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1 Introduction

The scale properties of production technologies are of vital importance for our under-

standing of market structure, productivity, and economic growth, and, within the indus-

trial economics literature, economies of scale is put forward as a possible important barrier

to entry, see e.g. Tirole (1989, pp. 305 { 306) and the references therein. Hence, knowing

the scale properties may help us understand the evolution of industries. Although there

are important exceptions, it is common in empirical analyses of the production process,

applying both the primal and the dual approach, to assume a constant returns to scale

technology. This is true for analyses using both micro and macro data. One explanation

for this restriction is co-movements of the explanatory variables that makes it di�cult

to identify independently the impacts of technical change, capital stock growth, and re-

turns to scale; cf. Morrison (1988) and Bi�rn, Lindquist and Skjerpen (1998). However,

if the constant returns to scale restriction is false, this is likely to inuence conclusions

regarding technical change and productivity.

There is a growing number of articles that analyse the production process econometri-

cally using micro data under the assumption that heterogeneity in size, age, management,

employees' education, technology, etc., can be represented by a plant speci�c �xed or ran-

dom intercept term in the production, cost, or pro�t function. Most likely, however, such

di�erences will manifest themselves not only as a permanent, i.e., constant, variation in

e�ciency across plants, but will also result in heterogeneity in scale properties. In this

case, the standard modelling approach, with only �xed or random e�ects in intercept

terms, may lead to ine�cient estimation of the slope coe�cients and invalid inference.

This paper chooses a more general approach and analyses the importance of scale

economies by estimating a four-factor (KLEM) production function with heterogeneous

scale properties and no a priori restrictions on the returns to scale. Our approach di�ers

from that in the panel data literature on frontier production functions and e�ciency mea-

surement, dealing with deterministic or stochastic production frontiers in a framework

with �rm speci�c heterogeneity; cf. Cornwell and Schmidt (1996). In the present pa-

per, three (nested) functional forms of the average production function are investigated:

the Translog, an extended Cobb-Douglas, and the strict Cobb-Douglas. Heterogeneity

in both the slope coe�cients representing the scale properties as well as the intercept

term is allowed for. To avoid overparameterization and the degrees of freedom problem,

a random coe�cient approach, with speci�c assumptions made about the distribution

from which the plant speci�c coe�cients are drawn, is applied. This is a parsimonious

and easily interpretable way of representing heterogeneity. The expectation vector in this

distribution represents the coe�cients of an average plant, while its covariance matrix
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gives readily interpretable measures of the degree of heterogeneity which is due to the

random coe�cient variation. In addition, the non-homotheticity of the production func-

tion allows for systematic variation in the scale elasticity, i.e., variation with the input

quantities. The purpose of this paper is to quantify both the random and the systematic

variation of the scale elasticity.

Our primary argument for using the primal approach and not following the alternative

dual approach is our focus on heterogeneity in the production function parameters rather

than in the parameters of the cost or pro�t function. Arguments for taking the primal

approach, even if the agents follow optimizing behaviour, have been given by, inter alia,

Zellner, Kmenta, and Dr�eze (1966) and Mundlak (1996) in a Cobb-Douglas context; see

also Gri�ths and Anderson (1982), Mairesse (1990), Mairesse and Griliches (1990), Wan,

Gri�ths, and Anderson (1992), and Griliches and Mairesse (1998, section 2).

The panel data set applied in this paper is from the Norwegian manufacturing statis-

tics data base of Statistics Norway. It is unbalanced and consists of plants from the

Pulp and paper industries, the Chemical industries, and the Basic metals industries in

Norway. We follow the recommendations in M�aty�as and Lovrics (1991) and Baltagi and

Chang (1994) and do not apply a balanced subsample of the original unbalanced data

set. Our output measures for the three industries are in physical units, and are in several

respects preferable to those used in other studies of production technologies, e.g., deated

sales, which may be a�ected by measurement errors; see Klette and Griliches (1996).

The combination of a random coe�cient model and unbalanced panel data which

our analysis exampli�es, is far from standard, at least in applied econometrics. Mixed

regression models with unbalanced design, however, have, to some extent, been discussed

in the statistical literature, see, e.g., Amemiya (1994) and Shin (1995). Random coef-

�cients in regression equations in econometrics are treated in the pioneering studies of

Swamy (1970, 1971, 1974); see also Hsiao (1975, 1996) and Longford (1995a,b).

A major �nding in this study is that substantial improvement in model �t is obtained

when allowing for random coe�cient heterogeneity. We �nd constant or weakly increasing

returns to scale for a plant with an average technology, but the results reveal important

variation across plants, and plants with both increasing and decreasing economies of scale

are present.

2 Model and econometric method

We assume that the average plant has a four-factor technology, with capital (K), labour

(L), energy (E), and materials (M) as inputs and with one output (Y ). The most general
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speci�cation of the technology is assumed to be non-homothetic and is represented by a

production function belonging to the Translog class, with a trend, and with some coef-

�cients speci�ed as random variables. This random variation represents non-systematic

heterogeneity of the technology.

Below we describe the basic elements of our model, for simplicity without explicitly

incorporating the unbalancedness of the panel data set. The accommodation of the

model to our unbalanced panel data and the Maximum Likelihood estimation procedure

is elaborated in Appendix A.

Let subscripts i and t denote the plant and the year (number) of observation, respec-

tively. Our Translog model framework can be written as

yit = ci + �t +
1

2
��2t + z 0

it�i +
1

2
z 0

itBzit + z 0

it��t + uit;(1)

where

yit = ln(Yit); zit = [ln(Kit); ln(Lit); ln(Eit); ln(Mit)]
0 ;

ci is a plant speci�c random intercept term, �t is a deterministic trend term representing

the level of the technology in year t, and u
it
is a genuine disturbance term. The vector �i

is speci�ed as plant dependent and random, and the matrix and vector of second-order

coe�cients, B and �, as constants:1

�i =

2
666664

�Ki

�Li

�Ei

�Mi

3
777775
; B =

2
666664

�KK �LK �EK �MK

�LK �LL �EL �ML

�EK �EL �EE �ME

�MK �ML �ME �MM

3
777775
; � =

2
666664

�K

�L

�E

�M

3
777775
:

The intercept term c
i
and all elements of �

i
are speci�ed as plant dependent and random

in general, but in some models, we impose additional restrictions, as will be explained

below.

The heterogeneity of the coe�cient structure across plants is represented as follows.

Let �
i
denote the column vector containing all the (random or �xed) coe�cients in the

model, i.e.,

�
i
=
�
c
i
; � 0

i
; ; �; � 0; � 0

�
0

;(2)

where � = vechB is the half-vectorization ofB, i.e., the lower triangular part ofB stacked

into a column vector. We assume that all zit, uit, and �i's are mutually independent,

1Attempts were made to solve the Maximum Likelihood estimation problem (under normality of the

random coe�cients and the disturbance terms) for the speci�cation with random and plant dependent

B, , �, and �, but this turned out to raise numerical problems. We therefore decided to consider only

models in which these second-order coe�cients are constants.
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with E(uit) = 0, var(uit) = �uu, and

E(�i) = � =

2
666666666664

c

�



�

�

�

3
777777777775

; E[(�i � �)(�i � �) 0] = 
 =

2
664

!cc 
0

�c 0


�c 
�� 0

0 0 0

3
775 ;(3)

where � = E(�i), !cc = var(ci), 
�� = E[(�i��)(�i��)0], etc., and the zero sub-matrices

of 
, representing non-random coe�cients, have suitable dimensions.

We denote the model with diagonal B, � = 0; � = 0 as the Extended Cobb-Douglas

model, B = 0; � = 0; � = 0 giving a strict Cobb-Douglas model. The Extended Cobb-

Douglas model implies that the output elasticity of a speci�c input (input elasticity, for

short) depends on the volume of that input, but is independent of the other inputs.

This is in contrast with the more exible Translog model, in which the input elasticities

depend on all inputs. Both the Translog and the Extended Cobb-Douglas technologies

are non-homothetic, unlike the strict Cobb-Douglas model, which is homothetic and has

a constant scale elasticity.

The (column) vector of input elasticities of plant i in year t is

�it = [�Kit; �Lit; �Eit; �Mit]
0 =

@y
it

@z
it

= �i +Bzit + ��t;(4)

the derivative of log output with respect to the trend is

��it =
@y

it

@�
t

=  + ��t + � 0zit;(5)

and the scale elasticity of plant i in year t is

�
it
= e 0

4
�
it
= ��

i
+ �� 0z

it
+ ���

t
;(6)

where en is the n vector of ones and ��
i
= e 0

4
�
i
, �� 0 = e 0

4
B, �� = e 0

4
�. Conditionally

on z
it
, the random variation of the input elasticities and the scale elasticity is due to

the randomness of the �rst-order coe�cients in the production function, �
i
, only. The

expectation and variance of the scale elasticity of plant i in year t, conditionally on the

input vector z
it
, can be written as, respectively,

E(�itjzit) = E(��) + �� 0zit + ���t;(7)

var(�itjzit) = var(��);(8)
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where E(��) = e 0

4
� and var(��) = e 0

4

��e4 are the common expectation and variance of ��i.

We can interpret E(�
it

jz
it
) as representing the systematic (non-random) heterogeneity in

the scale elasticity, while var(�
it

jz
it
) represents the dispersion of its random heterogeneity.

Similar expressions can be derived for the input elasticities. Using (7), (8), and the law

of iterated expectations, the marginal (unconditional) expectation and variance of the

scale elasticity can be written as

E(�
it
) = E[E(�

it
jzit)] = E(��) + �� 0

E(z
it
) + ���

t
(9)

= e 0

4
�+ e 0

4
BE(z

it
) + e 0

4
��

t
;

var(�
it
) = E[var(�

it
jz

it
)] + var[E(�

it
jz

it
)](10)

= var(��) + �� 0
V(z

it
)�� = e 0

4



��
e
4
+ e 0

4
BV(z

it
)Be

4
;

where V(zit) is the covariance matrix of zit. Eq. (10) represents jointly the heterogeneity

in the scale elasticity which is due to the stochastic variation in the �rst-order coe�-

cients (the �rst term) and the heterogeneity which is due to the variation in the input

vector across plants (the second term). Similar expressions can be obtained for the input

elasticities.

Nine models, that di�er with respect to functional form and the representation of the

heterogeneity of the technology, are considered. As abbreviations for Translog, Extended

Cobb-Douglas, and strict Cobb-Douglas we use TL, ECD, and CD, respectively { in

parenthesis indicating which coe�cients are treated as random in each model. The

models are speci�ed below:

Model !cc 
�� 
�c B �; �

TL(c; �) unrestricted unrestricted unrestricted unrestricted unrestricted

TL(c) unrestricted 0 0 unrestricted unrestricted

TL 0 0 0 unrestricted unrestricted

ECD(c; �) unrestricted unrestricted unrestricted diagonal 0

ECD(c) unrestricted 0 0 diagonal 0

ECD 0 0 0 diagonal 0

CD(c; �) unrestricted unrestricted unrestricted 0 0

CD(c) unrestricted 0 0 0 0

CD 0 0 0 0 0

The structure of the model tree is presented in Figure 1.

The expected coe�cient vector � and the unknown elements of the covariance matrix


, given by (3), for the di�erent models are estimated by Maximum Likelihood, using
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the PROC MIXED procedure in the SAS/STAT software [see Littell et al. (1996)]. Pos-

itive de�niteness of the non-zero submatrix of 
 (relating to the random coe�cients) is

imposed as an a priori restriction. See also Appendix A.

3 Data

We use an unbalanced plant-level panel data set that covers the period 1972 { 1993.

The primary data source is the Manufacturing Statistics database of Statistics Norway.

Our initial data set includes all large plants, generally de�ned as plants with �ve or

more employees (ten or more employees from 1992 on), classi�ed under the Standard

Industrial Classi�cation (SIC)-codes 341 Manufacture of paper and paper products (Pulp

and paper, for short), 351 Manufacture of industrial chemicals (Chemicals, for short) and

37 Manufacture of basic metals (Basic metals, for short). Both plants with contiguous

and non-contiguous time series are included.

Some minor data cleaning has been performed; i.e., we have removed observations

with zero production or zero inputs. This reduced the number of observations by 4 {

8 per cent in the three industries. The number of plants per year ranges from 81 to

179 in Pulp and paper, from 46 to 66 in Chemicals, and from 71 to 111 in Basic metals.

There is a clear negative trend in the number of plants from the mid-seventies in all three

industries. The unbalance in our data set is shown in Table 1, which gives the number of

plants sorted by the number of observations. For example in Pulp and paper, 60 plants

are observed in all 22 years (1972 { 1993), while 20 plants are observed in one year only.

Some remarks on why gaps occur in the time series of some plants (non-contiguous

time series) seem appropriate. All large plants are obliged by law to report information

on a large number of variables to Statistics Norway. Missing observations due to non-

response can therefore be expected to be a minor problem. Three reasons for gaps in the

series may be given: (i) Only large plants, according to the above mentioned criterion,

are obliged to report. If a plant switches between being `large' and `small', there may be

gaps in its time series. This may cause a potential endogenous selection problem, and

ideally, our data set should have included these `missing' observations. An inspection of

the data revealed, however, that this was not an important cause for gaps. (ii) The plants

in our sample are in general multi-output plants and are de�ned as belonging to a speci�c

industry depending on their most important products. Although not very common, a

plant can switch between two industries due to major shifts in output composition, and

hence go into and out of our sample. With respect to identifying the technology of true

Pulp and Paper, Chemicals, and Basic metals plants, these plants represent a potential

8



problem. (iii) Gaps may be due to dramatic events such as insolvency. If the same

type of production continues at the same location after an inactive period, the plant will

re-enter the data base with the same plant-number.2 In general, plants with gaps do

not seem to di�er from plants with contiguous time series, and we therefore decided to

include these plants in our information set. By reproducing the estimation with the non-

contiguous time series removed, within a related dual approach for Chemicals, we found

that such plants did not tend to `pollute' the estimation results [cf. Bi�rn, Lindquist, and

Skjerpen (1998)].

Table 1. Number of plants classified by number of replications

p = no. of observations per plant, N
p
= no. of plants observed p times,

N =
P

Np; n =
P

Npp

Industry Pulp & paper Chemicals Basic metals

p Np Npp Np Npp Np Npp

22 60 1320 29 638 44 968
21 9 189 0 0 2 42
20 5 100 3 60 4 80
19 3 57 0 0 5 95
18 1 18 2 36 2 36
17 4 68 4 68 5 85
16 6 96 9 144 5 80
15 4 60 6 90 4 60
14 3 42 1 14 5 70
13 4 52 3 39 3 39
12 7 84 1 12 10 120
11 10 110 2 22 7 77
10 12 120 3 30 6 60
09 10 90 2 18 5 45
08 7 56 2 16 2 16
07 15 105 2 14 13 91
06 11 66 3 18 4 24
05 14 70 3 15 5 25
04 9 36 2 8 6 24
03 18 54 3 9 3 9
02 5 10 3 6 6 12
01 20 20 7 7 20 20

Sum: N; n 237 2823 90 1264 166 2078

2If the plant is `new', i.e., largely retooled, it is identi�ed by a new number.
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4 Empirical results

Goodness of �t

Table 2 reports the goodness of �t of all the estimated models, expressed in terms of

the log-likelihood value (LLH),3 Akaike's Information Criterion (AIC), and Schwarz's

Bayesian Criterion (SBC).4 Within models with the same functional form, these three

criteria give identical ranking with respect to the speci�cation of heterogeneity: the mod-

els that include heterogeneity in both the intercept term and the �rst-order coe�cients

in the production function, i.e., ci and �i, give a clearly better �t than the models with

heterogeneity only in the intercept term, and a markedly better �t than the models with

no coe�cient heterogeneity. There is thus evidence that allowing for random heterogene-

ity in the �i coe�cients of the production function improves the �t to our plant panel

data in comparison with more restrictive models.

Concentrating on the functional form and comparing models with the same speci�ca-

tion of heterogeneity, we �nd that the picture is somewhat less clear, although the general

result is that TL(�) outperforms both ECD(�) and CD(�). In some cases, however, SBC

ranks CD �rst. This is particularly true for the models with random intercepts and �i's.

It should be remembered, though, that this criterion penalizes coe�cient-rich models rel-

atively hard. The estimates of the genuine disturbance variance, �uu, support our general

conclusion with respect to model �t: it decreases strongly when more heterogeneity is

allowed for and also when the exibility of the functional form increases.

The estimated variance of the random intercept, !cc is substantially higher when the

coe�cient vector �i is speci�ed as random than when it is �xed (compare columns 1 {

3 with 4 { 6 in Table 2). On the other hand, the choice of functional form a�ects the

estimated variance of the random intercept modestly.

Degree of coe�cient heterogeneity

The last row of each panel of Table 2 gives a measure of the overall degree of coe�-

cient heterogeneity (including intercept heterogeneity) in each estimated equation. The

3Likelihood Ratio test statistics can be easily calculated from the tables. These statistics are, however,

not asymptotically �2-distributed under the null hypothesis of full coe�cient homogeneity, because the

parameters in 
 then are on the border of the admissible parameter space, see Shin (1995, p. 321). Thus,

for making formal inference of coe�cient heterogeneity versus homogeneity, other test procedures may

be needed, see the recent papers by Khuri et al. (1998) and Andrews (1999). We have not followed up

these ideas in the present paper, however.
4The two latter criteria are de�ned, for a model, m, by, respectively, AICm = lm � qm and SBCm =

lm � 0:5qm ln(Nm), where lm is the log-likelihood value of model m, qm is its number of parameters, and

Nm is its number of observations.
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measure is the estimated share, ', at the overall sample mean of the inputs,5 of the

variances of the gross disturbance  (ip)t [cf. (A.3) and (A.8)] which is due to coe�cient

heterogeneity. In the model with random intercept term ci only, it is the estimated value

of

' =
!cc

!cc + �uu
:

In the random coe�cients model, the share is the estimated value of

' =
w0
ww

w0
ww + �uu
;

where w is the 5� 1 vector with 1 in the �rst position and the log of the overall mean of

the inputs in the remaining positions, and 
w is the sub-matrix of 
 which corresponds

to the random coe�cients, cf. (3). These ratios show that a very high share of the total

variance is due to coe�cient heterogeneity: 72 { 85 per cent in the models with random

intercept term and 82 { 91 per cent in the models that also include random �rst-order

coe�cients.

Input and scale elasticities

The complete set of (mean) coe�cient estimates in the various models is given in Tables

A2 { A4 in Appendix C. Table 3 reports the derived estimates of the expected input

elasticities, the expected scale elasticity, and the expected trend e�ect { all calculated at

the overall mean of the inputs.6 The expected scale elasticity is relatively stable across

models and the results clearly indicate weakly increasing or constant returns to scale

for Pulp and paper and Basic metals. The estimates for Chemicals are more variable

and both Models TL(c; �) and ECD(c; �) show increasing returns to scale, with scale

elasticities in the range 1.3 { 1.4. There is no systematic pattern in the expected scale

elasticity with respect to choice of functional form or speci�cation of heterogeneity that

is robust across industries.

Overall, the estimated expected input elasticities at the sample mean show larger vari-

ability across models than does the scale elasticity. Most estimates have the expected

positive sign, the exception is the labour elasticity in six of the nine cases that do not

include coe�cient heterogeneity. This indicates that \no heterogeneity" is an inappropri-

ate empirical speci�cation of the average technology for our plant panel data. A weakly,

although not signi�cantly, negative7 labour elasticity is also found in Model TL(c; �) in

5The overall means of the inputs are de�ned as the logarithms of their arithmetric means; cf. Table A1

in Appendix C.
6Note that the standard deviation estimates given in parenthesis refer to the uncertainty of the esti-

mated parameters and hence is conceptually di�erent from the standard deviation of the random param-

eter, i.e., the square root of the diagonal elements of 
��.
7A 5 per cent signi�cance level is used throughout.
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Basic metals, however. Materials input comes out with a relatively high input elasticity,

in particular in Pulp and paper and Basic metals. In Chemicals, but also to some degree

in Pulp and paper, the input elasticity of capital is high according to several models.

Comparing columns 4 { 6 in Table 3 with columns 1 { 3, it is clear that when we allow

for randomness of the �i's, the standard deviation estimates of the expected coe�cients

increase substantially { in most cases to almost the double value. This seems to be a

consequence of allowing a less restrictive model speci�cation.

Trend e�ects

The trend variable �t is represented by the calendar year. Excepting the three models

with no heterogeneity in Pulp and paper, the estimated (sample mean) trend coe�cient

�� , in Table 3, is signi�cantly positive in all models. The values vary between 0.7 and 0.8

per cent in Pulp and paper, between 3 and 4 per cent in Chemicals, and around 2 per

cent in Basic metals. Hence, the estimated technical progress is strongest in Chemicals

and weakest in Pulp and paper.

This is consistent with industry speci�c R&D costs, which are available in some

years. It is plausible to assume a connection between R&D costs over time and technical

progress, and the Chemical industry invests much more in R&D than the other two

industries, measured both in NOK and as a share of value added. For example in 1995,

R&D costs were about 12 per cent of the value added in Chemicals, and only 3 { 4 per

cent in Pulp and paper and Basic metals.

Distribution of the random coe�cients

Tables 4a { 4c, 5a { 5c and 6a { 6c all characterize, in di�erent ways, plant heterogeneity.

Tables 4a { 4c contain estimates of the covariance matrix of the random coe�cients in

our most general speci�cation of plant heterogeneity. There is one table, covering all

three industries, for each functional form, with variances along the main diagonal and

correlation coe�cients below. For each industry, the results are very robust with respect

to the form of the average production function. In only one case [corr(�Ei; �Ki) for

Chemicals], the sign switches. The majority of the correlation coe�cients are negative,

and in several cases, they are quite large in absolute value. Hence, a relatively high

coe�cient of one input is often matched with a relatively low coe�cient of the other

inputs, and vice versa.

The correlation structure of the random coe�cients seems to be somewhat di�erent

for the three industries. The coe�cients of capital and materials are clearly negatively

correlated in both Pulp and paper (about -0.60) and Chemicals (about -0.35). The

coe�cients of capital and energy are clearly negatively correlated in both Pulp and
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paper (about -0.40) and Basic metals (about -0.65). The correlation between the random

coe�cients of capital and labour is rather weak in Pulp and paper, but fairly strong in

the two other industries: about -0.30 in Chemicals and about -0.55 in Basic metals. In

Chemicals the highest correlation coe�cient, about -0.50, is found between the coe�cients

of labour and energy. Turning to the coe�cients of materials and energy, which is often

treated as one single input in empirical studies, we �nd that the correlation is positive,

but weak in Pulp and paper, clearly negative in Chemicals (about -0.30), and quite large

in Basic metals (less than -0.60). The large negative correlation between the intercept ci

and the coe�cient of labour and the positive correlation between the intercept and the

coe�cent of energy for all industries and models should also be noted.

Predicted input and scale elasticities. Random and systematic heterogeneity

In Appendix A we explain how plant speci�c random coe�cients can be predicted [cf. in

particular eq. (A.10)]. From such predictions we can obtain plant speci�c scale elasticities,

�i, and input elasticities, (�Ki; �Li; �Ei; �Mi). Figures 2 { 10 exhibit all the predicted scale

elasticities and input elasticities according to Models TL(c; �), ECD(c; �), and CD(c; �),

evaluated at the plant speci�c means of the explanatory variables, when the plants are

sorted by ascending scale elasticities. In Tables 5a { 5c and 6a { 6c we report descriptive

statistics of these plant speci�c predictions. These �gures and tables all represent both the

random heterogeneity, i.e., due to the random coe�cient variation, and the systematic

heterogeneity which is due to di�erences in the input mix across plants. Confer the

variance expression (10) for the scale elasticity, in which the �rst component, var(��),

represents the random part (as illustrated in Tables 4a { 4c) and the second component,

�� 0
V(z

it
)��, represents the systematic part.

Taking Model ECD(c; �) as an example (cf. Table 5b), we see that the pairs of the low-

est and highest predicted scale elasticities are (0:42; 2:10), (�0:22; 4:43) and (0:72; 1:58)

in Pulp and paper, Chemicals, and Basic metals, respectively. About two thirds of the

plants in Pulp and paper and Basic metals have increasing returns to scale when evalu-

ated at the plant speci�c means of the explanatory variables. The corresponding share

in Chemicals is somewhat lower, about 0.55. Similiar results are obtained for the two

other functional forms.

The means of the plant speci�c predicted elasticities are given in the �rst column of

Tables 5a { 5c. Figures 2 { 10 show that the variability of the scale elasticities is much

less than the variability of the input elasticities. This is con�rmed by the coe�cients

of variation of the predicted elasticities in the third column of Tables 5a { 5c: for all

functional forms and all industries, the coe�cient of variation is smaller for the scale

elasticity than for any of the input elasticities. The coe�cient of variation of the scale
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elasticities is uniquely higher in Chemicals than in the two other industries for any of

the three functional forms. This explains why we can �nd clearly increasing returns to

scale at the sample mean in some models in Chemicals only, although this industry has

the smallest share of individual plants with increasing returns.

The last column of Tables 5a { 5c (and Figures 2 { 10) shows that a share of the pre-

dicted input elasticities are negative. The occurrence of negative input elasticities means

that the predicted functions for some of the plants does not ful�ll the usual regularity

conditions of a production function, as representing the technically e�cient combinations

of inputs and output. This makes economic interpretation more di�cult. Generally, this

problem seems to be somewhat more pronounced for Models TL(c; �) and ECD(c; �) than

for CD(c; �). Stated otherwise, increased exibility of the functional form intensi�es the

problem of violation of the regularity conditions. Negativity of the predicted input elas-

ticities occurs least frequently for materials. The occurrence of negative predicted input

elasticities as well as negative estimates of average input elasticities (cf. Table 3) may

suggest that some kind of constrained estimation procedure, or other distributional as-

sumptions for the random coe�cients, should have been applied. Such modi�cations,

however, may require computer software which is presently unavailable, and/or may

enhance the numerical problems. Hence, depending on the purpose of the analysis, it

may be advisable to choose a relatively restrictive functional form if heterogeneity in

technology is a major concern and is represented by random coe�cients.

We will now compare the input and scale elasticities in Tables 5a { 5c with those in

Table 3. Di�erences between these values reect both random and systematic hetero-

geneity. The values in Table 3 are calculated at the estimated expected values of the

random coe�cients and the overall means of the inputs. For the CD functional form, the

�i's have interpretations as input elasticities. In this case there is practically no di�er-

ence between the two types of measures (see Table 5c, column 1, and Table 3, column 3).

However, this does not hold for the two other functional forms, in which the input elas-

ticities depend on the input vector. In Pulp and paper, the di�erences are modest for the

scale elasticities, the largest di�erence, 0.06, occurring for the energy elasticity in Model

TL(c; �). For the other two industries, we �nd larger discrepancies. In Chemicals (com-

pare Table 3 with Tables 5a and 5b), the estimated average scale elasticities are 1.31 and

1.43 in Models TL(c; �) and ECD(c; �), respectively, whereas the means of the predicted

plant speci�c elasticities are lower, 1.04 and 1.09, respectively. The main contribution

to these discrepancies comes from the capital elasticity. For instance in Model TL(c; �),

the estimate (Table 3) is 0.52, whereas the mean of the predicted elasticity is only 0.25.
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Predicted input and scale elasticities. Correlation pattern

The empirical covariance pattern of the predicted plant speci�c input elasticities, given

in the last four columns of Tables 6a { 6c (variances along the diagonal, correlation

coe�cients below), shows that most of the correlations are negative. To a considerable

extent this reects the pattern in Tables 4a { 4c for the (random) �rst-order coe�cients

(�Ki; �Li; �Ei; �Mi). Comparing Table 6c with 4c, both of which relate to the CD model

with random, but input independent input elasticities, is interesting. Since the �i's and

the �i's coincide in this case, we get an illustration of the di�erence between the estimated

joint population distribution of the �'s and the sample distribution of the predicted

empirical counterparts. The empirical variances of the predictions are far smaller than

the estimated population variances of the random input coe�cients.

High estimates (in absolute value) of corr(�mi; �ni) (m and n denoting two arbitrary

inputs) seem to be accompanied by high empirical correlations between predicted input

elasticities of inputs m and n. Since parameter heterogeneity accounts for an important

part of the dispersion in the predicted input elasticities, this is not surprising. For instance

the estimate of corr(�Mi; �Ki) is -0.57 for Model ECD(c; �) in Pulp and paper (Table 4b),

whereas the corresponding empirical correlation coe�cient between b�M and b�K is -0.71

(Table 6b). In both cases this is the highest correlation (in absolute value) among any

pair of inputs. Reproducing the calculations in Tables 6a { 6c with the predicted plant

speci�c coe�cients replaced by their estimated means con�rms that most of the dispersion

reects the randomness of the coe�cients. For example, the empirical variances of the

scale elasticities is reduced to less than one third.

Finally, turning to the �rst column of Tables 6a { 6c, we note that the predicted plant

speci�c scale elasticity is strongly positively correlated with the predicted labour input

elasticity in all the three industries (correlation coe�cient 0.70 or more). Hence, plants

with a high labour input elasticity tend to have a high scale elasticity. On the other

hand, the predicted plant speci�c scale elasticity is clearly negatively correlated with the

predicted energy input elasticity (correlation coe�cient -0.25 or below).

5 Concluding remarks

In this paper, the importance of heterogeneity in economies of scale is analysed using

an unbalanced plant-level panel data set from Norwegian Manufacturing Statistics. The

plants are from Pulp and paper, Chemicals, and Basic metals industries. A random

coe�cient approach is chosen, and unlike most previous work on micro data, our model

speci�cation allows for heterogeneity in the slope coe�cients representing the scale prop-
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erties as well as in the intercept term. Nine speci�cations of a four-factor (KLEM)

production function is estimated: the Translog, an Extended Cobb-Douglas and the

strict Cobb-Douglas, each with three alternative representations of the heterogeneity.

The three functional forms are nested, and both the Translog and the Extended Cobb-

Douglas imply non-homothetic technology with input dependent scale elasticity.

We �nd constant or weakly increasing returns to scale for a plant with an average

technology, but the results reveal considerable variation across plants, and plants with

both increasing and decreasing economies of scale are present. The input elasticities at

the sample mean are found to be even more variable than the scale elasticity, this is

particularly true for labour. In general, the input elasticity of materials is largest, while

that of energy is smallest. Variations in the input coe�cients across plants seem to a

larger extent to be due to randomness of the production function parameters than to

systematic di�erences in the input mix.

Speci�cations that include heterogeneity in slope coe�cients, in addition to heteroge-

neous intercept terms, improve the �t. This holds for all three functional forms. Among

the models with heterogeneity in slope coe�cients the �t does not seem to deviate much

across functional forms, and for two of the three industries the ranking of the models de-

pends on the choice of information criterion. However, according to the predicted input

elasticities, the CD model yields plant speci�c production functions which to a less degree

than the two other functional forms violate the regularity conditions regarding technical

e�ciency. Hence, it may be advisable to choose a relatively restrictive functional form if

heterogeneity in technology is a major concern and is represented by random coe�cients.

We expect our main �nding, i.e., that economies of scale properties vary substantially

across plants, to be a general feature in micro data. The lesson we learn is that one should

work carefully with the representation of the plant speci�c heterogeneity when analysing

the production technology by means of micro data. This supports the �ndings of Mairesse

and Griliches (1990), who use a simpler description of the average technology than we

do. It is interesting to note, though, that, apart from one industry, the estimated scale

elasticity for the average plant is very robust to the choice of the model speci�cation.

An interesting issue for future research would be to analyse the distribution of scale

properties, and their aggregate implications, in more detail. This may be important since

knowledge about systematic variation in characteristics of plants with either increasing

or decreasing returns to scale, such as age, size, growth performance, etc., could be

important for our understanding of the evolution of an industry.
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APPENDIX A: Details on estimation method and coe�cient prediction

Consider a data set from an unbalanced panel, in which the plants are observed in at

least 1 and at most P years. We assume that the selection rules for the unbalanced

panels are ignorable, i.e., the way in which the plants enter or exit is not related to the

endogenous variables in the model; see Verbeek and Nijman (1996, section 18.2). The

plants are arranged in groups according to the number of years the plants are observed.

Let N
p
be the number of plants which are observed in exactly p years (not necessarily

the same and not necessarily consecutive), let (ip) index the i'th plant among those

observed in p years (i = 1; : : : ; N
p
; p = 1; : : : ; P ), and let t index the observation number

(t = 1; : : : ; p). The total number of plants in the panel is N =
PP

p=1Np and the total

number of observations is n =
PP

p=1Npp. The regression equation, i.e., the production

function (1), can be written compactly as

y(ip)t = x(ip)t�(ip) + u(ip)t; p = 1; : : : ; P ; i = 1; : : : ; Np; t = 1; : : : ; p;(A.1)

where �(ip) is the coe�cient vector of plant (ip). The regressand of plant (ip), observation

t is y(ip)t, the corresponding (1�H) regressor vector is x(ip)t, and the disturbance is u(ip)t.

The (H � 1) coe�cient vector of plant (ip), cf. (2), is

�(ip) = � + �(ip);(A.2)

where � is the common expectation vector of �(ip) for all plants, and �(ip) is a zero mean

random vector speci�c to plant (ip). Inserting (A.2) in (A.1), we get

y(ip)t = x(ip)t� +  (ip)t;  (ip)t = x(ip)t�(ip) + u(ip)t;(A.3)

where we interpret  (ip)t as a `gross disturbance'. We assume that

x(ip)t; u(ip)t; �(ip) are all independent;(A.4)

u(ip)t � IIN(0; �uu); �(ip) � IIN(0;
);(A.5)

where IIN signi�es independently, identically, normally distributed. The matrix 
 is

singular, reecting that some of the coe�cients are �xed, cf. (3).

We stack the p realizations from plant (ip) in

y(ip) =

2
664
y(ip)1
...

y(ip)p

3
775 ; X(ip) =

2
664
x(ip)1
...

x(ip)p

3
775 ; u(ip) =

2
664
u(ip)1
...

u(ip)p

3
775 ;  (ip) =

2
664
 (ip)1
...

 (ip)p

3
775 ;

which have dimensions (p� 1), (p�H), (p� 1), and (p� 1), respectively. Then we can

write (A.3) as

y(ip) = X(ip)� +  (ip);  (ip) = X(ip)�(ip) + u(ip):(A.6)
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It follows from (A.3), (A.4), and (A.5) that

All  (ip)jX(ip) are independent and  (ip)jX(ip) � N(0;
(ip));(A.7)

where


(ip) = X(ip)
X
0

(ip) + �uuIp:(A.8)

The joint log-density function of plant (ip), i.e. of y(ip) conditional on X(ip), is

L(ip) = �
p

2
ln(2�)�

1

2
ln j
(ip)j �

1

2
[y(ip) �X(ip)�]

0



�1
(ip) [y(ip) �X(ip)�];

so that by utilizing the ordering of the observations in the P groups, we can write the

log-likelihood function of all observations on the y's conditional on all observations on

the X 's as

L =
PX
p=1

NpX
i=1

L(ip) = �
n

2
ln(2�)�

1

2

PX
p=1

NpX
i=1

ln j
(ip)j

�
1

2

PX
p=1

NpX
i=1

[y(ip) �X(ip)�]
0



�1
(ip) [y(ip) �X(ip)�]:(A.9)

The Maximum Likelihood (ML) estimators of (�; �uu;
) are obtained by maximizing

L with respect to (the unknown elements of) these parameter matrices. The solution

conditions may be simpli�ed by concentrating L over � and maximizing the resulting

function with respect to �uu and the unknown elements of 
. For a further discussion,

see Bi�rn (1999).

The coe�cient vector of plant (ip), �(ip), can be predicted as follows:

��(ip) =
b� + b
X 0

(ip)(X(ip)
b
X 0

(ip) + b�uuIp)�1(y(ip) �X(ip)
b�);(A.10)

where b� is the ML (strictly, the Feasible GLS) estimator of the expected coe�cient vector

� [cf. Lee and Gri�ths (1979, section 4) and Hsiao (1986, p. 134)], and b
 and b�uu are

the corresponding estimates of 
 and �uu. Apart from the fact that 
 and �uu have

been estimated, this is the best linear unbiased predictor (BLUP) of �(ip). It can be

shown that this expression can be rewritten as a matrix weighted average of the overall

estimator of � and the OLS estimator of �(ip), based on observations from plant (ip),

i.e., b�(ip) = (X 0

(ip)X(ip))
�1(X 0

(ip)y(ip)), in the following way

��(ip) =
h b
�1

+ b��1uuX 0

(ip)X(ip)

i�1 h b
�1b� + b��1uuX 0

(ip)X(ip)
b�(ip)

i
;(A.11)

cf. Judge et al. (1985, pp. 540 { 541). The latter expression, however, is only valid when

p > H , since otherwise b�(ip) does not exist.
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APPENDIX B: Data description

Our unbalanced plant-level panel data set is collected from the Manufacturing Statistics

database of Statistics Norway. The Manufacturing Statistics follow the Standard Indus-

trial Classi�cation (SIC) and gives annual data for large plants at the 5-digit code. Until

1992, plants with at least 5 employees were de�ned as large, while from 1992 on the limit

is 10 employees. In 1993, the activity classi�cation was revised according to EU's NACE

Rev. 1 and UN's SIC Rev. 3, while previously based on UN's SIC Rev. 2. While the

revision of the activity classi�cation does not cause inconsistency problems in our data,

the change in the de�nition of large plants causes a break in the time series for plants

with 5 { 9 employees in 1992. Our data set includes all industries classi�ed under SIC-

codes 341 Manufacture of paper and paper products (Pulp and paper), 351 Manufacture

of industrial chemicals (Chemicals) and 37 Manufacture of basic metals (Basic metals).

In addition, to achieve consistency after the revision of the activity classi�cation, a few

plants belonging to other SIC industries are included.

Most variables are observed directly. The exceptions are materials input and capital

stock, which are calculated from available information. In the description below, MS

indicates that the data are from the Manufacturing Statistics, and the data are plant

speci�c. NNA indicates that the data are from the Norwegian National Accounts. In

this case, the data are identical for all plants classi�ed in the same National Account

industry. While the plants in our unbalanced panel mainly are collected from 18 di�erent

industries at the 5-digit SIC-code level, the plants are classi�ed in 14 di�erent National

Accounts industries. Data in value terms are in 100 000 Norwegian kroner (NOK).

Y : Output, 100 tonnes (MS)

K = KB +KM : Total capital stock (buildings/structures plus

machinery/transport equipment), 100 000 1991-NOK (MS,NNA)

L: Labour input, 100 man-hours (MS)

E: Energy input, 100 000 kWh, electricity plus fuels (excl. motor gasoline) (MS)

M = CM=QM : Input of materials (incl. motor gasoline), 100 000 1991-NOK (MS,NNA)

CM : Total material cost (incl. motor gasoline) (MS)

QM : Price of materials (incl. motor gasoline), 1991=1 (NNA).

Output: The plants in the Manufacturing Statistics are in general multi-output plants

and report output of a number of products measured in both NOK and primarily tonnes

or kg. The classi�cation of products follows The Harmonized Commodity Description

and Coding System (HS), and assigns a 7-digit number to each speci�c commodity. For

each plant, an aggregate output measure in tonnes is calculated.
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Capital stock: The calculations of capital stock data are based on the perpetual in-

ventory method assuming constant depreciation rates. We combine plant data on gross

investment with �re insurance values for each of the two categories Buildings and struc-

tures and Machinery and transport equipment from the Manufacturing statistics. The

data on investment and �re insurance are deated using industry speci�c price indices

of investment goods from the Norwegian National Accounts (1991=1). The depreciation

rate for Buildings and structures is 0.020 in all industries. For Machinery and transport

equipment, the depreciation rate is set to 0.040 in Pulp and paper and Basic metals,

and 0.068 in Chemicals. For further documentation of the capital stock calculations, see

Bi�rn, Lindquist and Skjerpen (2000, Section 4).

Other inputs: From the Manufacturing Statistics we get the number of man-hours used,

total electricity consumption in kWh, the consumption of a number of fuels in various

denominations, and total material costs in NOK for each plant. The di�erent fuels, such

as coal, coke, fuelwood, petroleum oils and gases, and aerated waters, are transformed to

the common denominator kWh by using estimated average energy content of each fuel

[Statistics Norway (1995, p. 124)]. This enables us to calculate aggregate energy use in

kWh for each plant. For most plants, this energy aggregate is dominated by electricity.

Total material costs is deated by the price index (1991=1) of material inputs (incl.

motor gasoline) from the Norwegian National Accounts. This price is identical for all

plants classi�ed in the same National Account industry.
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