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Abstract

The purpose of this paper isto justify the use of the Gini coefficient and two close relatives for
summarizing the basic information of inequality in distributions of income. To this end we employ a
specific transformation of the Lorenz curve, the scaled conditional mean curve, rather than the Lorenz
curve as the basic formal representation of inequality in distributions of income. The scaled
conditional mean curve is shown to possess several attractive properties as an alternative interpretation
of the information content of the Lorenz curve and furthermore provesto yield essential information
on polarization in the population. The paper also provides asymptotic distribution results for the

empirical scaled conditional mean curve and the related family of empirical measures of inequality.
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1. Introduction

Empirical analyses of inequality in income distributions are conventionally based on the Lorenz curve.
To summarize the information content of the Lorenz curve and to achieve rankings of intersecting
Lorenz curves the standard approach is to employ the Gini coefficient in combination with one or two
inequality measures from the Atkinson family or the Theil family. However, since the Gini coefficient
and Atkinson’s and Theil’s measures of inequality have distinct theoretical foundations it is difficult to
evaluate their capacity as complementary measures of inequality™.

By exploiting the fact that the Lorenz curve can be considered anal ogous to a cumulative
distribution function, Aaberge (2000) draws on standard statistical practice to justify the use of the
first few moments of the Lorenz curve (LC-moments) as basis for summarizing the information
content of the Lorenz curve. However, considered as a group these measures suffer from a drawback
since none of them in general are particularly sensitive to changes that concern the lower part of the
income distribution. The reason why the moments of the Lorenz curve in most cases are more
sensitive to changes that take place in the central and upper part rather than in the lower part of the
income distribution is simply due to the fact that the Lorenz curve has a convex functional form. Thus,
even though the first three L C-moments in many cases jointly provide a good description of the
inequality in an income distribution it would for informational reasons as well as for the sake of
interpretation be preferable to employ afew measures of inequality that also prove to supplement each
other with regard to sensitivity to transfers at the lower, the central and the upper part of the income
distribution. To this end Section 2 provides arguments for using a specific transformation of the
Lorenz curve, the scaled conditional mean curve, rather than the Lorenz curve as basis for introducing
and justifying application of afew measures for summarizing inequality in income distributions. The
scaled conditional mean curve turns out to possess several useful properties which will be discussed
below. Section 3 demonstrates that the moments of the scaled conditional mean curve define a
convenient family of inequality measures where the first three moments prove to supplement each
other with regard to focus on the lower, the central and the upper part of the income distribution.
Section 4 deals with estimation and asymptotic distribution theory for the empirical scaled conditional
mean curve and the related family of empirical measures of inequality. Moreover, an empirical
illustration based on Norwegian data for 1986-1998 is also provided. Section 5 summarizes the paper.

2. The scaled conditional mean curve
Let X be an income variable with cumulative distribution function F(-), density f(-) and mean p. Let

[0,00> be the domain of F whereF™(0)=0. The Lorenz curve L(:) for F is defined by

! See Giorgi (1990) for a bibliographic portrait of the Gini coefficient.
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(1) L(u):ljiF‘l(t)dt, 0<u<i,
)

where F' isthe left inverse of F. Note that F can either be a discrete or a continuous distribution
function. Although the former is what we actually observe, the latter often allows simpler derivation of
theoretical results and isavalid large sample approximation. Thus, in most cases below F will be
assumed to be a continuous distribution function.

The Lorenz curve is concerned with shares of income rather than relative levels of income and
differsin that respect from the decile-specific presentation of income inequality which displays decile-
specific mean incomes as fractions of the overall mean income. This method of presentation is
frequently used by national bureaus of statistics and by researchers dealing with analyzing
distributions of income. By introducing a simple transformation of the Lorenz curve we obtain an
aternative interpretation of the information content of the Lorenz curve which proves to be closely
related to the conventional decile-specific approach mentioned above. To this end we use the scaled
conditional mean curve M(:) introduced by Aaberge (1982) and defined by?

1 1% L
2 M(u) = E[X|Xip (U)] _ u—ﬂ}[l-* (dt, O<u<l
0, u=0.

When inserting for (1) in (2) the following simple relationship between the scaled conditional mean

curve and the Lorenz curve emerges,

&, O<ux<il
©) M(u)=4 U
0, u=0,

where M(2) =1 and Iing)(L(u)/u):M(O). Thus, formally the scaled conditional mean curveisa

representation of inequality that is equivalent to the Lorenz curve.

The scaled conditional mean curve possesses severa attractive properties. First, it provides a
convenient alternative interpretation of the information content of the Lorenz curve. For afixed u,
M(u) isthe ratio between the mean income of the poorest 100u per cent of the population and the
overall mean. Thus, the scaled conditional mean curve may also yield essential information on
poverty, provided that we know the poverty line. The egalitarian reference line of M coincides with

the horizontal line joining the points (0,1) and (1,1). At the other extreme, when one person earns the

% This ratio was al'so considered by Nygérd and Sandstrém (1981), but they did not explore its properties as afunction that is
uniquely determined by the Lorenz curve, whilst Atkinson and Bourguignon (1989) used the numerator as an aternative
interpretation of the information provided by the generalized Lorenz curve.
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whole income, the scaled conditional mean curve coincides with the horizontal axis except for u=1.
Second, the scaled conditional mean curve of a uniform (0,a) distribution proves to be the diagonal
line joining the points (0,0) and (1,1) and thus represents a useful additional reference line. Thus, when
aM-curve intersects the diagonal line once from below (single intersection) the corresponding
distribution exhibits lower inequality than a uniform (0, a) distribution below the intersection point
and higher inequality than a uniform (0, a) distribution above the intersection point. Note that incomes
are uniformly distributed over (0, a) if any income in thisinterval occurs equally frequent. Third, the
family of scaled conditional mean curvesis bounded by the unit square. Therefore visually, thereisa
sharper distinction between two different scaled conditional mean curves than between the two
corresponding Lorenz curves. This distinction appears to be particular visible at the lower parts of the
income distributions®. As an illustration Figures 1 and 2 give the Lorenz curves and the scaled
conditional mean curves of the distributions of average annual earnings in Norway for the periods
1981-1982 and 1986-1987.

[Insert Figures 1 and 2 here]

As can be seen from the scaled conditional mean curves there may be differencesin inequality
between the lower tails of two distribution functions which may be perceived as negligible when the
judgment relies on the plots of the corresponding Lorenz curves. Note, however, that ajudgment of
the statistical significance of this difference in inequality does not depend on whether we rely on the
scaled conditional mean curve or the Lorenz curve. However, the question of whether a difference or
changeininequality islarge or small is separate from that of statistical significance, and appears to be
more easy to deal with when we rely on plots of the scaled conditional mean curve rather than on plots
of the Lorenz curve®,

In contrast to the Lorenz curve, which alwaysis a convex function, the shape of the scaled
conditional mean curve proves to be strongly related to the shape of the underlying distribution
function. In order to demonstrate this fact observe that the first derivative of M is non-negative and

that the second derivative of M is given by

vy L EI(FRO)
) M (u)__uu3j(; £3 Fl(t)

3 Atkinson and Bourguignon (1989) brought forward this property to justify the use of the "incomplete mean curve" (the
numerator of M) rather than the generalized Lorenz curve.

* The estimates of Figures 1 and 2 are based on data relative to 621 804 persons available from Statistics Norway’s Tax
Assessment Files. Thus, sampling errors are of minor importancein this case.



provided that [u2 / f(F‘l(u))]e 0 when u— 0+. The expression (4) for the second derivative of M

demonstrates that there is a close relationship between the shape of the distribution function F and the
shape of the scaled conditional mean curve. For example, when F is convex, i.e. Fis strongly skew to
theleft, then M is concave. In this case, a minority of the population is poor and the majority isrich.
By contrast, when F is concave, i.e. F is strongly skew to the right, then M is convex. In this case the
majority of the population has low incomes, whereas a minority has high incomes. Moreover, a
symmetric and convex/concave distribution function F implies a concave/convex shape of the
corresponding scaled conditional mean curve, whereas a symmetric and concave/convex F implies a
convex/concave scaled conditional mean curve. Note that a concave/convex distribution function
occurs when there is atendency of polarization in the population®. At the extreme the concave/convex
(and symmetric) F becomes a two-point distribution function, which displays complete polarization.

Under the restriction of equal mean incomes the problem of ranking scaled conditional mean
curves (M-curves) or Lorenz curves formally corresponds to the problem of choosing between
uncertain prospects. This relationship has been utilized by e.g. Kolm (1969) and Atkinson (1970) to
characterize the criterion of non-intersecting Lorenz curves in the case of distributions with equal
mean incomes. This was motivated by the fact that in cases of equal mean incomes the criterion of
non-intersecting Lorenz curves is equivalent to second-degree stochastic dominance®, which means
that the criterion of non-intersecting Lorenz curves obeys the Pigou-Dalton principle of transfers. The
Pigou-Dalton principle of transfers states that an income transfer from aricher to a poorer individual
reduces income inequality, provided that their ranks in the income distribution are unchanged, and is
defined formally by’

DEFINITION 1. (The Pigou-Dalton principle of transfers.) Consider a discrete income distribution F.
A transfer &> 0 from a person with income F(t) to aperson with income F(S) , where the

transfer is assumed to be rank-preserving, is said to reduce inequality in Fwhen s<t and raise

inequality in Fwhen s> t.

The following result demonstrates that the scaled conditional mean curve M(-) obeys the Pigou-Dalton
principle of transfers, which means that the criterion of non-intersecting M-curvesis equivalent to
second-degree stochastic dominance of the corresponding cumulative distribution functions, provided

that the means are equal.

® For recent discussions on polarization we refer to Esteban and Ray (1994) and Wolfson (1994).

®Fora proof see Hardy, Littlewood and Polya (1934).
" Note that this definition of the Pigou-Dalton principle of transfers was proposed by Fields and Fei (1978).
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THEOREM 1. Let M; and M, be members of the family of M-curves. Then the following statements
are equivalent,

(i) M, first-degree dominates M,

(i) M can be obtained from M, by a sequence of Pigou-Dalton transfers

We refer to Fields and Fei (1978) for a proof of the equivalence between (i) and (ii)® when the
scaled conditional mean curve (M) in Theorem 1 is replaced by the Lorenz curve. However, since
M (u)=L (u)/u, the proof is also valid when the dominance condition is expressed in terms of the scaled

conditional mean curve.

3. Gini'snuclear family of inequality measures
By observing that the Lorenz curve can be considered analogous to a cumulative distribution function
Aaberge (2000) demonstrated that the moments of the Lorenz curve generate the following family of

inequality measures

(5) Dk(F)=%[(k+1)J. ude(u)—lJ, k=12,..,
0

called the Lorenz family of inequality measures®, and moreover proved that it is strongly related to a
subfamily of the extended Gini Family discussed by Donaldson and Weymark (1980, 1983) and
Yitzhaki (1983). Alternatively, the members of the Lorenz family may be expressed in terms of the

distribution function F in the following way,

(6) Dk(F)=k—UF(x)(1— F(x))dx, k=12,..

Since the Lorenz curve is uniquely determined by its moments we can, without loss of information,
restrict the examination of inequality in an income distribution F to the Lorenz family of inequality
measures. However, even though we have obtained to reduce the size of the family of inequality
measures from the standard infinite non-countable set to a countable set it still contains infinite
members. For practical reasons it would be preferable to rely on afew measures of inequality in
empirical applications. By drawing on standard statistical practice Aaberge (2000) proposed to use the

first few moments of the Lorenz curve as primary quantities for measuring inequality, i.e. D;, D, and

8 See Rothschild and Stiglitz (1973) for a proof of the equivalence between (i) and (ii) in the case where the rank-preserving
condition is abandoned in the definition of the Pigou-Dalton principle of transfers.



D3, where D, isthe Gini coefficient. These three measures may jointly give a good summarization of
the information provided by the Lorenz curve but suffer from the inconvenience of generally turning
their attention to changes that occur in the central and/or the upper part of the income distribution.
However, a measure of inequality that primarily focuses attention on the lower tail can be obtained by
introducing an appropriate linear combination of Dy, D, and D3. Aswill be demonstrated below an
aternative and more attractive strategy is to use the first three moments of the scaled conditional mean
curve as primary quantities for measuring inequality in income distributions. The k™ order moment of
the scaled conditional mean curve for income distribution F, C(F), is defined by

1
7 C, (F) = [ u*dMm(u).
0

By recalling the properties of M we immediately realize from (7) that the moments of the scaled
conditional mean curve {Ck: k=12,.. } constitute afamily of inequality measures with range [0,1].

Thus, without loss of generalization we can restrict the examination of the inequality in F to the
moments of the scaled conditional mean curve. The following aternative expression of C,

1
(8) C.(F)= kj UL (1-M(u))du, k=12,...
0

demonstrates that Cy for k>1 is adding up weighted differences between the scaled conditional mean
curve and its egditarian line. The mean (C,) of M is equal to the area between the scaled conditional
mean curve and its egalitarian line', the horizontal line joining the points (0,1) and (1,1) of Figure 2.
The inequality measure C, appears to be identical to a measure of inequality that was introduced by
Bonferroni (1930) as an alternative to the Gini coefficient, but since then it has for some reason been
paid little attention in the economic literature™. By inserting for (2) in (8) when k=1 we obtain the

following alternative expression for Cy,

©) C.(F) = —& [Foot0gF( ox.

% Note that thisis asubfamily of afamily of inequality measures that was introduced by Mehran (1976).

19 Note that Eltets and Frigyes (1968) proposed M(F(uL)) as a measure of inequality. However, this measure is unaffected by
transfers between individuals on the same side of the mean, which means that it does not satisfy the Pigou-Dalton transfer
principle.

1 Eor afew exceptions we refer to D'Addario (1936), Nygard and Sandstrom (1981), Aaberge (1982, 2000), Giorgi (1984,
1998), Chakravarty and Muliere (2003) and Aaberge, Colombino and Strgm (2004). In the latter paper the Bonferroni
coefficient defines a measure of social welfare that is used for evaluating the performance of various tax systems.
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Now, inserting (2) into (8) when k =2 we find that the second order moment of the scaled conditional
mean curve is equal to the Gini coefficient (C;), whilst an alternative expression of the third order
moment of the scaled conditional mean curveis given by (6) for k=2.

Notethat C,,; =D, for k=12,..., which meansthat the family {C, :k=1,2,...} simply is

the Lorenz family of inequality measures extended with the Bonferroni coefficient C;. This also means
that C; isuniquely determined by the Lorenz family measures of inequality. The explicit relationship
isfound by inserting for (2) in (8) when k=1 and by using Taylor-expansion for the term 1/u. Finally,

inserting for (5) in the attained expression yields

N a(n-1) 1
(10) =3 (-1 (k—l]k_ﬂDk(F)'

n=1l k=1

Since Cy, C, and C; represent the first, the second and the third order moments of the scaled
conditional mean curve, they jointly may make up afairly good summarization of the scaled
conditional mean curve as well as of the Lorenz curve®. Moreover, aswill be demonstrated below C;
and C; complement the information provided by the Gini coefficient by turning particular attention to
changes that take place in the lower and upper part of the income distribution. Due to these features of
Cy, C; and C3 we will treat them as a group and call them Gini's Nuclear Family of inequality
measures. Thus, Gini's Nuclear Family of inequality measures can be considered as an adjustment of
the group of measures (D1, D, and Ds) discussed by Aaberge (2000) where C,=D,, C;=D, and D3 is
replaced by the Bonferroni coefficient C,.

Aaberge (2000) demonstrated that the Lorenz family of inequality measures as well asthe
Bonferroni coefficient can be given explicit expressions in terms of social welfare and moreover are
members of the "illfare-ranked single-series Ginis' introduced by Donaldson and Weymark (1980)
and discussed by Bossert (1990)*2. The welfare function that corresponds to Cy is given by

(12) W, (F) =pu(1-C,) = j p (OF (dt, k=12,...,

where p, (t) isaweight function defined by

12Aaberge (2000) demonstrates that C, and C; also provide essential information on the shape of the income distribution.

13 See also Sen (1974), Yitzhaki (1979), Weymark (1981), Hey and Lambert (1980), Donaldson and Weymark (1983), Y aari
(1987, 1988), Ben Porath and Gilboa (1994) and Aaberge (2001) who have provided aternative characterizations of the
Gini coefficient and generalized Gini measures of inequality.
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—logt, k=1
(12) P () = {L(l— tk—l) k=23

k-1

The latter term of equation (11) follows by inserting for (2) in (8) and for (8) in the second term of
(11), and then using integration by parts. Equation (11) shows that the welfare function Wy isa
weighed sum of the ordered incomes, where the inequality aversion exhibited by W, and the

corresponding weight function decreases with increasing k. As k — <o, W, approaches inequality

neutrality and coincides with the linear additive welfare function defined by

(13) W._ = i Fi(t)dt=p.

It follows by straightforward calculations that W, < for all k, and that Wy is equal to the mean p for

finitek if and only if Fisthe egalitarian distribution. Thus, W, can be interpreted as the equally
distributed equivalent income. As a contribution to the interpretation of the inequality aversion profiles
exhibited by W1, W, and W3 (and C;, C, and C3) Table 1 provides ratios of the corresponding weights
— as defined by (12) — of the median individual and the 5 per cent poorest, the 30 per cent poorest and
the 5 per cent richest individual.

Table 1. Distributional weight profiles of W1, W, and W3 (and C,, C, and Cs)

W, (Cy) W, (C)) W3 (Cy)
(Bonferroni) (Gini)
p(.05)/p(.5) 4.32 1.90 1.33
p(.30)/p(.5) 1.74 1.40 1.21
p(.95)/p(.5) 0.07 0.10 0.13

As suggested by Table 1 W, (C,) is more sensitive than W, (C,) to changesin the income distribution
that concern the poor, whereas W, (C,) is more sensitive than W3 (Cs) to changes that occur in the
lower part of the income distribution. For example, the weightsin Table 1 demonstrate that the social
weight of an additional Euro to a person located at the 5 per cent decile is 4.3 times the weight of the
median income earner when C, (W,) isused as a measure of inequality (social welfare), whereasit is
only 1.3 times the weight of the median earner when C; (W) is used as a measure of inequality (social
welfare). Asissuggested by Table 1 and is easily verified from equation (8), C,, C, and C; preserve
first-degree M-curve and Lorenz dominance and thus satisfy the Pigou-Dalton principle of transfers.

However, to deal with situations where M-curves or Lorenz curves intersect a more demanding

9




principle than the Pigou-Dalton transfer principleis required. An obviousideaisto introduce a
principle that places more emphasis on agiven transfer the lower it occurs in the income distribution.
Kolm (1976) and Mehran (1976) proposed two alternative versions of such a principle; the principle of
diminishing transfers which requires the income difference between receivers and donors to be fixed
and the principle of positional transfer sensitivity which requires afixed difference in ranks between

receivers and donors™. To provide aformal definition of the principle of diminishing transfers let | be

an inequality measure and let Al, (0, z) denote the changein | resulting from a transfer & from a
person with income x+z to a person with income x. Thus, Al_(8,z) isanegative number™.

Furthermore, let Al (5,2) be defined by

(14) Al (8,h)=Al,(8,h)-Al,(3,h).

Thus, Al Xy (0,2) captures the difference between the effect on | resulting from atransfer & from a

person with income x+z to a person with income x and the effect from atransfer from a person with

income y+z to a person with incomey, where x<y.

DEFINITION 2A. Consider an income distribution F and atransfer & from individuals with incomes
x+z and y+z to individual s with incomes x and y, respectively, where the receivers are assumed to not
become richer than the donors. Then the inequality measure Jis said to satisfy the principle of
diminishing transfersiif

Al, ,(8,2) >0 when x <.

Similarly, to provide aformal definition of the principle of positional transfer sensitivity, let Jbe an

inequality measure and let AJ,(9,z) denote the change in Jresulting from atransfer §from a person

with income F™*(t+h) to aperson with income F*(t) that leaves their ranksin the income
distribution F unchanged. Thus, AJ, (9, z) isanegative number. Furthermore, let AJ;, (0,2) be

defined by

(15) AJ, (8,n)=AJ (8,n)-AJ,(8,h).

e refer to Mehran (1976), Zoli (1999) and Aaberge (2004) for adiscussion of the principle of positional transfer
sensitivity.
%3 For convenience the dependence of | on F is suppressed in the notation for I.
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DEFINITION 2B. Consider an income distribution F and a rank-preserving transfer 8 from individuals
with ranks s+ h and t+h to individuals with ranks s and t, respectively. Then the inequality measure

Jissaid to satisfy the principle of positional transfer sensitivity if

AJ,(8,2) >0 when s<t.

By applying Theorem 2 in Aaberge (2000) we find that the Bonferroni coefficient satisfy the principle
of diminishing transfers for distribution functions that are strictly logconcave™. This classincludes the
uniform, the exponential, the Pareto, the Gamma, the Laplace, the Weibull and the Wishart
distributions. For logconcave distribution functions there are, as were also noted by Heckman and
Honoré (1990) and Caplin and Nalebuff (1991), arising gap between the income of the richest and the
average income of those units with income lower than the richest as we move up the income
distribution®, i.e. x - E(Y | Y<x) is an increasing function of x. Observe that if X and Y are distributed

according to F (with mean 1) we have

E{X-E(Y]Y <X)}
u

(16) ()=

which means that the Bonferroni coefficient is equal to the ratio between the mean of these income
gaps and the overall mean income. Consequently, the Bonferroni coefficient assigns more weight to
transfers taking place lower down in the distribution for all distributions which are strongly skewed to
the right and even for some distributions which are strongly skewed to the left. Distributions which are
strongly skewed to the left exhibit a minority of poor individuals’households and a majority of rich
individual s/households.

When the transfer sensitivity of the Bonferroni coefficient is judged according to the
principle of positional transfer sensitivity the results of Aaberge (2000) show that the Bonferroni
coefficient (C,) always treats a given transfer of money from aricher to a poorer person to be more
equalizing the lower it occursin the income distribution, provided that the difference in ranks between
receivers and donorsis the same.

For adiscussion of the transfer sensitivity properties of the Gini coefficient (C,) and the Cs-
coefficient we refer to Aaberge (2000). However, for the sake of compl eteness we summarize the
transfer sensitivity properties of the members of Gini's nuclear family of inequality measuresin

Proposition 1.

¥ rora compl ete characterization of logconcavity, see An (1998).
7 Note that the income gap isequal to the average poverty gap when x coincides with the poverty line.
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PROPOSTION 1. The three members of Gini's Nuclear Family, C,, C, and C;, have the following
transfer sensitivity properties,

(i) The Bonferroni coefficient (C,) satisfies the principle of diminishing transfersfor al strictly log-
concave distribution functions and the principle of positional transfer sensitivity for all distribution
functions.

(if) The Gini coefficient (C,) satisfies the principle of diminishing transfersfor all strictly concave
distribution functions, but does not satisfy the principle of positional transfer sensitivity. In the case of
afixed difference in ranks the Gini coefficient attaches an equal weight to a given transfer irrespective
of whether it takes place in the upper , the middle or the lower part of the income distribution.

(iii) The Cs-coefficient satisfies the principle of diminishing transfers for all distribution functions F
for which F?is strictly concave, but does not satisfy the principle of positional transfer sensitivity. In
the case of afixed difference in ranks the Cs-coefficient assigns more weight to transfers at the upper

than at the central and the lower parts of the income distribution.

Asan empirical illustration of the methods proposed in this paper, Table 2 displays estimates of Gini’s
Nuclear Family with corresponding standard deviations'® for the distribution of income after tax in
Norway 1986 — 1998, where scale economies is accounted for by the use of the square root scale™.
Exploring the trend in income inequality in this period is particularly interesting because a major tax
reform was implemented in 1993, where taxation on capital income was substantially relaxed.
Moreover, the Norwegian economy gradually recovered from along recession at the end of 1992.
Thus, we focus particular attention on the changes between 1986-1992 and 1993-1998. Asis
demonstrated by the estimatesin Table 2, C; increased more than G and G more than C;. Thus,
according to the transfer sensitivity properties of C,, G and C; indicated above, therise in inequality is
primarily due to increased inequality in the upper part of the income distribution. As suggested by
Fjearli and Aaberge (2000) this result reflects the fact that changesin the tax reported dividends are the
primary factor behind the changes in the standard reported inequality estimates and that most

dividends are received by individuals located in the upper part of the income distribution.

18 Methods for estimation and the asymptotic distribution theory for the empirical versions of the members of Gini’s nuclear
family are reported in Section 4.

A computer program for estimating the scaled conditional mean curve and the measures of Gini’s nuclear family aswell as
the related variances (standard deviations) is available on request. Note that the program allows for weighting of the
observations when it is required due to the sampling design of the survey in question.
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Table 2. Trend in income inequality in Norway, 1986-1998°

Y ear Cy C=G Cs
1986 0.331 0.224 0.177
(0.002) (0.002) (0.002)
1987 0.330 0.224 0.177
(0.003) (0.003) (0.002)
1988 0.327 0.223 0.176
(0.003) (0.002) (0.002)
1989 0.340 0.233 0.186
(0.004) (0.004) (0.004)
1990 0.343 0.232 0.183
(0.003) (0.002) (0.002)
1991 0.340 0.232 0.185
(0.003) (0.003) (0.003)
1992 0.348 0.23 0.18
(0.003) (0.003) (0.002)
1993 0.352 0.240 0.191
(0.005) (0.005) (0.005)
1994 0.366 0.249 0.199
(0.003) (0.002) (0.002)
1995 0.358 0.247 0.198
(0.003) (0.003) (0.003)
1996 0.364 0.255 0.207
(0.004) (0.004) (0.004)
1997 0.371 0.260 0.212
(0.004) (0.004) (0.004)
1998 0.355 0.249 0.202
(0.003) (0.003) (0.003)
Aver age of (1986-92) 0.337 0.229 0.181
(0.001) (0.001) (0.001)
Average of (1993-98) 0.361 0.250 0.201
(0.002) (0.001) (0.001)
Per centage change,
(1986-92) - (1993-
1998) 7.14 9.07 10.96

Source: Fjagli and Aaberge (2000). *Standard deviation in parentheses

4. Estimation and asymptotic distribution results

Let X, X,,..., X, beindependent random variables with common distribution function F and let F,

be the corresponding empirical distribution function. Moreover, let X, < X, <..< X, denote the

ordered X, X,,..., X,,. Since the parametric form of F is unknown, it is natural to use the empirical

distribution function F, to estimate F and to use
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1 i
n x(i)
1

(17) Mn[i—j:'iT, i=12..,n

n

to estimate M (u) for u=i/n, where X isthe sample mean.

By replacing M by M, in the expression (8) for C,, we get the following estimator® of the
moments of the scaled conditional mean curve®
1

(18) C, =Ck(Fn)=kjuk’l(l—Mn(u))du, k=12,...

0

In order to derive the asymptotic distribution of the empirical rank-dependent measures of inequality it
is convenient to firstly derive the asymptotic properties of the empirical scaled conditional mean curve
M?,

Approximations to the variance of M, and the asymptotic properties of M, can be obtained by

considering the limiting distribution of the process V, (u) defined by

(19) Vn(u):n%[Mn(u)—M(u)].

Assume that the support of F isanon-empty finiteinterval [a,b]. (When F is anincome

distribution, a is commonly equal to zero.) Then V, (u) isamember of the space D of functions on

[0,1] which are right continuous and have |eft hand limits. On this space we use the Skorokhod

topology and the associated o-field (e.g. Billingsley (1968), p. 111). Welet W, (t) denote a Brownian

Bridge on [0,1], that is, a Gaussian process with mean zero and covariance function

s(1-t), 0<s<t<1. Moreover, let Y(u) be the Gaussian process defined by

oW

f(F(1))

(20) Y(u)=

c |l

20 A5 demonstrated by Chotikapanich and Griffiths (2001) for the extended Gini coefficients, an aternative estimator
performs better when the informational basisis restricted to group data with less than 20 groups.

%! Since Mn(-) isadiscrete function the integration symbol I represents numerical integration in this case.

22 \Ne refer to Goldie (1977) for an aternative proof of the asymptotic properties of the empirical Lorenz curve.
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and let *(u) and x(u,v) begiven by

Flu) y
(21) yu)=2 [ [FO)(-F(y)dxdy, 0<u<1
u a a
and
1 Flv) Fluw
(22) x(uv)=— I I F(x)(1-F(y))dxdy, 0<u<v<l.
Wy, 3

The following result follows from Aaberge (1982, 2006),

THEOREM 2. Suppose that F has a continuous nonzero derivate f on [a,b]. Then V, (u) convergesin

distribution to the process
(23) V()= u [Y(U) M )Y (@],

with covariance function y*(u,v) given by

111
2 ) =_2 =y ) -M 2 11
- v’ (u,v) p {V;/ (W) + & (u,v) = M (U) (7 (V) + 5 (V1))

~M (V) (72 (U) + & (u,2)) + M (u)M (v)yz(l)], O<us<v<l

In order to construct confidence intervals for the scaled conditional mean curve at fixed points, we

apply the results of Theorem 2 which imply that the distribution of
EMW-MQ)
w(uu)
tends to the N(0,1) distribution for fixed u.

We shall now study the asymptotic distribution of the k-th order moment ék ( defined by (18))

of the empirical scaled conditional mean curve M, (-) . Aswill be demonstrated below Theorem 2
forms a helpful basis for deriving the asymptotic variance of ék .

Let 6, be aparameter defined by

15



1
u

6 = {Zkzj I |:\—];}/2(u)+K‘(U,V)}(UV)k—1dUdV
(25) 00

H YA (u) +x(u,2))u “du}yza)[l—ck]z}

THEOREM 3. Suppose the conditions of Theorem 2 are satisfied and 6, < - . Then the distribution of

tends to the normal distribution with zero mean and variance 6,”.

PROOF. From (8), (18) and (19) we see that
1 1
n?(C, —C, ) =—k[ UV, (u)du.
0

By Theorem 2 we have that V,(u) convergesin distribution to the Gaussian process V (u)

defined by (23). By applying Billingsley (1968, Theorem 5.1) and Fubini’ s theorem we get that

1.
2

n (Ck —Ck) convergesin distribution to

oo

—le‘ UV (u)du =—le‘ u“[i d, )z, Jdu -y

{kj. u“id, (u)du}

where Z,,Z,,... areindependent N (0,1) variablesand d; (u) is defined by

j=1

(26) dj(u)=%[p,- (W) - p,OM ()]

and p,(u) isdefined by

=

22 ]*- sin(jzt)

@ RN RGO

i.e., the asymptotic distribution of n2 (ék - Ck) is normal with mean zero and variance

16



28) 3 {kj Ui, (u)du} .

=1

Then it remains to show that the asymptotic variance is equal to 6,°.

Inserting (26) in (28), we get

3 {kj u“dj(u)du} =%i {kj U (p, (u)- p, (1)M(u))du}

i=1 i=1

l 2
=— k| u? d -2/ k| u**M (u)d Dk [ uk? d
u’ {J_iju p; (u) u} {ju (u) u}{z p]()ju p,(u) u}
{Z pf(l)Mkj u“*M (u)du} }

In the following derivation we apply Fubini’ s theorem and the identity

=, sin( jzs)sin( jxt)

(29) Z

j=1 (jﬂ')

=s(1-t), 0<s<t<l.

i {k.l[ u“*p, (u)du} i K[ [ (uv)* pj (u) p; (v)dudv
u 2 =, sin( jxt)sin(jzs) dtds |(W) duy
! f(F‘l(t))f(F‘l(s))[; (jz)’ } > -

Oty
Oy

|
B 1 v 5 u s t(l_s) vV u ) (uv)k_z
-4 ] [2H TGO HGIOMEE f(F’l(t) Fl(s))dtdS] dudv

Fhu) y Fv) Fu)
“k{zj [ FO)(1-F(y))dxdy + j | F(x)(l—F(y))dxdy}dudv

a a 'uy a

where »*(u) and «(u,v) aregiven by (21) and (22), respectively. Similarly, we find that

oo 1 1
> (O] u?p,(uydu= [ K[ 72(U) +x(u2) Ju“du.
= 0 .

By noting that

17



> P =7
j=1
and that
1
k[ UM (u)du=1-C,,
0

the proof is completed.
Q.E.D.

For k=2, Theorem 3 states that 6,? = &, where ¢ is defined by

1v 1 1 )
30) o= 2l u u)+ vk (u,v) [dudv—(1-G)| u u)+x(ul) |du+=(1-G)" *@) ¢,
(30) {H [7°) )] J 72U+ (u1) Jdu+2 )7()}

1
is the asymptotic variance of the empirical Gini coefficient n2G where G=C, and G=C, 3

1.
For k=1, Theorem 3 provides the asymptotic variance 3 of the empirical Bonferroni coefficient n2C,

(31) 52:%{21']' [172(u)+/cuv)}dudv 2(1-C, j[ 2(u)+ & ( ul]dudv+(l C)y (1)}

The estimation of 6,” is straightforward. Asin Sections 2 and 3 we assume that the parametric
form of F isnot known. Thus, replacing F by the empirical distribution function F, in expressions (21)

and (22) for y*(u) and x(u,v) and next by replacing C,, u, *(u) and «(u,v) by their respective

estimates in expression (25) for ,”, we obtain a consistent nonparametric estimator for 6,°.

%3 An dlternative version of (30) isgiven by Hoeffding (1948).
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5. Conclusion

This paper proposes to use a specific transformation of the Lorenz curve, called the scaled conditional
mean curve, rather than the Lorenz curve as basis for choosing afew summary measures of inequality
for empirical applications. The scaled conditional mean curve turns out to possess several attractive
properties as an alternative interpretation of the information content of the Lorenz curve and
furthermore proves to provide essential information on polarization in the population. The discussion
in Section 3 demonstrates that the inequality measures C,, C, and C; define the first three moments of
the scaled conditional mean curve. Thus, jointly they may give a good summarization of inequality in
the scaled conditional mean curve and consequently act as primary quantities for measuring inegquality
in distributions of income. Moreover, since C, isthe Gini coefficient and C, and C; prove to
supplement the Gini coefficient with regard to focus on the lower and the upper part of the income
distribution, it should be justified to call the group formed by these three inequality measures the
Gini's Nuclear Family. The paper also provides asymptatic distribution results for the empirical scaled
conditional mean curve and the related family of empirical measures of inequality, including Gini’s

nuclear family.

References

Aaberge, R. (1982): Om maling av ulikskap, Rapporter 82/9, Statistisk sentralbyra (In
Norwegian).

Aaberge, R. (2000): Characterizations of Lorenz curves and income distributions, Social
Choice and Welfare, 17, 639-653.

Aaberge, R. (2001): Axiomatic characterization of the Gini coefficient and Lorenz curve
orderings, Journal of Economic Theory, 101, 115-132.

Aaberge, R. (2004): Ranking Intersecting Lorenz Curves, CEIS Tor Vergata Research Paper
Series, Discussion Paper No. 45.

Aaberge, R. (2006): Asymptotic distribution theory of empirical rank-dependent measures of
inequality. In V. Nair (Ed.): Advancesin Satistical Modeling and Inference - Essaysin
Honor of Kjell A. Doksum, World Scientific, 2006.

Aaberge, R., U. Colombino and S. Stram (2004): Do more equal slices shrink the cake? An

empirical evaluation of tax-transfer reform proposalsin Italy, Journal of Population
Economics, 17, 767 - 785.

19



An, M. Y. (1998): Logconcavity versus logconvexity: A complete characterization, Journal of
Economic theory, 80, 350-369.

Atkinson, A. B. (1979): On the measurement of inequality, Journal of Economic Theory, 2, 244-263.

Atkinson, A. B. and F. Bourguignon (1989): The design of direct taxation and family benefits.
Journal of Public Economics, 41, 3-29.

Ben Porath, E. and . Gilboa (1994): Linear measures, the Gini index, and the income-equality trade-
off, Journal of Economic Theory, 64, 443-467.

Billingdey, P. (1968): Convergence of Probability Measures. John Wiley & Sons, Inc., New Y ork.
Bonferroni, C. (1930): Elementi di Statistica Generale. Seeber, Firenze.

Bossert, W. (1990): An approximation of the single-series Ginis, Journal of Economic Theory, 50, 82-
92.

Caplin, A. and B. Nalebuff (1991): Aggregation and social choice: A mean voter theorem,
Econometrica, 59, 1-23.

Chakravarty, S. R. and P. Muliere (2003): Welfare indicators: areview and new perspectives, Metron,
61, 1-41.

Chotikapanich, D. and W. Griffiths (2001): On Calculation of the extended Gini coefficient, Review of
Income and wealth, 47, 541-547.

D'Addario, R. (1936): Curve di concentrazione, elasticit, flessibilita, densitd media e densita
marginale dei redditi, Cressati, Bari.

Donaldson, D. and J. A. Weymark (1980): A single parameter generalization of the Gini indices of
inequality, Journal of Economic Theory, 22, 67-86.

Donaldson, D. and J. A. Weymark (1983): Ethically flexible indices for income distributionsin the
continuum, Journal of Economic Theory, 29, 353-358.

Eltets, O. and E. Frigyes (1968): New inequality measures as efficient tools for causal analysis and
planning, Econometrica, 36, 383-396.

Esteban, J. M. and D. Ray (1994): On the measurement of polarization, Econometrica, 62, 819-851.
Fields, G. E. and J. C. H. Fei (1978): On inequality comparisons, Econometrica, 46, 303-316.

Fjezli, E. and R. Aaberge (2000): Tax reforms, dividend policy and trends in income inequality:
empirical evidence based on Norwegian data, Discussion Paper No. 284, Statistics Norway.

Giorgi, G. M. (1984): A methodological survey of recent studies for the measurement of inequality of
economic welfare carried out by some Italian statisticians, Economic Notes, 13, 145-157.

Giorgi, G. M. (1990) Bibliographic portrait of the Gini concentration ratio, Metron, 48, 183-221.

Giorgi, G. M. (1998) Concentration index, Bonferroni; in Encyclopedia of Statistical Sciences,
Update, 2, 141-146.

20



Goldie, C. M. (1977).Convergence theorems for empirical Lorenz curves and their inverses, Advances
in Applied Probability, 9, 765-791.

Hardy, G. H., J.E. Littlewood and G. Polya (1934): “Inequalities’, Cambridge University Press,
Cambridge.

Heckman, J. J. and B. Honoré (1990): The empirical content of the Roy model, Econometrica, 58,
1121-1150.

Hey, J. D. and P. J. Lambert (1980): Relative deprivation and the Gini coefficient: comment,
Quarterly Journal of Economics, 94, 567-573.

Hoeffding, W. (1948): A Class of Statistics with Asymptotically Normal Distribution. The Annals of
Mathematical Satistics, 19, 293-325.

Kolm, S. C. (1969): The optimal production of social justice, in “Public Economics’, (J. Margolis and
H. Guitton, Eds.), Macmillan, New Y ork/London.

Kolm, S. C. (1976): Unequal inequalities |, Journal of Economic Theory, 12, 416-442.
Kolm, S. C. (1976): Unequal inequalities |1, Journal of Economic Theory, 13, 82-111.
Mehran, F. (1976): Linear measures of inequality, Econometrica, 44, 805-809.

Nygard, F. and A. Sandstrom (1981): Measuring Income Inequality. Almgvist and Wiksell
International, Stockholm.

Rothschild, M. and J. E. Stiglitz (1970): Increasing risk: A definition, Journal of Economic Theory, 2,
225-243.

Sen, A. (1974): Informational bases of alternative welfare approaches, Journal of Public Economics,
3, 387-403.

Weymark, J. (1981): Generalized Gini inequality indices, Mathematical Social Sciences, 1, 409-430.
Wolfson, M. (1994): When inequalities diverge, American Economic Review, 84, 353-358.

Y aari, M.E. (1987): The dual theory of choice under risk, Econometrica, 55, 95-115.

Y aari, M.E. (1988): A controversial proposal concerning inequality measurement, Journal of
Economic Theory, 44, 381-397.

Yitzhaki, S. (1983): On an extension of the Gini inequality index, International Economic Review, 24,
617-628.

Zoli, C. (1999): Intersecting generalized Lorenz curves and the Gini index, Social Choice and Welfare,
16, 183-196.

21



0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

Figure 1. Lorentz curves for distributions of average annual earnings in Norway
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Figure 2. Scaled conditional mean curves for distributions of average annual earnings in Norway
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