projections, in Units of 100 
 

Household size CES-Modified 
Horvitz-Thompson 

% PES 1990 % Projections % 

1 622,900 35 626,000 35 668,300 37 
2 518,500 29 494,200 28 549,000 30 
3 259,900 15 291,500 16 211,900 12 
4 258,500 15 250,000 14 221,500 12 
≥ 5 124,600 7 115,300 6 97,500 5 
Unknown     78,500 4 
Total 1,784,400 1 1,777,000 99 1,826,700 100 

 
Table 8 

Estimated Probability of Response Based on the Method Used  
in CES Since 1993, in Percentages 

 

Household size 
Place of residence 1 2 3 4 5 or more 
 CES-method 
Rural 44.53 66.24 74.55 73.54 80.07 
Urban 36.01 57.90 67.25 66.09 73.80 
 Model xyp ,  in (3.1) combined with RM2( y, z) 

Rural 47.77 60.90 79.05 73.26 81.52 
Urban 38.92 52.04 72.44 65.62 75.46 

 

The estimates in table 7 support our impression that the 
estimates based on modeling the response mechanism leads 
to less biased estimates compared with ignoring the response 
mechanism as in mere poststratification or simple expansion. 
This is especially true for the one-person households and the 
total. The current “official estimator”, the modified Horvitz-
Thompson seems to give estimates of the right magnitude 
and in fact is closer to the results of  PES 1990 than the 
modelbased estimates. However, this is more by accident. As 
a method it has some problems even in a representative 
sample. We can study this by estimating the response prob-
abilities. Table 8 presents the results together with the esti-
mates based on RM2 ),( zy  & (3.1) from table 3. 

Compared to the estimated response probabilities based 
on model RM2 ),( zy  with (3.1), we see that replacing 
household size with family size in the nonresponse group is 
not a satisfactory approximation. Hence, if compared with 
the modified Horvitz-Thompson estimator in Section 5.1 
based on the saturated model (4.9), the latter one would be 
preferred. For this particular survey, the CES approach 
overestimates the probability of response for household of 
size 2, which in a representative sample would lead to 
underestimating of .2H  The estimated response prob-
abilities will most likely be biased when we are using family 
size in place of household size in the nonresponse group 
when estimating the parameters in the response model. This 
bias is an additional problem to the previously mentioned 
one, that the modified Horvitz-Thompson estimates will be 

similar to the imputation-based expansion estimates and 
cannot correct for nonrepresentative samples (as has been a 
problem in CES since 1993). In the 1992 CES, however, the 
sample is skewed with a too high proportion of families of 
size 2, and the 2H – estimate will be of the right 
magnitude, by accident.  

 
6. Conclusions  

We have investigated modeling and methodological 
issues for estimating the total number of households of 
different sizes in Norway, based on the Norwegian 
Consumer Expenditure Survey (CES ). The main issue is 
how to correct for bias due to nonignorable nonresponse. 
The existing estimation method in CES is a modified 
Horvitz-Thompson estimator that includes a correction for 
nonresponse by estimating response probabilities. We have 
considered basically two modelbased approaches, a 
maximum-likelihood estimator and imputation-based post-
stratification after registered family size. With a population 
model that corresponds to a group model after family size 
only, these two estimators are identical. This family group 
model for household size and a logistic link for the response 
probability using household size as a categorical variable 
seem to work well for our estimation problem. 

In analyzing the 1992 CES, we find serious bias due to 
nonresponse, especially the estimates for ,and1 HH  with 
pure poststratification (without imputation) correcting for 
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some of the bias (probably about 50% for the estimates of 
).and1 HH  Poststratification does not, however, take 

into account possible nonresponse bias dependent on 
household size. Our response models assume that the 
response rates will vary with the actual household sizes 
rather than the registered the family sizes, and it is quite 
evident that such nonresponse modeling makes a difference, 
leading to less biased estimates than mere poststratification 
or simple expansion, especially of .and1 HH  

The modified Horvitz-Thompson estimates used in the 
official statistics from CES correspond to imputation-based 
expansion estimates. Hence, they cannot correct for nonre-
presentative samples. The study in this paper shows that, in 
addition to a nonignorable response model it is also 
necessary to poststratify according to family size, i.e., using 
a population model given family size. Hence poststrat-
ification, response modeling and imputation are key ingre-
dients for a satisfactory approach.  

In any estimation problem of totals in survey sampling, 
one must be aware of the fact that a Horvitz-Thompson 
estimator cannot correct for skewed samples, even when 
modified with good response estimates. Poststratification 
should always be considered as well as imputation based on 
a response model, nonignorable when needed.  

Appendix A1  
The data for rural and urban areas separately are given in 

table A1.  
Appendix A2  

Theorem. Assume model (3.1) for Y . i.e., 

xypzxyYP ,),|( ==  is independent of ,z  but otherwise 
the xyp , ’s are completely unknown with the only restriction 
being that ∑ =y xyp ,1,  for all values of ,x  for all .k  The 
response mechanism is arbitrarily parametrized, i.e., no 

assumption is made about ).,,|1( zxyYRP ==  Then the 
maximum likelihood estimates for xyp ,  are given by 
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Table A1 

Family and Household Sizes for the 1992 Norwegian Consumer Expenditure Survey, Split into Rural  
and Urban Areas. The Upper Entry is for the Urban Group 

 

Household size 
Family size 1 2 3 4 ≥ 5 Total response Non-response Total Response rate 

1 urban 
 rural 

28 
55 

24 
24 

7 
13 

2 
7 

0 
2 

61 
101 

78 
75 

139 
176 

0.439 
0.574 

2 urban 
 rural 

6 
3 

70 
107 

12 
25 

3 
1 

0 
3 

91 
139 

84 
76 

175 
215 

0.520 
0.647 

3 urban 
 rural 

4 
6 

8 
17 

57 
74 

11 
29 

3 
3 

83 
129 

40 
51 

123 
180 

0.675 
0.717 

4 urban 
 rural 

0 
2 

3 
10 

15 
22 

80 
151 

5 
12 

103 
197 

43 
80 

146 
277 

0.705 
0.711 

≥ 5 urban 
 rural 

0 
1 

1 
3 

0 
4 

6 
11 

66 
115 

73 
134 

28 
32 

101 
166 

0.723 
0.807 

Total urban 
Total rural 

38 
67 

106 
161 

91 
138 

102 
199 

74 
135 

411 
700 

273 
314 

684 
1014 

0.601 
0.690 
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We determine xλ  by summing over :y  
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It follows from (A1) that xyp ,ˆ  satisfies the following 
relation:  
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The imputed values are given by , from (4.2), 
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Appendix A3  
Table A2 

The Completed Sample Including the Imputed Values, Split Into Two Groups, Rural and Urban. The Upper Entry  
is for the Urban Group and the Lower Entry is for the Rural Group. Based on Model (3.1) and RM1( y, z) 

 

Household size   
Family size 1 2 3 4 ≥ 5 Total 

1 urban 
 rural 

77.8 
103.6 

44.1 
43.1 

12.9 
18.4 

3.9 
8.7 

0.3 
2.3 

139 
176 

2 urban 
 rural 

10.8 
7.5 

137.9 
168.6 

22.1 
33.9 

3.8 
1.7 

0.4 
3.3 

175 
215 

3 urban 
 rural 

7.5 
10.7 

14.3 
25.3 

81.3 
104.8 

16.4 
35.6 

3.6 
3.7 

123 
180 

4 urban 
 rural 

0.8 
3.5 

6.4 
16.7 

21.9 
35.1 

110.3 
206.9 

6.6 
14.8 

146 
277 

≥ 5 urban 
 rural 

0.5 
1.6 

2.4 
4.7 

1.0 
5.2 

9.0 
14.4 

88.2 
140.1 

101 
166 

Total /urban 
rural 

97.4 
126.9 

205.1 
258.4 

139.2 
197.4 

143.4 
267.3 

99.1 
164.2 

684 
1,014  

Table A3 
The Completed Sample Including the Imputed Values, Split Into Two Groups, Rural and Urban. The Upper Entry  

is for the Urban Group and the Lower Entry is for the Rural Group. Based on Model (3.1) and RM2 ( y, z) 
 

Household size 
Family size 1 2 3 4  ≥ 5 Total 

1 urban 
 rural 

81.6 
107.5 

42.7 
41.5 

10.4 
15.9 

4.0 
8.8 

0.3 
2.3 

139 
176 

2 urban 
 rural 

11.9 
8.6 

140.4 
170.9 

18.3 
30.3 

3.9 
1.8 

0.5 
3.4 

175 
215 

3 urban 
 rural 

9.4 
13.4 

16.1 
27.7 

75.2 
96.5 

18.6 
38.5 

3.7 
3.9 

123 
180 

4 urban 
 rural 

0.8 
3.7 

6.2 
16.2 

18.9 
29.2 

113.5 
213.1 

6.6 
14.8 

146 
277 

≥ 5 urban 
 rural 

0.5 
1.7 

2.3 
4.6 

0.6 
4.6 

9.3 
14.9 

88.3 
140.2 

101 
166 

Total /urban 
rural 

104.2 
134.9 

207.7 
260.9 

123.4 
176.5 

149.3 
277.1 

99.4 
164.6 

684 
1,014 
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Appendix A4  
Table A4 

The Completed Sample Including the Imputed Values, Split Into Two Groups, Rural and Urban.  
The Upper Entry is for the Urban Group and the Lower Entry is for the Rural Group. 

Based on Model (4.9), i.e, Imputations Determined by (4.7) and (4.8) 
  

Household size 
Family size 1 2 3 4 ≥ 5 Total 

1 urban 
 rural 

79.6 
108.3 

47.2 
38.5 

9.4 
16.9 

2.8 
9.9 

0.0 
2.4 

139 
176 

2 urban 
 rural 

17.1 
5.9 

137.7 
171.6 

16.0 
32.5 

4.2 
1.4 

0.0 
3.6 

175 
215 

3 urban 
 rural 

11.4 
11.8 

15.7 
27.3 

76.2 
96.2 

15.6 
41.1 

4.1 
3.6 

123 
180 

4 urban 
 rural 

0.0 
3.9 

5.9 
16.0 

20.0 
28.6 

113.2 
214.0 

6.9 
14.5 

146 
277 

≥ 5 urban 
 rural 

0.0 
2.0 

2.0 
4.8 

0.0 
5.2 

8.5 
15.6 

90.5 
138.4 

101 
166 

Total /urban 
rural 

108.1 
131.9 

208.5 
258.2 

121.6 
179.4 

144.3 
282.0 

101.5 
162.5 

684 
1,014 

 
 

Table A5 
The Total Numbers of Family and Household Sizes for Imputed Complete Sample. Based on Model (4.9) 

 

Household size 
Family size 1 2 3 4  ≥ 5 Total 

1 187.9 85.7 26.3 12.7 2.4 315 
2 23.0 309.2 48.6 5.7 3.6 390 
3 23.2 43.0 172.4 56.7 7.7 303 
4 3.9 21.9 48.7 327.2 21.3 423 

≥ 5 2.0 6.8 5.2 24.1 229.0 267 

Total 240.0 466.6 301.1 426.3 264.0 1,698 
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