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Abstract 
This paper analyzes the potential demand for alternative fuel vehicles. The alternative fuel vehicles we 
consider are liquid propane gas and electric powered vehicles in addition to a dual-fuel vehicle. The 
data were obtained from a stated preference survey in which each respondent, in a randomly selected 
sample, was exposed to 15 experiments. In each experiment the respondents were asked to rank three 
hypothetical vehicles characterized by specific attributes, according to the respondents' preferences. 
Several versions of a random utility model are formulated and estimated. They include a model for 
rank ordered data, and models that allow for different types of correlation in preferences across 
experiments. Apart from one case the model specifications are estimated from the data on first choices. 
The most general model turns out to predict aggregate second and third choices rather well. The model 
is applied to assess the willingness to pay for alternative fuel vehicles. 
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1. Introduction 
In recent years the major automobile manufacturers have spent an increasing share of their R&D 

expenditures to develop competitive alternatives to gasoline/diesel vehicles. These include different 

types of electric, hybrid, natural gas and multiple fuel vehicles. One important reason for this effort 

stems from governments regulation and the acknowledgement that the world's resources of oil is 

limited. Furthermore, there is increasing public awareness about the problems caused by pollution 

from automobiles in many densely populated areas, and the fact that carbon dioxide emission from 

automobiles affects the world's ozone layers. A well known example of this is found in southern 

California where air quality is an important concern. Here, the 1990 amendments to the Federal Clean 

Air Act and the 1990 Regulations by the California Air Resources Board require substantial reduction 

in vehicle emissions. 

 So far, alternative fuel vehicles have not been sufficiently developed to appear competitive. 

One reason for this is that current infrastructure on maintenance and fuel supply is exclusively 

oriented towards conventional fuel vehicles, i.e. gasoline and diesel vehicles. For example, the current 

battery technology of electric vehicles necessitates frequent recharging and costly replacement. Thus, 

the shortcoming of current battery technology prevents electric vehicles from being attractive in the 

market other than possibly for short/medium range transportation purposes.1 

 In this paper we analyze the potential household demand for alternative-fuel vehicles based on 

data from a stated preference type of survey conducted by Statistics Norway. Recall that in stated 

preference surveys respondents are asked to express preferences for hypothetical products 

characterized by specific attributes. To this end we formulate and estimate several alternative 

structural demand models based on probabilistic theories of individual choice behavior. The first 

model we discuss is known as the Luce model for ranking. This model originates from the work of 

Luce (1959) and Block and Marschak (1960), and has been applied to analyze potential demand for 

electric vehicles by Beggs et al. (1981). In this model it is assumed that the decision-maker ranks the 

alternatives presented according to a random utility index where the random components of the 

utilities are extreme value distributed and independent across alternatives and across experiments (for 

a given individual). The second model we discuss is an extension of the first one in that we allow the 

utility index for a given alternative to be dependent across experiments. Specifically, the structure of 

this model derives from an intertemporal extension of the Luce choice axiom: Independence from 

Irrelevant Alternatives (see Dagsvik, 2000). The motivation for introducing serially correlated utilities 

is that there may be memory or taste persistence effects implying that the decision-maker's preference 

evaluations in successive experiments will be correlated. A version of this model was originally 

proposed by Dagsvik (1983). 
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 The third model is an extension of the second one that allows individual specific taste 

persistence effect (fixed effect). The fourth model extends the second one by allowing preference 

parameters associated with alternative fuel technologies be random. 

 In the context of studying the potential demand for alternative fuel vehicles, analyses based on 

stated preference surveys have been carried out by Beggs et al. (1981), Hensher (1982) and Calfee 

(1985), (these are electric vehicles), Bunch et al. (1991) and Golob et al. (1991). See also Mannering 

and Train (1985), Train (1980), Brownstone et al. (1996), and Brownstone and Train (1999). In these 

studies alternative fuel vehicle encompass electric, natural gas, liquid propane gas, hybrid and other 

multiple fuel vehicles. 

 The data were obtained from a survey in which each respondent, in a randomly selected 

sample, was exposed to 15 experiments. In each experiment the respondents were asked to rank three 

hypothetical vehicles (of which two were alternative fuel ones) characterized by specific attributes. 

These attributes vary across experiments.  

 Except for the Luce model for ranking, which is estimated by using all the observations, the 

remaining models are estimated by using solely data on first choices. This enables us to evaluate the 

models by doing "out-of-sample" predictions in the sense of prediction (aggregate) of second and third 

choices. It turns that the most general model specification performs rather well in these prediction 

exercises. 

 The organization of the paper is as follows: In the next section we review random utility 

models for ranking. In Section 3 we discuss random utility models with serially dependent utilities. 

Section 4 discusses the survey method and provides a descriptive analysis of the data. In Section 5 the 

empirical specifications are presented and the estimation results are displayed and discussed. Section 6 

reports selected price elasticities and the distribution of compensating variation for alternative fuel 

technologies. 

2. Random utility models for ranking 
The systematic development of stochastic models for ranking started with Luce (1959), Block and 

Marschak (1960), and Luce and Suppes (1965). Specifically, they provide a powerful theoretical 

rationale for the structure of stochastic models for ranking which we shall describe below. An early 

application of this type of models is Beggs et al. (1981). 

 Let S denote the choice universe (i.e., the set of all alternatives) and let C  be the choice 

set of feasible alternatives. Let  be the rank ordering of the alternatives in C, 

where m is the number of alternatives in C. This means that 

S⊂

( )ρC = ρ ρ ρ1 2, , ..., m

ρ ρi i C= ( ) ,  denotes the element in C that 

has the i'th rank. 

 3



 Let U j  be the agent's utility of alternative j, where  are i.i.d. random 

variables and Vj is the systematic term. Yellott (1977) has proved that for IIA to hold the random 

variables {  must be type III extreme value distributed, i.e., 

Vj( ) = + ε

}ε j

j ε j j S, ∈

(2.1)   ( ) ( )P x ej
xε ≤ = − −exp .

The implied model has the structure2 
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 In this paper (2.2) is the point of departure for the specification of the first type of empirical 

model we estimate below. 

3. Random utility models with serially dependent utilities 
When a sample of individuals is presented with a series of experiments (such as the experiment series 

analyzed below) the problem of memory effect, and/or taste persistence arises. By this it is meant that 

the utilities of an alternative may be correlated across experiments even if the corresponding 

(observable) attributes differ. A psychological reason for this may be that an individual's state of mind 

and his perception capacities vary more or less slowly over time, i.e. across experiments, and 

consequently, preference evaluations in the last and current experiments may tend to be more strongly 

correlated than preference evaluations in experiments that are more remote in “time”. To account for 

serial correlation in the data one could apply a multinomial probit model with serially correlated 

disturbances, or a multinomial logit model with random coefficients, cf. Morikawa (1994). A 

drawback with this kind of approach is that the theoretical foundation for the choice of distribution of 

the random coefficients (or latent attributes) usually is missing.3 

 In this section we shall describe a different approach to serially dependence, based on a 

behavioral assumption. This type of models was introduced by Dagsvik (1983, 1988) and further 

developed in Dagsvik (1995, 2000). Let Uj(t) denote the agent's utility of alternative j at time t 

(experiment t) which means that  become stochastic processes in discrete 

time. Dagsvik (2000) proposes an extension of IIA (IIIA) to the case where choices take place over 

time. This assumption can be described as follows: Let J(t,C) denote the choice from C at time t, i.e., 

{ }U t t j Sj ( ), , , ... , ,= 1 2 ∈
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(3.1)  J t C j U t U tj
k C

k( , ) ( ) max ( ).= ⇔ =
∈

The extended version of IIA states that if C1 and C2 are two choice sets with  

 then 

C C2 1\ ,≠ ∅
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 The interpretation is as follows: Consider the particular case in which the past choice sets are 

constant but where the choice set in the current period is expanded to include new alternatives that 

were never feasible before. Then the intertemporal version of IIA states that the probability of 

choosing an alternative among the new alternatives that enter the choice set, given the choice history, 

is independent of the choice history. The intuition is that even if previous choices provide information 

about the preferences over the alternatives in the “old” choice set, these choices provide no 

information about the utility of the “new” alternatives. (Provided the preferences are not affected by 

previous choice experience, previous choices do not represent information that is relevant for the 

current choice of a “new” alternative.) In Dagsvik (1995, 2000) the intertemporal version of IIA is 

proposed as a characterization of rational behavior under the absence of structural state dependence 

effects, such as learning for example. 

 When the utility processes are independent Dagsvik (2000) demonstrates (under mild 

regularity conditions) that the utilities are extremal processes with extreme value distributed 

marginals. Extremal processes are similar to Wiener processes (or Brownian motion) in the sense that 

if “plus” is replaced by “max” in the recursive expression for the Wiener process we obtain the 

extremal process. Thus in this case we can express the utility process { }  as U tj ( ) ,

(3.3)  ( )U t U t V t tj j j( ) max ( ) , ( ) ( )= − − +1 θ ε

where  is a parameter (possibly time dependent) that measures the degree of serial 

dependence, Vj(t) is a parametric function of current (time t) attributes associated with alternative j and 

, are i.i.d. random variables with c.d.f. given by (2.1). From (3.3) it follows 

recursively that Uj(t) can be expressed as a maximum of extreme value distributed random variables 

from which one can easily deduce that 

U j ( ) ,0 = − ∞ >θ

t j S t, , , ...∈ = 1 2ε j ( ),

(3.4)  ( ) ( )exp ( ) exp ( ) ( )EU t V r t rj
r

t

j= −
=


1

θ

for  Eq. (3.4) shows that θ is analogous to a rate of preference parameter. Specifically, the 

contribution from the period r-specific systematic utility component to the current utility is evaluated 

t ≥ 1.
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by multiplying  by the “depreciation” factor,  This depreciation factor 

accounts for the loss of memory and/or decrease in taste persistence as the time lag increases. As 

demonstrated by Resnick and Roy (1990), we have that 

( )exp ( )V rj

(

( )exp ( ) .− −t r θ

( )
( )(3.5) ( ) ( )) (
EU s

EU t

j

j

exp ( )

exp ( )
exp= )U s U t t sj jexp ( ) , exp ( ) ( )− − ⋅ − − θcorr   

for s t≤ .

(p (− −

 Since by (3.4), EUj(t) is nondecreasing as a function of t it follows that the right hand side of 

(3.5) is always less than or equal to  For the sake of interpretation suppose for a 

moment that  does not vary over time. Then (3.4) implies that (3.5) reduces to 

 when s and t are large. Thus when θ is small this means that strong taste persistence is 

present while when θ is large taste persistence is weak. When θ is large (say greater than 5), then the 

serial correlation is negligible. The implication from the hypothesis of taste persistence is of course 

that choices at different moments become dependent. As demonstrated by Dagsvik (1988), it follows 

from (3.3) that the choice process {  defined by (3.1) becomes a (first order) Markov chain. 

Furthermore, the state and transition probabilities, Pj(t) and  are given by (cf. Dagsvik, 

2000) 

( )exp ( ) .− −t s θ
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for  and j i, t≠ ≥ 2,

(3.8) ( )
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Q tii t P J t C i J t C i Q t t
k C i

ik( , ) ( , ) ( , ) ( , )
\

− ≡ = − = = − −
∈
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for  From (3.6) and (3.7) we realize that Pj(t) and  reduce to the standard multinomial 

logit model when . Moreover, the conditional transition probabilities given that a transition 

occurs equal 

t ≥ 2 . ijQ (t 1, t)−

θ → ∞
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(3.9) ( ) ( )
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for  The last equation shows that it is possible to identify and estimate the structural 

parts,  of the utility function without relying on assumptions about the structure of the taste 

persistence parameter θ.4 

j i, t i, j C≠ ≥ ∈2, .

{ }V tj ( ) ,

 The formulas displayed above enables us to analyze data on choice behavior where only the 

most preferred alternative is recorded. If data with complete rank orderings is available (such as in the 

present case) then it is desirable to calculate choice probabilities for sequences of rankings, based on 

(3.3). Unfortunately, this is so far an unsolved problem. 

 For the sake of clarifying the interpretation of the modeling framework we include a 

discussion below of the special case where the systematic utility components  are constant 

over time. In this case (3.6) and (3.7) reduce to 

{V tj ( )}
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 When the observed attributes are constant across experiments and one assumes that the agents 

interpret the unspecified technology features as being constant over experiments, one would expect the 

utilities of a perfectly rational agent to be perfectly correlated over “time”. In other words, we realize 

from (3.11) and (3.12) that the case when θ ≅  and t is very large, corresponds to a perfectly rational 

agent in the sense that he makes consistent choices over “time”. 

0

 From (3.11) and (3.12) we realize that when  then we obtain in the limit that θ → 0

(3.13) ( )Q t t
P

tij
j− =1,  

for  and i j≠ ,
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(3.14) ( )Q t t
t

P

tii
i− = − +1 1

1
,  

for  Thus, when t is not very large the probability of a transition is positive even if θ = . The 

interpretation is that when t is small, the choice history is short and past choices will therefore only 

provide limited information about the current preferences. As a result, transitions are possible at early 

stages in the choice process, even if preferences are perfectly correlated over time. 

t ≥ 2 . 0

 It is also possible to express the autocovariance and autocorrelation function of the observed 

choice process, suitably defined. To this end let  if the agent chooses alternative i in period t, 

and zero otherwise. It follows readily from (3.7) and (3.8) that one can write 

iY (t) 1=

(3.15) ii i iQ (s, t) P (t) P (s) (s, t) (s, t)= − ς + ς  

where Qii(s,t) is the probability of being in state i at time t given that state i was occupied at time s, and 

(3.16) 
( )
( ) ( )( )kk

kk

exp E U (s)
(s, t) exp t s .

exp E U (t)
ς = ⋅ −


− θ  

Formulae (3.15) also hold in the case where the utilities are correlated across alternatives with a 

slightly different expression for (s, t)ς , (see Dagsvik, 1988, p. 35). Now from (3.15) we obtain that 

(3.17)  ( ) (i i ii i i i i iCov Y (s),Y (t) Q (s, t)P (s) P (s)P (t) (s, t)P (s) 1 P (s) .= − = ς − )

Consequently, 

(3.18) 
( )i i

i

Cov Y (s),Y (t)
(s, t)

VarY (s)
= ς  

which means that ς(s,t) is approximately equal to the autocorrelation function of { }iY (t), t 0> . When 

the observed attributes vary little over time, 

 ( )( )(s, t) exp t sς ≈ − − θ  

which means that (s, t)ς , approximately, decreases exponentially when  increases. In contrast, 

when choices are generated by a mixed multinomial logit model the autocorrelation function will, 

approximately, be independent of . Thus, by computing the empirical counterpart of (3.18) one 

may be able to rule out the mixed multinomial logit model a priori. Specifically, if the left hand side of 

(3.18) is far from exponentially decreasing this can be interpreted as evidence against IIIA. This 

argument continues to hold in the case where θ is random and when 

t s−

s, t)

t s−

(ς  is represented by (3.16). In 

this case we have that 

 8



(3.19) ( )( )(s, t) Eexp t sς ≈ − − θ  

which is a decreasing function of . t s−

 In several contexts it may be of interest to allow for structural state dependence effects. For 

example, brand loyalty is one type of state dependence that is found in analyses of vehicle ownership. 

Dagsvik (2000) discusses how the framework outlined above can be extended to allow for state 

dependence. In fact, state dependence can be introduced by letting the structural terms { }jV (t)  depend 

on previous choices. It turns out that the formulae (3.7), (3.8) and (3.9) still hold (but not (3.6), cf. 

Dagsvik, 2000). This is not immediately evident because when Vj(t) is allowed to depend on previous 

choices a potential simultaneous equation bias problem arises. 

 It is well known that in general one cannot separate the effect of taste persistence from the 

effect of state dependence without imposing theoretical restrictions on the model. If one believes that 

IIIA represents a reasonable behavioral assumption this enables the researcher to obtain nonparametric 

identification of state dependence effects. To realize this note that by (3.9) 

(3.20) 
( )
( )

ij
j 1

i1

t 1, t
V (t) V (t) log

t 1, t

 π −
− =   π − 

 

for i . Since (3.20) is independent of the taste persistence parameter θ, and the right hand side is 

observable, it is clear that one can separate taste persistence from state dependence. In other type of 

choice models such as the multiperiod probit model the separation of taste persistence and state 

dependence is more delicate since the probit framework does not have a clear theoretical justification 

other than being a random utility model. 

1, j≠

4. Data and survey method 
Since alternative fuel vehicles are almost non-existing in the automobile market we cannot obtain data 

by observing individuals' demand for these types of vehicles. A possible way to obtain information 

about agents preferences is to employ the stated preference approach which consists in asking 

individuals to express their preferences for hypothetical future vehicles. 

 There are many ways in which one may ask questions to reveal preferences. For our purpose, 

which is to model consumer preferences, it is of major importance to ask questions in such a way that 

responses are unambiguous and related to a precisely specified ranking problem. One way to achieve 

this is to ask each individual to state which alternative in a specified choice set is preferred. 

Alternatively, as is done in the present study, individuals can be asked to make a complete ranking of a 

set of hypothetical vehicles, characterized by given attributes. Although the latter strategy yields more 

information than the former one it may not necessarily be the preferred strategy because it presents 

more difficulties to the respondent. 
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 In the present study, a survey was conducted in which each individual was exposed to 15 

experiments. In each experiment the individual was asked to rank three hypothetical vehicles 

characterized by specified attributes. The following question was used: “If you were to purchase a new 

vehicle today and the only vehicle available to you were the three alternative vehicles specified on this 

card, which one would you purchase?”. This question reveals the respondents' most preferred 

alternative. To obtain a complete ranking of the three vehicles, we proceeded by asking “If the vehicle 

you chose in response to the previous question were unavailable to you, which of the remaining two 

vehicles would you purchase?”. This question reveals respondents' second and third choices and 

accordingly their complete rank ordering within each of the choice sets presented. By repeating this 

specific sequence of questions for all fifteen choice sets a data set with rankings of the vehicles with 

specified attributes for all respondents was obtained. 

 The survey data was based on interviews of 922 randomly drawn Norwegian residents 

between 18-70 years of age. One half (A) received choice sets with the alternatives “electric powered”, 

“liquid propane gas-” (lpg) and “gasoline-fueled” vehicles whilst the other half (B) received “hybrid” 

(in this study “hybrid” means a combination of electric and gasoline technology), “lpg” and “gasoline” 

vehicles. Due to a non-response rate of 0.28, thus reducing the sample from 922 to 662 individuals, 

and to incomplete answers and/or errors in the registration of 40 respondents, estimation of the models 

is based on data for 319 respondents in group A and 323 respondents in group B. 

4.1. Experimental design 

We shall now, in detail, consider the construction of the choice sets (experiment design) presented to 

the survey participants. It is important that the experiment design, to a reasonable degree, is 

representative for the central part of the attribute space. From the analyst's point of view, it is 

particularly important that respondents are aware of the importance of making their choices 

conditional on the assumptions imposed by the analyst in the experimental design. In the present study 

we have introduced electric powered, lpg- and hybrid (electricity and gasoline) vehicles which all are 

hypothetical vehicles in the sense that they at present hardly appear as competitive alternatives to 

conventional gasoline and diesel vehicles5. The consensus is that these vehicles more or less are 

considered as experimental prototypes and the majority of the population has very limited knowledge 

about these vehicles. Thus, we can not rule out the possibility that respondents, due to their  

perceptions, do not view these vehicles as realistic and attractive alternatives. Consequently, the 

revealed preferences may not correspond to the demand in a real market in which all these vehicles 

exist as competitive alternatives. The discussion above leads to the more general question of external  

validity for these types of laboratory experiments. Levin et al. (1983) and Pearmain et al. (1991) give a 

summary of the work on external validity and they conclude that in some cases there seems to be 

considerable evidence of external validity. 
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 Based on the literature on stated preference methodology (cf. Pearmain et al. (1991)) and on 

experience from four panel discussions with potential survey participants (focus groups) as well as a 

pre-survey, “purchase price”, “driving range between refueling/recharging”, “top speed” and “fuel 

consumption” appeared to be the most important attributes and were used to describe the hypothetical 

vehicles of the survey. Attributes such as refueling/recharging time and availability, emission level 

and size of the vehicle were omitted as attributes in the choice sets. Thus, the survey is rather simple as 

regards to the description of the hypothetical vehicles. Some researchers, for example Pearmain et al. 

op. cit. claim that it appears difficult for individuals to relate to more than four attribute components. 

Other studies (see for example Beggs et al., 1981) have applied more complex designs with more than 

four attributes. In addition to each choice set a description of the choice context was provided. The 

purpose of this description was to provide explicit conditions about the choice environment and to 

ensure that the different fuel technologies appear as competitive alternatives to the respondents6. 

Evidently, the difference in levels of education and knowledge about the topic across respondents may 

yield different anticipations about the development of alternative fuel vehicles, but by introducing 

these sets of assumptions we expected to reduce some of this heterogeneity. 

 Worth noting is that we have used fuel consumption, in liter gasoline per 10 km, in contrast to 

e.g. Beggs et al. (1981) that use fuel cost. The motivation for using fuel consumption is that people 

generally are found to think in these terms when considering the fuel economy of a gasoline powered 

vehicle. Hence, for electric, hybrid and lpg vehicles we transformed the fuel costs into liter gasoline 

per 10 km equivalents. 

 When selecting appropriate distributions of attributes across experiments and across 

individuals several conflicting concerns occurred. Ideally, one would like to have as much variation in 

the attribute values as possible. However, there are two problems with this. One is that the respondents 

may have difficulties with evaluating the utilities of hypothetical vehicles characterized by 

“unrealistic” attributes. Second, and perhaps more importantly, we are concerned with obtaining a 

reasonably good specification and approximation of the systematic part of the utility function. With 

the limited empirical evidence at hand, the best we can hope for is to obtain a reasonable good local 

approximation of the utility function. To this end we have chosen to limit the variation in the 

composition of the attribute components to what we perceive as “realistic” descriptions. As mentioned 

above, the set of experiments for group A and B are different. However, within each group the 

individuals are exposed to the same experiments. Although this strategy implies a possible loss in 

efficiency it has, at least in principle, the advantage of permitting us to assess more precisely the extent 

of heterogeneity in preferences. 

 Whereas Bunch et al. (1991) randomly generated the order in which the attributes appeared on 

the choice set card, we followed a different strategy, as mentioned above, by exposing half the sample 

to 15 different choice sets with the fuel technologies, “electric”, “lpg” and “gasoline”, and the other 

half to 15 different choice sets with the fuel technologies, “hybrid”, “lpg” and “gasoline”. 
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5. Empirical specifications and estimation results 
In this section we shall discuss empirical specification of the different model versions. To the readers’ 

convenience we display the different models estimated in the next table. 

 

Table 5.1. Outline of the different models estimated 

Model 1 Luce model for ranking 

Model 2 Luce model for first choices 

Model 3 Model 2 with serial correlation 

Model 4 Model 3 with fixed effect taste persistence 

Model 5 Model 3 with random technology parameters 
 

5.1. Specification with serially uncorrelated preferences (Model 1) 

The objective of this section is to elaborate on the theoretical model developed in Section 2 to obtain 

an empirical model when preferences are independent across experiments (for each individual). Recall 

that each individual in the sample participates in 15 ranking experiments. In each experiment a 

participant is asked to carry out a complete ranking of three alternative vehicles, characterized by 

given attributes (see above). Let  denote the vector of attributes of 

alternative j in experiment t. In our case the dimension of Zj(t), n equals 4. We assume that the utility 

function of individual h has the structure 

( )Z j j j njt Z t Z t Z t( ) ( ), ( ), ..., ( )= 1 2

(5.1)  h
j j jh j j jhU (t) V (t) (t) (t) (t)= + ε = + μ + εZ β

where {  are i.i. extreme value distributed random variables,  are technology-specific 

parameters and β is a vector of unknown parameters. The parameter μj is supposed to capture a pure 

technology preference effect, i.e., it represents the mean taste for technology j when the observable 

attribute vectors are equal for all alternatives. To ensure identification the μj-value that corresponds to 

the gasoline technology is normalized to be zero. The random terms {  may capture aspects of 

the evaluation process that are random to the consumer himself. In addition, these random terms may 

also capture the effects of variables that are perfectly known to the consumer but unobserved by the 

analyst. The linear specification of the systematic part of the utility function (5.1) was chosen after a 

series of preliminary rounds in which different candidates of functional forms were experimented 

with. These include power- and logarithmic transforms of the original attribute components. In terms 

of goodness of fit the linear specification seemed to perform at least as well as the other selected 

functional forms. It is worth mentioning that according to a strict interpretation of the neoclassical 

theory of consumer behavior the utility function in (5.1) should be interpreted as a conditional indirect 

}

}

utility function given alternative (vehicle) j. It is indirect in the sense that optimal consumption of 

ε jh t( ) { }μ j

ε jh t( )
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other goods is implicit. This conditional indirect utility function should depend on the expenditure 

owning vehicle j through income net of (annual) user-cost associated with vehicle j. However, if utility

is linear in income net of user-cost without interaction effects, the income variable cancels when utility 

levels are compared, because it does not depend on the respective alternatives. Only the user-cost 

remains and this variable may be assumed to be approximately proportional to the purchase price. 

Since Vj(t) is linear the proportional factor is absorbed into the coefficient associated with purchase

price. Hence, only the purchase price remains in addition to technology dummies, top speed, driving 

range, and fuel consumption. 

 The likelihood functio

of 

 

 

n is given by 

(5.2) 

where Ch is the choice set, 

( ) ( )( )
{ }

h
ij

h h

15
Y (t )

ijt
h t 1 j C j C \ i

L , P ,
= ∈ ∈

β = β,∏ ∏ ∏ ∏μ μ  

( )2 3 40, , ,= μ μ μμ  and ( )ijtP β,μ  is the probability of ranking alternative i 

 if individual h ranks alternative i on top, and j 

(5.3) 

on top and j second best in  Y th (

second best in experiment t, and Y th ( ) ,= 0  otherwise. From (2.2) and (5.1) it follows that 

experiment t, and

ij

ij ) ,=1

( ) ( )
( )

( )
( )

{ }h h

j ji i
ijt

r r r
r C r C \ i

exp (t)exp (t)
P ,

exp (t) exp (t)
∈ ∈

+μ+μ
β = ⋅

+ r

.
μ +μ 

ZZ

Z Z

ββ
μ

β β
 

{ }hC Gasoline, Lpg, Electric vehicle ,=Recall that for group A the choice set equals;  while in group B, 

{ }hC Gasoline, Lpg, Hybrid vehicle .=  Note that since (5.3) is the product of two logit models, we may 

rom each experiment as independent realizations from two sub-

experiments with three feasible alternatives in the first one and two feasible alternatives in the second 

one. Since we have 15 experiments, our data is therefore equivalent to 30 independent observations 

per individual. 

 

interpret the data for each individual f

able 5.2. Parameter estimates*) of the age/gender specific utility function 

 

T

 Age/gender

Attributes 18-29  50- 30-49 

 Femal ales Femal Males Females Maleses M es

Purchase price (in 100 000 NOK) -2.530
(-17.7)

-2.176
(-15.2)

-1.549
(-15.0)

-2.159 
(-20.6) 

-1.550 
(-11.9) 

-1.394
(-11.8)

Top speed (100 km/h) 

Driving range (1 000 km) 2

Fuel consumption  -0 -1 - -1 -0 -

-0.274
(-0.9)

1.861

0.488
(1.5)

.130

-0.820
(-3.3)

1.018

-0.571 
(-2.4) 

1.465 

-0.320 
(-1.1) 

0.140 

-0.339
(-1.2)

1.000
(3.1)

.902

(3.3)

.629

(2.0)

0.624

(3.2) 

.509 

(0.2) 

.446 

(1.8)

1.030
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(liter per 10 km) 

Dummy, electric 

(-3.0)

0.890

(-5.1)

-0.448

(-2.5)

0.627

(6.7) 

.180 

(-1.5) 

0.765 

(-3.7)

-0.195
(4.2)

.185

(-2.0)

0.461

(3.6)

1.380

-0

Dummy, hybrid 1 1

Dummy, lpg 1 0 0 0 0

# of observations 

(-1.1) 

0.649 

(3.6) 

.216 

(-1.0)

0.666
(7.6)

.010

(2.8)

.236

(10.6)

0.945

(5.6) 

.778 

(7.7) 

.698 

(4.6)

.676
(8.2)

2760

(1.9)

2220

(9.2)

4140

(8.5) 

4670 

(5.7) 

2580 

(5.6)

2910

# of respondents 92 74 138 155 86 97

Log-likelihood -201 -174 -31 -34 -2040.9 -2335.1 7.8 40.8 60.8 3.8
*) t-values in parentheses. 

 

Table 5.2 displays the estimates when the model parameters differ by gender and age. We 

with 

m 

ividuals' 

5.2. Allowing for serially correlated preferences (Models 3 and 4) 

odel version 

n this 

ow 

eir 

ucture 

(5.4) h
j

 Let  be equal to one if individual h ranks alternative i on top in experiment  and j 

on top in experiment t. Then the likelihood function can be written as 

 

notice that the price parameter is very sharply determined and it is slightly declining by age. The 

parameter associated with driving range appears to decline by age while the parameter associated 

fuel consumption increases by age. However, when we take the standard error into account these 

tendencies seem rather weak. Further, the utility function does not differ much by gender, apart fro

the parameters associated with fuel consumption and the dummies for alternative fuel cars. 

Specifically, males seem to be more skeptic towards alternative-fuel vehicles than females. 

 To check how well the model performs, we have applied the model to predict the ind

choice behavior. The predictions are carried out by computing individual probabilities and 

aggregating. The results are displayed in Tables 5.6 and 5.7. 

In this section we shall consider the empirical specification and estimation of the m

discussed in Section 3, where the utility functions are correlated across experiments. Recall that i

case we are only able to apply data on first choices. The motivation for a specification that allows for 

serially correlated utilities is that unobserved taste variables may be temporally persistent (taste 

persistence). In general, when analyzing choice behavior over time it may also be desirable to all

for state dependence. State dependence may occur as a result of experience with previously chosen 

alternatives (brand loyalty, for example). In the present case we only have data from a stated 

preference experiment, which means that the agents do not have “real” experience based on th

choices. Accordingly, it seems reasonable to rule out state dependence. 

 According to (3.3) the utility function is assumed to have the str

( )( )h h
j j j jU (t) max U t 1 , (t) (t) .= − − θ β + μ + εZ  

W tij
h ( ) t − 1
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(5.5) ( ) ( )
h h
ij . j

h h h

15
W (t) W (1)h h

h t 2 i C j C j C

L , , Q t 1, t P (1)
= ∈ ∈ ∈

β θ = −∏ ∏ ∏ ∏ ∏μ  ij j

where W  is equal to one if individual h ranks alternative j on top in the first experiment and zero 

ise. 

 Recall that the likelihood function (5.5) corresponds to the observations on individuals' first 

. As m

nk orderings are not known and we are therefore unable to utilize the full set of 

ut-of-

ecessary 

oups. In 

ed effect. 

j
h

. ( )1

otherw

choices entioned in Section 3, the structure of the corresponding choice probabilities for 

complete ra

observations when estimating the model. However, the remaining set of observations on individuals' 

second choices can be applied to test the model since these observations enable us to perform o

sample predictions. It is a well acknowledged principle that out-of-sample observations are n

to put a model to serious test. In particular, it enables us to check the IIA property which is 

fundamental in all the model versions discussed in this paper. 

 We have estimated two versions of this model. In the first version the taste persistence 

parameter θ is assumed to be the same for all individuals within the respective age/gender gr

the second version θ is assumed to be an individual specific fix
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Table 5.3. Parameter estimates*) of the age/gender specific utility functions, with taste persistence 
(Model 3) 

 Age/gender 

Attributes 18-29 30-49  50- 

 Females Males Females Males Females Males

Purchase price (in 100 000 NOK) -3.256
(-15.5)

-3.234
(-14.4)

-2.496
(-15.3)

-2.932 
(-18.6) 

-2.590 
(-12.3) 

-2.618
(-12.5)

Top speed (100 km/h) -0.085
(-0.2)

1.607
(3.4)

-0.239
(-0.6)

0.224 
(0.6) 

0.525 
(1.1) 

1.031
(2.1)

Driving range (1 000 km) 3.957
(4.3)

3.938
(4.0)

3.438
(4.3)

3.459 
(4.8) 

1.552 
(1.5) 

4.293
(4.3)

Fuel consumption  
(liter per 10 km) 

-1.583
(-3.1)

-2.263
(-4.1)

-1.679
(-3.6)

-2.828 
(-6.9) 

-1.420 
(-2.4) 

-3.945
(-6.8)

Dummy, electric 1.038
(3.1)

0.276
(0.7)

0.792
(2.6)

0.085 
(0.3) 

1.081 
(2.7) 

-0.306
(-0.8)

Dummy, hybrid 1.330
(5.4)

0.792
(2.9)

1.319
(5.9)

0.660 
(3.5) 

1.383 
(4.8) 

0.117
(0.4)

Dummy, lpg 1.031
(5.5)

0.347
(1.7)

0.700
(4.0)

0.596 
(4.1) 

0.606 
(2.7) 

0.148
(0.7)

Taste persistence, θ 2.748
(13.6)

1.607
(14.8)

1.383
(19.8)

1.971 
(20.2) 

1.140 
(15.8) 

0.971
(17.0)

# of observations 1380 1110 2070 2325 1290 1455

# of respondents 92 74 138 155 86 97

Log-likelihood -1156.7 -979.1 -1710.7 -1978.5 -1046.0 -1183.9
*) Asymptotic t-values in parentheses. 

 

 The results displayed in Table 5.3 show that when utilities are allowed to be serially 

correlated, then the estimates of the coefficients associated with purchase price, driving range and fuel 

consumption increase in absolute value compared to the case with independent utilities. Moreover, the 

parameter associated with driving range becomes more important in this case relative to the parameter 

associated with purchase price. For males the estimate of the coefficient associated with top speed is 

now (essentially) only significantly different from zero for young males and it is positive. For all 

age/gender combinations we find evidence of serially correlated utilities (taste persistence). As 

expected, taste persistence-effects increase by age but decrease rapidly over “time” (experiments). It 

follows readily from (3.4) that the correlation between utilities that are two or more experiments apart 

is rather weak. Thus, in light of the discussion in Section 3 this seems to indicate that the mixed 

multinomial logit model is not appropriate. Note that the log-likelihood value reported in Table 5.3 

should not be compared with the corresponding values in Table 5.2, since only observations on first 

choices are applied here. 
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Table 5.4. Parameter estimates*) of the age/gender specific utility functions, with fixed effect taste 
persistence parameter (Model 4) 

 Age/gender 

Attributes   18-29   30-49  50- 

 Females Males Females Males Females Males 

Purchase price (in 100 000 NOK) -3.722
(-16.0)

 -3.844
(-14.6)

 -3.033
(-16.1)

 -3.490
(-19.4)

 -3.627 
(-13.6) 

 -3.084
(-13.0)

 

Top speed (100 km/h) 0.050
(0.1)

 1.712
(3.2)

 -0.693
(-1.6)

 -0.069
(-0.1)

 0.516 
(0.9) 

 0.700
(1.3)

 

Driving range (1000 km) 4.982
(4.9)

 5.318
(4.7)

 5.080
(5.6)

 4.167
(5.1)

 3.780 
(3.2) 

 5.035
(4.6)

 

Fuel consumption (liter per 10 km) -2.178
(-3.8)

 -3.245
(-5.3)

 -2.017
(-3.9)

 -3.347
(-7.4)

 -1.900 
(-2.9) 

 -4.542
(-7.1)

 

Dummy, electric 0.814
(2.3)

 0.077
(0.2)

 0.571
(1.7)

 -0.178
(-0.6)

 1.447 
(3.3) 

 -0.491
(-1.2)

 

Dummy, hybrid 1.228
(4.6)

 0.675
(2.3)

 1.206
(4.9)

 0.760
(3.7)

 1.551 
(3.4) 

 0.148
(0.5)

 

Dummy, lpg 0.984
(4.8)

 0.334
(1.5)

 0.757
(4.0)

 0.648
(4.1)

 0.829 
(3.4) 

 0.138
(0.6)

 

# of observations  1380  1110  3070  2325  1290  1455  
# of respondents 92  74  138  155  86  97  
Log-likelihood -1014.4  -802.4  -1349.2  -1612.4  -754.7  -936.7  
*) Asymptotic t-values in parentheses. 
 

In Table 5.4 we report the parameter estimates when the taste persistence parameter θ is assumed to be 

an individual specific fixed effect. We notice that apart from the technology parameters, absolute 

value of the remaining parameters seem to increase compared to the estimates of Table 5.4. 

5.3. Serially correlated preferences and random technology parameters (Model 5) 

In this section we assume that the utility function has the same structure as in (5.4) apart from { }jμ  

which are now assumed to be individual specific random effects. Specifically,  are 

assumed to be independent and normally distributed; 

h
j , j 1,2,3,4,μ =

(h
j jN , )jμ μ σ , with the mean that corresponds 

to the gasoline alternative set equal to zero. The motivation for this specification is similar to the 

motivation for serially correlated preferences. In contrast to the model specification in subsection 5.2 

the present specification implies that the structure of the serial dependence is much less restrictive than 

the one that follows from (5.4). A more general formulation would be to allow a full random 

coefficient specification, i.e., that all the parameters of the utility function are random. Since the 

coefficients associated with purchase price, fuel consumption and driving range must be negative and 

positive, respectively, they cannot be normally distributed. Thus, for simplicity, we have only allowed 

for random technology parameters. One possible justification for random individual specific 

technology parameters is that preferences over attributes such as prices and fuel consumption may 
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vary much less across individuals than preferences over technologies. This is so because most people 

are more familiar with evaluating the effect of prices and costs than the value of technologies. 

 Let ( )h h h h h
1 2 3 4, , ,= μ μ μ μμ  and 

(5.6)  ( ) ( )
h h
ij . j

h h h

15
W (1) W (1)h h h

h ij
t 2 i C j C j C

L , , Q t 1, t P (1)
= ∈ ∈ ∈

β θ = −∏ ∏ ∏ ∏μ j

where  and  depend on h through μh. ( )h
ijQ t 1, t− h

jP (1)

 The total likelihood, (L , , , )β μ σ θ , is therefore given by 

(5.7) ( ) (h h
h

L , , , E L , ,β θ = β θ∏ )μ σ μ  

where the expectation is taken with respect to μh, and ( )2 3 40, , ,= μ μ μμ , . The 

likelihood function (5.7) is approximated by 

( )1 2 3 4, , ,= σ σ σ σσ

(L , , , )β θ μ σ , given by 

(5.8) ( ) ( )
M

h h
r 1h

1
L , , , L , ,

M =

 β θ = β θ + 
 
∏ μ σ μ ση  

where 

 , ( )h 1 1h 2 2h 3 3h 4 4h, , ,= σ η σ η σ η σ ηση

and { }jhη  are i.i.d. draws from the standard normal distribution. In the actual estimation we have, after 

some experimentation, chosen  which turned out to give a very good approximation to the 

theoretical counterpart given in (5.7).7  

M 1000=
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Table 5.5. Parameter estimates*) of the age/gender specific utility functions with serial correlation and 
random technology parameters (Model 5) 

 Age/gender 

Attributes 18-29 30-49  50- 

 Females Males Females Males Females Males

Purchase price (in 100 000 NOK) -4.376
(-14.9)

-4.575
(-14.2)

-3.834
(-15.0)

-4.575 
(-14.2) 

-4.743 
(-12.8) 

-4.125
(-12.4)

Top speed (100 km/h) -0.159
(-0.3)

2.089
(3.5)

-0.893
(-1.7)

-0.121 
(-0.3) 

0.383 
(0.5) 

0.472
(0.7)

Driving range (1 000 km) 4.807
(4.3)

5.558
(4.5)

3.310
(3.3)

3.615 
(4.0) 

2.367 
(1.7) 

4.710
(3.5)

Fuel consumption  
(liter per 10 km) 

-1.978
(-3.5)

-2.715
(-4.5)

-1.590
(-3.0)

-3.715 
(-7.9) 

-2.119 
(-2.9) 

-4.676
(-6.6)

Dummy, electric 1.965
(3.5)

0.297
(0.4)

2.582
(3.6)

0.395 
(0.8) 

3.102 
(3.4) 

0.075
(0.1)

Standard error, electric 2.115
(6.1)

2.896
(5.4)

3.614
(7.7)

3.377 
(8.0) 

3.272 
(5.0) 

3.604
(5.7)

Dummy, hybrid 2.061
(4.9)

1.275
(2.3)

3.036
(6.5)

1.239 
(3.2) 

3.288 
(4.4) 

1.350
(2.1)

Standard error, hybrid 1.425
(5.9)

2.286
(5.4)

1.929
(5.6)

2.186 
(8.6) 

2.587 
(5.2) 

2.633
(6.0)

Dummy, lpg 1.715
(5.5)

0.639
(1.9)

1.994
(4.8)

1.347 
(5.0) 

1.919 
(3.3) 

1.361
(2.9)

Standard error, lpg 0.354
(0.8)

0.470
(0.7)

1.397
(3.2)

0.377 
(1.2) 

1.230 
(3.4) 

0.979
(1.7)

Standard error, gasoline 1.803
(8.3)

1.879
(6.5)

2.850
(6.8)

2.359 
(10.4) 

4.022 
(6.4) 

3.613
(5.7)

Taste persistence, θ 6.212
(5.3)

6.857
(1.8)

8.154
(0.9)

24.749 
(0.0) 

5.832 
(7.6) 

4.473
(8.3)

# of observations 1380 1110 2070 2325 1290 1455

# of respondents 92 74 138 155 86 97

Log-likelihood -965.5 -778.8 -1244.1 -1479.1 -706.0 -850.2
*) Asymptotic t-values in parentheses. 
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Table 5.6. Prediction performance of the model for group A. Per cent 

 First choice Second choice Third choice 

Gender  
Electric

 
Lpg 

Gaso-
line 

 
Electric

 
Lpg 

Gaso-
line 

 
Electric 

 
Lpg 

Gaso-
line 

Females:          
Observed 52.1 26.1 21.9 22.3 46.5 31.2 25.6 27.4 46.9 
(St.deviation) (2.8) (2.5) (2.3) (2.3) (2.8) (2.6) (2.5) (2.5) (2.8) 

Predicted          
  Model 1 45.6 36.3 18.1 32.8 38.5 28.8 21.6 25.3 53.2 
  Model 3 53.4 30.2 16.4 30.4 41.5 28.1 16.2 28.4 55.4 
  Model 4 51.7 31.2 17.1 29.3 41.0 29.6 19.0 27.7 53.3 
  Model 5 54.8 31.1 14.1 22.8 47.4 29.8 22.5 21.4 56.1 

Males:          
Observed 40.0 34.5 25.5 20.3 43.5 36.2 39.7 22.0 38.3 
(St.deviation) (2.7) (2.7) (2.5) (2.2) (2.8) (2.7) (2.7) (2.3) (2.7) 

Predicted          
  Model 1 32.6 44.2 23.3 32.1 35.5 32.4 35.3 20.3 44.3 
  Model 3 41.3 38.5 20.2 32.5 39.0 28.4 26.2 22.4 51.4 
  Model 4 41.7 38.7 19.6 31.3 39.6 29.1 27.0 21.8 51.2 
  Model 5 40.1 38.6 21.3 22.6 45.8 31.6 37.3 15.6 47.1 

 

In Table 5.5 we report the parameter estimates for the model with taste persistence and random 

technology parameters. Compared to the results of Table 5.4 the parameter estimates associated with 

the four observed attributes seem to increase in absolute value in many cases. A striking result is that 

when one allow the technology parameters to be random then taste persistence almost vanishes. The 

highest level of taste persistence is found for older men (  which implies that the 

autocorrelation of the utility function from one “period” to the next equals about one per cent. 

Moreover, we see that for individuals between 18-29 years of age there seem to be very little variation 

across individuals of the technology parameter associated with the lpg alternative. 

)ˆ 4.473θ =
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Table 5.7. Prediction performance of the model for group B with serially dependent utilities. Per cent 

 First choice Second choice Third choice 

Gender  
Hybrid 

 
Lpg 

Gaso-
line 

 
Hybrid 

 
Lpg 

Gaso-
line 

 
Hybrid 

 
Lpg 

Gaso-
line 

Females:          
Observed 45.0 42.0 13.0 33.0 44.9 22.1 22.0 13.1 64.9 

(St.deviation) (2.8) (2.8) (1.9) (2.6) (2.8) (2.3) (2.3) (1.9) (2.7) 
Predicted          
  Model 1 43.0 40.3 16.7 36.9 37.8 25.3 20.1 21.9 58.0 
  Model 3 45.5 38.8 15.7 36.4 39.9 23.7 18.1 21.3 60.6 
  Model 4 43.9 41.2 14.9 37.2 39.6 23.3 19.0 19.2 61.8 
  Model 5 42.8 39.5 17.8 32.7 43.2 24.1 24.5 17.4 58.1 

Males:          
Observed 38.1 46.2 15.7 32.9 41.0 26.2 29.0 12.8 58.1 
(St.deviation) (2.7) (2.8) (2.0) (2.6) (2.7) (2.5) (2.5) (1.9) (2.8) 

Predicted          
  Model 1 35.3 45.2 19.5 37.4 35.0 27.6 27.3 19.8 52.9 
  Model 3 38.4 44.4 17.2 38.2 37.6 24.2 23.4 18.0 58.5 
  Model 4 40.2 44.6 15.2 38.6 38.4 23.1 21.3 17.0 61.7 
  Model 5 35.5 44.6 19.9 31.0 41.2 27.8 33.5 14.1 52.3 

 

 In Tables 5.6 and 5.7 we report how the models perform with respect to prediction. Recall that 

since we only apply data from individuals' first choices in the estimation of Models 3, 4 and 5 we are 

able to report both in-sample as well as out-of-sample predictions. Thus, out-of-sample predictions are 

given for second and third choices of Models 3, 4 and 5. The predictions are performed through 

simulations and are carried out as follows: First independent random variables are generated from the 

extreme value distribution. These random terms are fed into the expression for the utility function 

which enables us to simulate (predict) rank orderings of the alternatives conditional on the attributes of 

the experiments and the parameter estimates. Second, to take into account that the utilities are serially 

correlated we apply the recursive expression given in (5.1) to update the utilities to the next period 

(experiment). The simulations are replicated a large number of times to eliminate simulation error. In 

the model with random technology parameters these are drawn for each individual and kept fixed 

throughout the 15 experiments. 

 In Table 5.8 we report some summary measures of Goodness of fit. For the sake of 

comparison we have re-estimated the model with serially uncorrelated preferences, applying solely 

data on individuals first choices. Accordingly, we obtain estimates for the model with serially 

uncorrelated preferences (Model 2) and the model with serially correlated preferences (Model 3) that 

are based on the same data. Thus, Model 2 is a special case of Model 3 obtained by letting . 

Model 3 is a special case of Model 5 and is also a special case of Model 4. We have employed two 

different measures of Goodness of fit; one is the log-likelihood value while the other is McFadden's ρ2 

θ = ∞
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(cf. Ben-Akiva and Lerman, 1985). McFadden’s ρ2  is somewhat analogous to the familiar R2 used in 

conventional regression analysis. From Table 5.8 we realize that when allowing for serially correlation 

in preferences (which entails one additional parameter) the fit is improved substantially. This is 

particularly the case for individuals above 49 years of age. The fit improved ( )2ρ  dramatically when 

we allow taste persistence to be individual specific. Although Model 5 fits the data better than Model 4 

the difference in terms of goodness of fit is not very large. 

 

Table 5.8. Measures of Goodness of fit 

 Age 

 18-29 30-49  50- 

 Females Males Females Males Females Males

Log-likelihood, model 1 -2015.1 -1747.8 -3140.8 -3460.8 -2040.9 -2333.8

Log-likelihood, model 2 -1178.1 -1053.1 -1880.8 -1996.4 -1207.0 -1408.6

Log-likelihood, model 3 -1156.7  -979.1 -1710.7 -1978.5 -1046.0 -1183.9

Log-likelihood, model 4 -1014.4 -802.4 -1349.2 -1612.4 -754.7 -936.7

Log-likelihood, model 5 -965.5 -778.8 -1244.1 -1479.1 -706.0 -850.2

McFadden's ρ2, model 1 0.19 0.12 0.15 0.17 0.12 0.10

McFadden's ρ2, model 2 0.22 0.14 0.17 0.19 0.15 0.12

McFadden's ρ2, model 3 0.24 0.20 0.25 0.20 0.26 0.25

McFadden's ρ2, model 4 0.33 0.34 0.41 0.37 0.47 0.41

McFadden's ρ2, model 5 0.36 0.36 0.45 0.42 0.50 0.47

 

 From Tables 5.6 and 5.7 we realize that as regards to first choices (which are within-sample 

predictions for Models 1 to 5) that the prediction performance is more or less the same for all three 

models. However, from Table 5.8 it follows that the fit is best for Model 5 and Model 4 fits the data 

better than Model 3 in the case where the fit is evaluated by the loglikelihood and McFadden’s ρ2. The 

explanation why the results of Table 5.8 differ from the results of Tables 5.6 and 5.7 is that the 

predictions of Tables 5.6 and 5.7 do not account for as much micro information as the likelihood 

function. A more interesting way of evaluating the models is to consider the prediction performance 

for the second and third choices, which are out-of-sample predictions (for Models 2 to 5). We realize 

that, except in a few cases, Model 5 clearly has the best performance. If we take into account the 

standard deviations due to the limited sample sizes, we realize that only in 6 out of 24 cases are the 

out-of-sample predictions of Model 5 off by more than two standard deviations. Note that here we 

have neglected the contribution to the standard errors that is due to uncertain parameter estimates. If 

the prediction uncertainty were taken into account it is likely that the prediction confidence interval 

(based on two standard deviations on either side) would overlap all corresponding observed shares. 
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Since Model 5 fits the data better in terms of the Goodness-of-fit measures of Table 5.8 and has the 

best prediction performance, we conclude that it is our preferred model specification. 

6. Elasticities and the willingness to pay for alternative fuel 
vehicles 
By means of the estimated model it is possible to compute elasticities and compensation variation 

measures. In our context compensating variation (CV) means the amount that must be added to the 

purchase price of a specific vehicle technology to obtain the same utility, ceteris paribus, as the 

reference technology. Since we have formulated and estimated a random utility model it is possible to 

take the random taste-shifters into account when computing CV. In this way CV also becomes random 

and one must derive the corresponding distribution function. In our case this turns out to be simple due 

to the fact that the mean utility function is linear and the random terms are extreme value distributed. 

If the random terms of CV are interpreted as random to the agent himself the distribution function of 

CV describes the likelihood of the different levels of CV. If however, the randomness is solely 

attributed to unobserved population heterogeneity this distribution function describes how CV vary 

across the population due to unobservables that are perfectly known to the agents. See for example 

Hanemann (1996) for a presentation of this kind of approach. 

 For the purpose of predicting technology choices probabilities note that by (3.10) 

(6.1) 
( )

( )Pj

j r

r r j

=
+

+
exp

exp
.

Z

Z

β μ

β μ
 

For Model 5 the corresponding choice probabilities are obtained by taking the mean of Pj given in 

(6.1) with respect to the technology parameters. 

 Table 6.1 shows the predicted fractions of individuals in each age/gender group that would 

choose the respective technologies when the observable attributes are equal for all technologies. Thus, 

the results in this table can be interpreted as an aggregate measure of the distribution of “pure 

technology preferences”. 
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Table 6.1. Predicted technology choices by age and gender when attributes are equal for all 
technologies. (Model 5) 

 Age/gender 

Technology Model 18-29 30-49  50- 

 Females Males Females Males Females Males 

Model 3 0.27 0.22 0.25 0.19 0.30 0.18 
Model 4 0.24 0.20 0.21 0.15 0.35 0.16 Electric 
Model 5 0.36 0.27 0.37 0.27 0.36 0.23 

Model 3 0.36 0.37 0.42 0.33 0.41 0.28 
Model 4 0.36 0.36 0.41 0.36 0.38 0.30 Hybrid 
Model 5 0.34 0.38 0.36 0.31 0.37 0.31 

Model 3 0.27 0.24 0.22 0.31 0.19 0.29 
Model 4 0.29 0.26 0.26 0.32 0.19 0.29 Lpg 
Model 5 0.21 0.18 0.17 0.25 0.13 0.24 

Model 3 0.10 0.17 0.11 0.17 0.10 0.25 
Model 4 0.11 0.18 0.12 0.17 0.08 0.25 Gasoline 
Model 5 0.09 0.17 0.10 0.17 0.14 0.22 

 

 By means of elasticities one can compute the effect from (marginal) changes in one or several 

attributes. For example, one may be interested in assessing the impact of indirect taxation through the 

purchase price of conventional fuel vehicles so as to make the alternative fuel vehicles more 

competitive.  

 

Table 6.2. Aggregate own purchase price elasticities by fuel technology with taste persistence and 
random technology parameters (Model 5) 

 Age/gender 

Technology 18-29 30-49  50- 

 Females Males Females Males Females Males 

Electric -1.52 -0.92 -0.92 -1.37 -1.19 -1.26 

Hybrid -1.53 -1.14 -1.14 -1.61 -1.27 -1.32 

Lpg -2.78 -2.00 -2.00 -2.40 -2.54 -1.88 

Gasoline -2.41 -1.70 -1.70 -2.18 -1.71 -1.32 
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Table 6.3. Mean own purchase price elasticities by fuel technology with taste persistence and random 
technology parameters (Model 5) 

 Age/gender 

Technology 18-29 30-49  50- 

 Females Males Females Males Females Males 

Electric -2.80 -3.34 -2.41 -3.34 -3.03 -3.18 

Hybrid -2.89 -2.84 -2.64 -3.16 -2.98 -2.84 

Lpg -3.46 -3.76 -2.87 -3.44 -4.12 -3.14 

Gasoline -3.99 -3.80 -3.45 -3.80 -4.07 -3.22 

 

In Tables 6.2 and 6.3 we have computed aggregate- and mean own price elasticities based on Model 5. 

By aggregate elasticities we mean elasticities of the mean choice probabilities across technology 

parameters (random) with respect to price. The mean elasticities are obtained by first computing 

elasticities conditional on technology parameters and subsequently evaluate the mean across the 

technology parameters. From the tables we see that the aggregate elasticities are considerably smaller 

than the mean ones. This is due to unobserved heterogeneity in the preference for technology. While 

the mean elasticities are interesting for assessing the strength of individual responses to price changes, 

the aggregate elasticities may be more interesting in the context of (macro) policy interventions. From 

these tables we note that, apart from women more than 50 years of age, the mean own purchase price 

elasticities are highest (in terms of absolute value) for Gasoline vehicles. However, for the aggregate 

elasticities we note that the elasticities have highest absolute value for the Lpg technology. One reason 

for this is that the relative variance of the technology parameter of the Gasoline vehicle is greater than 

for the other vehicles. In contrast, the relative variance of the technology parameter of the Lpg vehicle 

is rather small. 

 A major disadvantage with electric vehicles is the limited driving range. Until recently most 

electric vehicles had a driving range of about 100 km although current development of battery 

technology seems promising as to the possibility of substantially increasing the driving range in the 

near future. The estimates seem to confirm that “driving range” is an important attribute. In Table 6.4 

we have applied the estimated model to predict the choice frequencies for various levels of “driving 

range” of electric vehicles, based on the estimates of Table 5.5, while it is set equal to 500 km for all 

other technologies, and the other attributes are equal across all technologies. The results of Table 6.4 

seem to indicate that “driving range” is an important attribute.  
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Table 6.4. Predicted choice frequencies of electric vehicles by levels of driving range for electric 
vehicles when the driving range is 500 km for the other technologies and other attributes are equal for 
all technologies. Random technology parameters and taste persistence (Model 5) 

 Age 

Driving range 18-29 30-49  50- 

for electric vehicles Females Males Females Males Females Males 

500 0.36 0.27 0.36 0.27 0.37 0.23 

350 0.27 0.20 0.32 0.23 0.33 0.18 

250 0.22 0.16 0.30 0.20 0.31 0.15 

150 0.17 0.13 0.27 0.18 0.29 0.13 

100 0.15 0.11 0.26 0.17 0.28 0.12 

 

 Consider now the following scenario: we compare alternative fuel vehicle j to a conventional 

gasoline vehicle. Both vehicles have the same Z-attributes. We shall demonstrate how the distribution 

of CV can be obtained. Recall that the random terms {  are assumed to be i.i. extreme value 

distributed. Let  represent gasoline fuel technology, and let Kjh denote the CV (individual 

specific) associated with technology  defined as 

}ε jh

j = 1

j > 1,

(6.2) ( )
4

1 1h 1h j1 jh 1 jr r jh j
r 2

Z K Z
=

h ,β + μ + ε = + β + β + μ + εZ  

where  is the purchase price of technology j. We shall only consider cases in which Z  so 

that (6.2) reduces to 

Z j1 Z1 = j ,

(6.3) 1h jh jh 1h
jh

1

K .
ε −ε −μ + μ

=
β

 

Since ε1h and εjh are independent and (type III) extreme value distributed it follows that the distribution 

of  is logistic. Thus ε ε1h jh−

(6.4) ( ) ( )jh

jh 1h 1

1
P K y E

1 exp y

 
 ≤ =
 + −μ + μ −β 

 

where the expectation is taken with respect to jh 1hμ − μ . 
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Table 6.5. Mean and standard deviation in the distribution of compensating variation for different 
technologies with random technology parameters and taste persistence. (Model 5). NOK 

 Age 

Fuel 18-29 30-49  50- 

 Females Males Females Males Females Males 

Electric, mean 45 000 7 000 67 000 9 000  65 000  2 000

Electric, standard deviation 76 000 85 000 129 000 98 000  116 000  131 000

Hybrid, mean 47 000 28 000 79 000 22 000  69 000  33 000

Hybrid, standard deviation 67 000 76 000 101 000 81 000  108 000  117 000

Lpg, mean 39 000 14 000 52 000 29 000  40 000  33 000

Lpg, standard deviation 59 000 58 000 95 000 66 000  97 000  101 000

 

 Similarly to Table 6.1, the CV estimates in Table 6.5 indicate a marked difference between 

males and females with respect to preferences over alternative fuel technologies. Females are more 

positive towards alternative fuel vehicles than males. For electric vehicles females would—on 

average—prefer an electric to a gasoline vehicle even if the purchase price of the electric vehicle is up 

to 45 000 NOK higher than the purchase price of the gasoline vehicle, provided that the other 

attributes are equal. For males the results are ambiguous. Moreover, for females the hybrid alternative 

seems on average to be the most attractive one. Note, however, that the standard deviations in the 

distributions of CV are very large which means that the compensating values may vary drastically 

across individuals and/or across time. 

 

Table 6.6. Fractions of individuals with negative compensating variation. Random technology 
parameters and taste persistence. (Model 5) 

 Age 

Technology 18-29 30-49  50- 

 Females Males Females Males Females Males 

Electric 0.72 0.53 0.70 0.53 0.71 0.50 

Hybrid 0.76 0.64 0.79 0.63 0.74 0.61 

Lpg 0.75 0.60 0.71 0.68 0.66 0.63 

 

 In Table 6.6 we report the fraction of individuals with negative CV. That is, these figures 

express the fractions of individuals which would prefer the respective alternative technologies to a 

gasoline vehicle when the (observable) attributes are equal for all technologies. These figures are 

obtained by means of (6.4) with  y = 0 .

 For example, 75 per cent of young females would prefer the electric to the gasoline vehicle, if 

the (observed) attributes were equal for both alternatives. The corresponding figure for young males is 

60 per cent. 
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7. Concluding remarks 
In this paper we have applied probabilistic choice models to analyze the demand for alternative fuel 

vehicles. The empirical analysis is based on a “stated preference” type of survey conducted on a 

sample of Norwegian individuals. Different random utility models are formulated and estimated. Not 

surprisingly the model with taste persistence and random technology parameters (Model 5) provides 

the best fit to the data. Moreover, when the technology parameters are allowed to be random effects 

the taste persistence effect more or less vanishes. The empirical study is simple in the sense that we 

have focused on a limited set of attributes and linear specifications of the utility function. Due to the 

fact that we have data on rank orderings it is possible to check out-of-sample model prediction 

performance. The results show that our preferred model (Model 5) performs rather well as regards out-

of-sample predictions. The empirical results also show that alternative fuel vehicles appear to be fully 

competitive alternatives compared to conventional gasoline vehicles, provided the attribute values are 

the same given that a suitable infrastructure for maintenance and refueling has been established. In 

addition to purchase price, driving range seems to be an important attribute. The results indicate that 

unless the limited driving range for electric vehicles is increased substantially this technology will not 

be fully competitive in the automobile market. As regards electric vehicles, it furthermore seems that 

(on average) men are more reserved towards this technology than women. This may reflect the fact 

that so far there is considerable uncertainty about the battery technology, and the responses from men, 

more than from women, may be affected by doubts about whether or not it will be possible to obtain 

acceptable levels of driving range and sufficiently convenient infrastructure for servicing and refueling 

for electric vehicles in the near future. 
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Footnotes 
1 The battery technology seems at present, however, to develop rather rapidly. 
 
2 The notation C\A means the set of elements in C that are not in A. 
 
3  Sometimes researchers refer to the Central Limit Theorem as a justification for the probit model. 

However, the Central Limit Theorem does not immediately apply in this context. For example, the 
utility of a collection of elemental alternatives (aggregate alternative) equals the maximum of the 
utilities of the elemental alternatives. Thus, the maximum functional plays an essential role in this 
context which leads to the extreme value distribution instead of the normal distribution. 

 
4 Unfortunately, the proofs of the results summarized here are too long and complicated to be 

reviewed here, even in an appendix. 
 
5 Apart from the Netherlands, where lpg-fueled vehicles are quite common, this is the situation in 

other countries. 
 
6 A complete description of the choice sets and the choice context is given in Dagsvik et al. (1996). 
 
7 The CPU time on a Sun Sparc Ultra 2 Station implied by M = 1000 is about 30-50 h. If M is 

chosen equal to 300 we obtain results that are close to the ones obtained with M = 1000. 
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