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1. Introduction 

Analysis of duration data plays a key role in labor market and population economics. Duration of 

unemployment, job durations, lifetimes of firms, spacing of births and duration of marriages constitute 

a selection of life history events that are paid much attention in the economic literature. Distributions 

of duration data are commonly specified in terms of the conditional probability of exit or the hazard 

function. Application of the hazard function is known to be particularly useful when concern is turned 

to situations where the probability of leaving the state in question depends on the time spent in the 

state. If the hazard function is increasing then the probability that a spell of an event will be completed 

is increasing with the duration of the event. In the economic literature increasing hazard function is 

normally referred to as a state of positive duration dependence. As demonstrated by Lippmann and 

McCall (1976) the job search models of unemployment predict positive duration dependence in cases 

where the “reservation wage” declines. By contrast, Flinn and Heckman (1983) and Van den Berg 

(1994) demonstrate that negative duration dependence, i.e. decreasing hazard rate, may arise from 

stigma or discouragement effects whilst Jovanovic (1979) shows that negative duration dependence 

plays a crucial role in job turnover models. These examples suggest that the notion of duration 

dependence plays a central role in analyses of the labor market. However, the existing framework for 

analyzing duration dependence can solely be used to reveal occurrence of positive/negative duration 

dependence, but does not provide appropriate methods for comparing and measuring the extent of 

duration dependence in distributions of duration spells. For example, ranking distributions in 

accordance with the criterion of non-intersecting hazard rates may be of limited value because the 

hazard rate does not account for the fact that a specific spell will have different occurrence 

probabilities when two or more distribution functions are compared. This fact suggests that we should 

use the quantile of the duration distribution function rather than the spell variable as the basic unit in a 

framework for comparison and measurement of duration dependence.  

 By defining strong duration dependence in terms of the sum of two comonotone random 

variables, where one of the variables is exponentially distributed, Section 2 demonstrates that the 

quantile-specific hazard rate may serve as a basis for ranking distributions with respect to the extent of 

strong duration dependence. As indicated in Section 2 the ordering defined by the quantile-specific 

hazard rate proves to be closely related to a well-known dispersion ordering in the statistical literature 

and a risk ordering in the economic literature. To deal with distributions where the quantile-specific 

hazard rates intersect weaker ranking principles than the criterion of non-intersecting quantile-specific 

hazard rate are called for. By aggregating the inverse quantile-specific hazard rate from above a 

weaker criterion defined by the quantile-specific expected remaining duration curve emerges. The 
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relationship between this duration dependence ordering, denoted weak duration dependence, and 

second-degree stochastic dominance is explored in Section 3.  

 The strong as well as the weak duration dependence ordering depends on the mean 

durations of the distributions being compared. However, a mean independent duration dependence 

ordering is called for when it is considered important to distinguish between the mean duration and the 

extent of duration dependence as the origin of an attained ordering of duration distributions. To this 

end a mean independent version of the weak duration dependence ordering defined in terms of the 

scaled quantile-specific expected remaining duration curve is introduced in Section 3.  

 Many parametric distributions, such as the gamma and the Weibull distributions, have 

monotone hazard rates. However, economic as well as physical phenomena may exhibit hazard rates 

that are non-monotonic. The typical non-monotone hazard rate decreases initially, then becomes 

essentially constant, and ultimately increases. Such hazard rates are denoted bathtub shaped. By 

contrast, parametric distributions, such as the lognormal and the inverse Gaussian distribution, are 

found to have an upside down bathtub shape1. To summarize the duration dependence structure of 

non-monotone hazard rates summary measures of duration dependence are needed.  

 Section 4 uses the scaled quantile-specific expected remaining duration curve as a basis 

for defining summary measures of duration dependence. By introducing an appropriate ordering 

relation on the set of duration distributions an axiomatic based family of measures of duration 

dependence is obtained. One of these measures is shown to coincide with the inverse shape parameter 

of the Weibull distribution when the duration spell is Weibull distributed. As a result, a convenient 

statistical/economic interpretation of Weibull’s shape parameter is obtained. Section 5 discusses the 

phenomena of duration dependence in proportional and mixed proportional hazard rates models and 

demonstrates that it is impossible to distinguish between observed/unobserved heterogeneity and 

relative duration dependence, when concern is directed to comparison and measurement of the extent 

of relative duration dependence. Section 6 provides concluding remarks. 

2. Strong duration dependence 

As is well known the exponential distribution acts as a reference distribution in duration analyses since 

it is characterized by a constant hazard and exhibits no duration dependence. A natural generalization 

is the Weibull distribution, which allows time dependence of the hazard function. The Weibull 

distribution, named after the Swedish physicist Waloddi Weibull, was originally introduced to 

describe the breaking strength of materials and appears to have become the most popular and widely 

                                                      
1 See e.g. Lancaster (1990) for a discussion on non-monotone hazard rates. 
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used parametric family of failure distributions in statistics, biostatistics and economics and is defined 

by 

(2.1) ( )( )( ) 1 exp , 0 and , 0= − − ≥ >F y y y
α

α
λ λ α  

where α is called the shape parameter and λ is a scale parameter. The Weibull distribution has been 

considered to be rather flexible and appropriate for describing and analyzing duration of single spells 

and has been much applied in econometric analyses of the duration of unemployment spells, see e.g. 

Lancaster (1979), Nickell (1979) and Kiefer (1988). The hazard function of the Weibull distribution is 

shown to increase or decrease monotonically according to whether the shape parameter α is larger or 

smaller than 1. The case of an increasing hazard function is referred to in the economic literature as 

positive duration dependence. Similar, a decreasing hazard function is said to exhibit negative duration 

dependence.2 

 Since α is treated as a parameter that captures duration dependence one may ask whether 

1

F
α
 exhibits stronger negative duration dependence than 

2

F
α
 when 

1 2
1< <α α ? To answer this 

question a definition that clarifies what stronger negative (positive) duration dependence is supposed 

to mean is required. 

 The association of negative (positive) duration dependence with a decreasing (increasing) 

hazard rate suggests that we may use the criterion of non-intersecting hazard rates as a basis for 

ranking distribution functions according to the extent of duration dependence. However, as will be 

demonstrated below it is useful to introduce a slightly stronger ordering than what is provided by the 

criterion of non-intersecting hazard rates. To this end we introduce an alternative definition of duration 

dependence that associates duration dependence with the addition of comonotone random variables. 

As noted by Schmeidler (1989) and follows from Definition 2.1 below comonotone random variables 

are characterized by providing identical orderings of the state space from best to worst (or worst to 

best). 

 

DEFINITION 2.1. The random variables 
1 2
, ,...,

n
X X X  are comonotonic if and only if there exist non-

decreasing functions nig
i

,...,2,1,: =ℜ→ℜ  and a random variable U such that 

( ), 1,2,...,= =
i i

X g U i n . 

 

                                                      
2 As an alternative to this definition of (global) duration dependence one may use the following less restrictive definition of 

(local) duration dependence, see e.g. Heckman and Singer (1986): If ( )( ) ( ) 0> <dh y dy , at 
0

=y y , there is said to be 

positive (negative) duration dependence at y0. 
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 The following definition of duration dependence says that strong negative (positive) 

duration dependence occurs when a random variable is equal to the sum of two comonotone random 

variables, where one of the variables is exponentially distributed and the other has a c.d.f. with 

decreasing (increasing) hazard rate. 

 

DEFINITION 2.2. A cumulative distribution function G defined on 0, ∞  exhibits strong negative 

(positive) duration dependence if there exists a pair of comonotone random variables X and Z such that 

GZX ~+ , X is exponentially distributed on 0, ∞  and Z has a c.d.f. defined on 0, ∞  with 

decreasing (increasing) hazard rate. 

 

 Note that the property of strong negative or positive duration dependence is preserved 

under scale-transformations of the duration variable. 

 To illustrate the definition of strong negative duration dependence we consider the 

following example: Let (7, 15, 27, 48) and (10, 23, 43, 80) be independent outcomes from two 

different duration distributions, where the former set of outcomes is assumed to be from the 

exponential distribution function. Since the latter set of outcomes can be expressed by the following 

sum 

 (10,23,43,80) (7,15,27,48) (3,8,16,32)= +  

and (3, 8, 16, 32) proves to be outcomes from a distribution with decreasing hazard rate, we can 

conclude that the distribution with outcomes (10, 23, 43, 80) exhibits strong negative duration 

dependence. 

 The following proposition demonstrates that strong negative (positive) duration 

dependence may be given various alternative interpretations. 

 

PROPOSITION 2.1. Let F and G be cumulative distribution functions defined on 0, ∞ , where F is 

the exponential distribution function with hazard rate λ. Assume that G has hazard rate h and 

differentiable inverse 1−
G . Then the following statements are equivalent, 

(i) There exists a pair of comonotone random variables X and Z, where Z has a cumulative 

distribution function defined on 0, ∞  with differentiable inverse and decreasing (increasing) 

hazard rate, such that FX ~  and GZX ~+   
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(ii) 1 1 1 1 1 1
( ) ( ) ( ) ( ) ( ) log , for all 0 1

1

− − − −
− 

− ≥ ≤ − = < < < 
− 

u
G v G u F v F u u v

vλ
 

and h(t) is decreasing (increasing) 

(iii) [( ) ( ) for all 0,h t tλ≤ ≥ ∈ ∞  

 and h(t) is decreasing (increasing). 

 

PROOF. It is convenient to divide the proof of the equivalence between (i) and (ii) into two parts. 

First, we will prove the equivalence between (i) and (ii) when the conditions of decreasing (increasing) 

hazard rates of G and (the c.d.f. of) Z are abandoned. Then, the equivalence between (i) and (ii) 

follows from Proposition 2 of Landsberger and Meilijson (1994). Next, we will prove the equivalence 

between the decreasing (increasing) hazard rate of the c.d.f. of the comonotone variable Z in (i) and 

the decreasing (increasing) hazard rate h of G in (ii). 

 Assume that Z has c.d.f. K with inverse 1−
K , density k and hazard rate m, and G and F 

have densities g and f and assume that (i) is valid. Since X and Z are comonotone random variables we 

then have that 

 1 1 1( ) ( ) ( )− − −

= +G u F u K u . 

Differentiating this expression yields 

 
( ) ( ) ( )1 1 1

1 1 1

( ) ( ) ( )− − −

= +

g G u f F u k K u
 

which is equivalent to 

 
( ) ( )1 1

1 1 1

( ) ( )− −

= +

h G u m K uλ
. 

Thus, h(t) is decreasing (increasing) if and only if m(t) is decreasing (increasing). 

 What remains to be proved is the equivalence between the inequality conditions of (ii) 

and (iii). By dividing both sides of (ii) by −v u  and by letting →v u  it follows that 

(ii) 

⇔ 
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 ( ) ( ) [ ]1( ) ( ) 1 for all 0,1−

≤ ≥ − ∈g G u u uλ  

⇔ 

 [( ) ( ) for all 0,h t tλ≤ ≥ ∈ ∞ . 

 Proposition 2.1 demonstrates that strong negative (positive) duration dependence differs 

from the standard definition of duration dependence by requiring that the decreasing hazard rates are 

finite and that the increasing hazard rates are strictly positive. This additional requirement corresponds 

to impose the dispersion condition in (ii) on the duration distributions.3 Thus, for distributions with 

finite decreasing (positive increasing) hazard rates strong negative (positive) duration dependence may 

be associated with larger (smaller) dispersion than what is exhibited by an exponential distribution 

function with higher (lower) hazard rate. 

 The alternative interpretations of strong duration dependence provided by Proposition 2.1 

form a useful basis for developing an ordering of distributions with respect to duration dependence. 

 

DEFINITION 2.3. Let G1 and G2 be cumulative distribution functions defined on 0, ∞  with hazard 

rates that exhibit strong negative (positive) duration dependence. Then G2 is said to exhibit stronger 

strong negative (positive) duration dependence than G1 if and only if 

(i) 1 1 1 1

2 2 1 1
( ) ( ) ( ) ( ) ( ) for all 0 1− − − −

− ≥ ≤ − < < <G v G u G v G u u v  

 and the inequality holds strictly for some (u,v). 

 

 By applying Definition 2.3 we may claim that the distribution with the largest (smallest) 

dispersion exhibits the strongest strong negative (positive) duration dependence when distributions 

that exhibit strong negative (positive) duration dependence are compared. Note that Quiggin (1991, 

1993) and Landsberger and Meiligson (1994) proposed to use the condition (i) in Definition 2.3 as a 

risk ordering in the area of choice under uncertainty. 

 It follows from Proposition 2.1 that (i) in Definition 2.3 is equivalent to the condition 

(2.2) ( ) ( ) [ ]1 1

2 2 1 1
( ) ( ) ( ) for all 0,1− −

≤ ≥ ∈h G u h G u u  

where h1 and h2 are the hazard rates of G1 and G2, respectively.  

                                                      
3 Bickel and Lehmann (1979) proposed to use the dispersion condition in (ii) in Proposition 2.1 as a dispersion ordering for 

arbitrary c.d.f.’s whereas Doksum (1969) originally introduced this ordering condition as a tail ordering. 
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 Thus, the quantile-specific hazard rate, ( )1( )−

h G u , captures the essential features of the 

notion of strong duration dependence and can be used as a device for ordering distributions with 

respect to the extent of strong duration dependence. Note that condition (ii) is invariant with respect to 

identical scale-transformations of the G1 and G2 distributed random variables. 

 By employing the quantile-specific hazard rate we may examine the question of whether 

the shape parameter of the Weibull distribution can be used to rank distributions with respect to 

duration dependence. Inserting for (2.1) in ( )1( )−

h F u
α

 we get 

(2.3) ( ) ( )( )
1

1
1( ) log 1 , 0 1

−

−

= − − ≤ ≤h F u u uα

α
α λ . 

By closer examination of (2.3) we find that ( )
1 1

1( )−

h F u
α α

 and ( )
2 2

1( )−

h F u
α α

 may intersect when 

1 2
1> >α α  or

2 1
1< <α α  and 

1 2
<λ λ . Moreover, the Weibull hazard rates do neither fulfill the 

conditions of being finite decreasing nor positive increasing. Thus, the strong duration dependence 

orderings do not provide a ranking of members of the Weibull family of distribution functions. This 

result suggests that the notion of strong duration dependence is very restrictive and of minor interest in 

applied work. To achieve ranking of Weibull distributions and other distributions that do not obey the 

dispersion criterion (i) in Definition 2.3 a weaker ordering than strong duration dependence is 

required. 

3. Weak duration dependence 

In order to introduce a weaker ordering criterion than strong duration dependence we may draw on the 

parallel to stochastic dominance and define an ordering condition that is similar to second-degree 

stochastic dominance. However, since duration dependence turns the focus to long duration spells the 

aggregation should start from above rather than from below. This fact suggests that the following 

function 

(3.1) 
( )

( ) ( )
1

* 1 1 1 11
( ) ( ) ( ) ( ) ( ) , 0 1

1

− − − −

= − = − ≥ ≤ ≤

−
∫
u

R u G v G u dv E Y G u Y G u u
u

, 
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may form a helpful basis for ranking distributions that do not exhibit strong duration dependence.4 

Note that ( )* ( )R G y  coincides with the well-known mean (expected) remaining duration function, 

which plays a key role in the statistical theory of reliability, see e.g. Barlow and Proschan (1975). 

 By using integration by parts we get that the R*-curve may be given the following 

alternative expression in terms of the hazard rate, 

(3.2) 
( ) ( )

1

*

1

1 1
( ) , 0 1

1 ( )−

= ≤ ≤

−
∫
u

R u dt u
u h G t

. 

Now, by replacing the requirement of decreasing (increasing) hazard rate in the definition of strong 

duration dependence by the weaker condition of increasing (decreasing) R*-curve we arrive at the 

following alternative definition of duration dependence. 

 

DEFINITION 3.1. A cumulative distribution function G defined on 0, ∞  exhibits weak negative 

(positive) duration dependence if the R*-curve of G is increasing (decreasing). 

 

 Note that the R*-curve increases (decreases) and is lying above (below) the mean if the 

duration distribution exhibits weak negative (positive) duration dependence. 

 Differentiation of R* yields 

(3.3) 
( )

( )
1*

2

( ) 1
1 ( ) ,

1
′= −

−
∫
u

dR u
t d u du

du u

 

where ( )′d u  is the derivative of d(u) (provided that it exists) and d(u) is defined by 

(3.4) 
( )1

1
( ) , 0 1

( )−

= ≤ ≤d u u
h G u

. 

Then it follows straightforward from (3.3) and (3.4) that R*(u) is monotonically increasing 

(decreasing) when the hazard rate is monotonically decreasing (increasing). Accordingly, duration 

dependence defined in terms of the R*-curve is weaker than strong duration dependence. 

                                                      

4 Note that Fernández-Ponce et al. (1998) and Shaked and Shanthikumar (1998) proposed to use ( ) *
1 ( )− u R u  as a device 

for comparing the right-spread variability of distribution functions, whereas Jewitt (1989) used R*(u) to characterize behavior 

under risk. 
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 Assume that G1 and G2 have R
*-curves *

1
R  and *

2
R . As can easily be observed from (3.1), 

* *

2 1
( ) ( )≥R u R u  for all [ ]0,1∈u  only if the mean of G2 is greater or equal to the mean of G1. Note that 

the strong negative duration ordering (2.2) is satisfied only if the mean of G2 is greater than the mean 

of G1. However, when comparing distributions with respect to the extent of duration dependence a 

mean independent ordering relation may be called for. Otherwise, we would not be able to distinguish 

between the general level of duration and the extent of duration dependence as the origin of an 

attained ordering of distributions. The scale invariance property appears particular attractive when 

comparison are made between distributions that are formed under highly different conditions. For 

example, the stigma effects that follows from longer unemployment spells may be considered to be 

relative in the sense that both the unemployed and the employer account for the general level of 

unemployment spells in their behavior. Thus, while six months duration spells may create stigma 

effects at the peak of a business cycle it may be considered to be a normal spell length during a 

recession.  

 A mean independent ordering of weak duration dependence is provided by the following 

function 

(3.5) 
*( )

( ) , 0 1= ≤ ≤
R u

R u u
µ

. 

Thus ( )R u  can be interpreted as the relative or scaled mean remaining duration for an individual with 

longer duration spell than the u-quantile. 

 

DEFINITION 3.2. Let G1 and G2 be cumulative distribution functions defined on 0, ∞  with R-

curves R1 and R2, respectively. Then G2 is said to exhibit stronger weak negative (positive) relative 

duration dependence than G1 if and only if 

(i) 
1
( )R u  and 

2
( )R u  are increasing (decreasing) 

and 

(ii) 
2 1
( ) ( ) ( )≥ ≤R u R u  for all [ ]0,1∈u  and the inequality holds strictly for some u. 

 

 Replacing R by R* in Definition 3.2 yields an absolute version of the weak duration 

dependence ordering. Note that a constant R-curve (equal to 1) and a constant hazard rate are 

equivalent conditions of a c.d.f. G, which are fulfilled if and only if G is the exponential distribution 
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function. Thus, the R-curve increases (decreases) and is lying above (below) the horizontal line 1 if the 

duration distribution exhibits weak negative (positive) duration dependence. 5 

 Note that every duration distribution G with strictly log-convex survivor function, i.e. 

( )log 1 ( )−G y  is strictly convex, has an increasing R-curve and thus exhibits weak negative duration 

dependence. By contrast, every duration distribution with strictly log-concave survivor function has a 

decreasing R-curve and exhibits weak positive duration dependence. 

 To illustrate the relevance of the weak relative duration dependence ordering consider the 

Pareto family of duration distributions defined by 

(3.6) ( )( ) 1 1 , 0
−

= − + ≥G y y y
β

γ  

where 0>γ  and 1>β . 

 By straightforward calculation we find that the mean µ, the quantile-specific hazard rate 

( )1( )−

h G u  and the R-curve is given by 

(3.7) 
( )
1

1
=

−

µ
γ β

, 

(3.8) ( ) ( )
1

1( ) 1−

= −h G u u ββγ  

and 

(3.9) ( )
1

( ) 1
−

= −R u u β . 

It follows from (3.8) that h(t) is decreasing and that ( ) ≤h t βγ  for all ∞〉∈ ,0[t . Thus, we get from 

Proposition 2.1 that the Pareto distributions exhibit strong negative duration dependence. However, as 

indicated above an ordering of distributions based on strong duration dependence cannot be achieved 

when we restrict to distributions with equal means. As an example assume that G1 and G2 are defined 

by (3.6) where 
1

11=β  and 
1

0.1=γ  and 
2

3=β  and 
2

0.5=γ , respectively. Thus, G1 and G2 have 

equal means. Moreover, as displayed in Figure 1 the quantile-specific hazard rate h2 of G2 lies above 

the quantile-specific hazard rate h1 of G1 for small and medium sized quantiles ( 0.72)<u  and below 

the quantile-specific hazard rate of G1 for large quantiles ( 0.72)>u . Although the quantile-specific 

                                                      
5 Note that ( ) ( )1≤ ≥R u  for all u is equivalent to the criterion “new better (worse) than used in expectation” used in the 

statistical theory of reliability. 
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hazard rates intersect it appears intuitive plausible to claim that G2 exhibits stronger negative duration 

dependence than G1 since longer duration spills may occur more frequently from G2 than from G1. 

Actually, this intuition is captured by the notion of weak negative (relative) duration dependence. 

Since 
1
( )R u  and 

2
( )R u  are increasing and 

2 1
( ) ( )>R u R u  for all 0,1∈u  we get from Definition 3.2 

that G2 exhibits stronger weak negative (relative) duration dependence than G1. Since the means of G1 

and G2 are equal to 1 note that 
*

1 1
( ) ( )=R u R u  and *

2 2
( ) ( )=R u R u  in this example. 

 

Figure 1. Plots of the quantile-specific hazard rates and the scaled quantile-specific mean re-

maining duration curves of two different Pareto distributions 

0

1,5

0 1

h2

h1

 

0

6

0 1

R1

R2

 

 

 An interesting question is whether there is any relationship between weak duration 

dependence dominance and second-degree stochastic dominance. To discuss this question it is 

convenient to introduce the following notation, 

(3.10) 
( ) ( )

1

1

1

1

1
( ) , 0 1

( ) 1
( )

(1)
, 1.

−

−

−


≤ <

≥ −
= = 


=



∫
% u

F t dt u
E Y Y F u u

R u

F
u

µ

µ

µ

 

Thus, ( )⋅%R  is a scaled conditional mean function. The following result gives an alternative condition 

for the weak relative duration dependence ordering. 
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PROPOSITION 3.1. Let F1 and F2 be cumulative distribution functions with R-curves R1 and R2 and 

scaled conditional mean functions 
1

%R  and 
2

%R . Then the following statements are equivalent, 

(i) [ ]1 2
( ) ( ) for all 0,1≥ ∈R u R u u  

(ii) 
1 1 2 2
( ) ( ) ( ) ( ) for all 0 1− ≥ − ≤ ≤ ≤% % % %R v R u R v R u u v  

 

PROOF. By dividing both sides of (ii) by −v u  and by letting →v u  it follows that 

 
1 1 2 2
( ) ( ) ( ) ( ) for all 0 1− ≥ − ≤ ≤ ≤% % % %R v R u R v R u u v  

  ⇔ 

 
( )

( )
( )

( )
1 1

1 1 1 1

1 1 2 22 2

1 2

1 1
( ) ( ) ( ) ( ) for all 0 1

1 1

− − − −

− ≥ − ≤ ≤

− −
∫ ∫
u u

G t G u dt G t G u dt u

u uµ µ

 

  ⇔ 

 
1 2
( ) ( ) for all 0 1≥ ≤ ≤R u R u u . 

The latter equivalent statement follows directly from the definitions (3.5) and (3.1) of R and R*. 

 

 Since ( )1 2
(0) (0) 1= =

% %R R , the next result follows directly from Proposition 3.1 and 

demonstrates that the %R -curve ordering is weaker than the R-curve ordering. 

 

PROPOSITION 3.2. Let F1 and F2 be cumulative distribution functions with R-curves R1 and R2 and 

conditional mean functions 
1

%R  and 
2

%R . Then 

(i) [ ]1 2
( ) ( ) for all 0,1≥ ∈R u R u u  

implies 

(ii) [ ]1 2
( ) ( ) for all 0,1≥ ∈% %R u R u u  

 When the comparisons of R-curves are restricted to distributions with equal means it 

follows from Proposition 3.2 that weak negative (positive) duration dependence dominance implies 

second-degree downward (upward) stochastic dominance. 
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 Now, we will examine whether Weibull distributions with different shape parameters can 

be ordered by R or %R . By inserting for (2.1) in (3.1) and (3.10) we get 

(3.11) 
( )

( )

1
, log 1

( ) , 0 1
1

1 1

 
Γ − − 
 = ≤ ≤
 

Γ + − 
 

u

R u u

u

α

α

α

 

and 

(3.12) 
( )

( )

1
1 , log 1

( ) , 0 1,
1

1 1

 
Γ + − − 
 = ≤ ≤

 
Γ + − 
 

%

u

R u u

u

α

α

 

where ( , )Γ v z  is the incomplete gamma function. 

 As for the strong duration dependence criterion we find that R-curves as well as %R -

curves formed by different α-parameters may intersect and thus do not offer a method for ranking 

Weibull distributions according to the extent of duration dependence. To obtain a complete ranking of 

Weibull distributions summary measures of duration dependence are called for. 

4. Measures of duration dependence 

To deal with situations where the R-curves intersect a weaker ranking principle than dominance of R-

curves is called for. In order to reach unambiguous conclusions in these cases summary measures of 

duration dependence are needed. Moreover, summary measures provide a quantification of the extent 

of duration dependence. The area below the R-curve emerges as immediate candidate for summarizing 

the information content of the R-curve. The formal definition of the area below the R-curve is given by 

(4.1) 
1

0

( ) ( ) ,= ∫D G R u du  

which can be interpreted as the ratio between the average of the mean remaining duration and the 

overall mean duration. Note that the area below the %R -curve is equal to 1+D . Thus, D preserves the 

ordering of non-intersecting R-curves as well as the ordering of non-intersecting %R -curves. The D-

coefficient has range 0, ∞  and takes the value 1 when G is the exponential distribution function. 

Recalling the discussion in Sections 2 and 3 we may claim that G on average exhibits positive relative 

duration dependence when D(G) takes lower values than 1; the lower value the stronger positive 
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relative duration dependence. By contrast, when D(G) takes values larger than 1 the duration 

distribution G on average exhibits a tendency of negative duration dependence; the higher value the 

stronger is the tendency of negative duration dependence. Now, by inserting for (3.5) and (3.2) in (4.1) 

and using integration by parts the following alternative expression for D is obtained, 

(4.2) ( ) ( )
0

1
( ) 1 ( ) log 1 ( ) .

∞

= − − −∫D G G y G y dy
µ

 

Specifically, let G be the Weibull distribution. By inserting for (2.1) in (4.2) we get 

(4.3) ( )
1
.=D F

α

α

 

Thus, we have justified that Weibull’s shape parameter can be used as a summary measure of duration 

dependence and, moreover, has a convenient geometric interpretation in terms of the area below the 

scaled quantile-specific mean remaining duration curve. Consequently, the question posed in the 

introduction of Section 2 has got an adequate answer. 

 Since no single summary measure can reflect all aspects of duration dependence 

exhibited by the R-curve it is important to introduce alternative measures that may complement the 

information provided by the D-coefficient. To this end we will use an axiomatic approach similar to 

Kolmogorov’s (1930) and Nagumo’s (1930) characterization of quasi-linear means and von Neumann 

and Morgenstern’s (1944) theory for choice under uncertainty.6 

 Let ℑ  be the family of distribution functions defined on [0,∞  and let p
%
n
 be a negative 

relative duration dependence ordering that is assumed to satisfy the following conditions, 

 

Condition 1A (Weak negative relative duration dependence dominance). Let 
1 2
, ∈ℑG G  have R-curves 

R1 and R2 and weak negative duration dependent hazard rates. If 

 [ ]1 2
( ) ( ) for all 0,1≤ ∈R u R u u  

and the inequality holds strictly for some u  

then 
1 2
p

n
G G . 

 

                                                      
6 For a review of the early axiomatic treatment of quasi-linear means see Muliere and Parmigiani (1993). 
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Condition 2 (Order). p
%
n
 is a transitive and complete ordering on ℑ . 

 

Condition 3 (Continuity). For each ∈ℑG , the sets { }* *
:∈ℑ p

%
n

G G G  and { }* *
:∈ℑ p

%
n

G G G  are 

closed (with respect to the topology of convergence in distribution). 

 

Condition 4 (Comonotonic independence). Let 
1 2
,G G , 

3
∈ℑG  have means µ1, µ2 and µ3, and let 

[ ]0,1α ∈ . Then 
1 2
p
%
n

G G  implies ( ) ( )
1 1

1 11 1

3 31 2

1 3 2 3

1 1

− −

− −− −   
+ − + −   

   
p
%
n

G GG G
α α α α

µ µ µ µ
. 

 

 Condition 1A ensures that the ordering p
%
n
 preserves weak negative relative duration 

orderings and may thus be considered as an essential assumption for p
%
n
. Conditions 2 and 3 are 

standard and well-known assumptions for most ordering relations. Condition 4 was originally 

introduced by Yaari (1987) as an alternative to the standard independence axiom in the theory for 

choice under uncertainty, and formed the basis of the so-called rank-dependent (linear) utility theory 

for choice under uncertainty. Condition 4 requires the ordering relation p
%
n
 to be invariant with respect 

to the addition of comonotone random variables, i.e. variables with rank-correlation equal to 1. As an 

illustration consider the following example where (4, 10, 26, 60) and (3, 8, 24, 64) are two sets of 

independent outcomes from two distributions with equal means and increasing R-curves. Moreover, 

since the R-curve of (3, 8, 24, 64) is lying above the R-curve of (4, 10, 26, 60) it follows from 

Condition 1A that (4,10, 26, 60) (3, 8, 24, 64)p
%
n

. Now, assume that these two sets of outcomes are 

mixed with the following set of independent outcomes (3, 4, 5, 6) from a third distribution. Then 

Condition 4 implies that (4,10, 26, 60) (1 )(3, 4, 5, 6) (3, 8, 24, 64) (1 )(3, 4, 5, 6)+ − + −p
%
n

α α α α  for 

[ ]0,1∈α , which after a rearrangement is found to be equivalent to 

(1, 6, 21, 54) (3, 4, 5, 6) (0, 4,19, 58) (3, 4, 5, 6)+ +p
%
n

α α . Note that Condition 4 is closely related to 

Definitions 2.2 and 2.3 since G1 and G2 in condition (i) of Definition 2.3 are distribution functions of 

random variables that can be expressed as sums of comonotone random variables, where one of the 

variables in each of the sums is exponentially distributed. The essential difference between Definition 

2.3 and Condition 4 is that Definition 2.3 concerns duration distributions that exhibit strong negative 

(or positive) duration dependence, whereas Condition 4 is valid for all duration distributions. 
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THEOREM 4.1A. A negative duration dependence ordering p
%
n
 defined on ℑ  satisfies Condition 1A 

and 2-4 if and only if there exists a continuous and increasing function q(·) defined on the unit interval, 

such that for all 
1 2
, ∈ℑG G  

(4.4) ( ) ( )
1 1 1

1 1

1 2 1 2

0 0 01 2

1 1
( ) 1 ( ) ( ) 1 ( ) ( )− −

⇔ ≤ − ≤ −∫ ∫ ∫p
%
n

G G q t dt t q t d G t t q t d G t
µ µ

. 

Moreover, q is unique up to a positive affine transformation. 

 

PROOF. Note that there is a one-to-one correspondence between G and its inverse 1−
G . Hence, the 

ordering relation p
%
n
 defined on the set of distribution functions ℑ  is equivalent to the ordering 

relation defined on the family of the inverses of the members of ℑ . Then it follows from Conditions 

2-4 that the basic conditions of Theorem 3 (Chapter 3) of Fishburn (1982) are satisfied and thus that 

there exists a continuous bounded function ( )⋅%q  satisfying  

 
( ) ( )

1 1 1

1 1

1 2 2 1 1 1

0 0 02 1 2 2 2 1 1 1

1 1 ( ) 1 1
0 ( ) ( ) ( ) ( )

1 ( ) ( )

− −

− −

 
 ⇔ ≤ − = −
 −
 

∫ ∫ ∫
%

% %p
%
n

q t
G G q t d G t q t d G t dt

t h G t h G tµ µ µ µ

 

where ( )⋅%q  is unique up to a positive affine transformation. 

 Let ( )( ) 1 ( )= −%q t t q t . Then by observing that 

 ( ) ( )
( ) ( )

( ) ( )

1 1 1

1 1

2 11 1

0 0 02 12 2 2 1 1 1

1 1

2 1

0 02 1

1 1 1 1
1 ( ) 1 ( )

( ) ( )

1 1
1 ( ) 1 ( ) 1 1 0

− −

− −

 
 − = − − −
 
 

= − − − = − =

∫ ∫ ∫

∫ ∫

dt t d G t t d G t
h G t h G t

G y dy G y dy

µ µµ µ

µ µ

 

and by using integration by parts we get that 

 
( ) ( )

( ) ( )
1 1

2 11 1

0 02 2 2 1 1 1

1 1
( ) 1 ( ) ( ) ( )

( ) ( )− −

 
  ′− = − −
 
 

∫ ∫q t dt u q u R u R u du
h G t h G tµ µ

. 

By using Lemma 1 in the Appendix it follows that 

 ( ) ( )
1

2 1

0

1 ( ) ( ) ( ) 0′− − >∫ u q u R u R u du  

only if ( ) 0′ >q u  for all 0 1< <u . 
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 Since ( ) 1=R t  for all [ ]0,1t∈  when F is an exponential distribution function, it follows 

from Condition 1A that 

 ( )
1 1

1

1

0 0

( ) 1 ( ) ( )−

≤ −∫ ∫q t dt t q t d G t  

for any distribution G1 with strong negative duration dependent hazard rate. 

 The necessary part of Theorem 1A follows by straightforward verification. 

 

 Next, let p
%

p
 be a positive relative duration ordering that is assumed to satisfy Conditions 

2-4 when p
%
n
 is replaced by p

%
p
. Moreover, p

%
p
 is assumed to satisfy 

 

Condition 1B (Weak positive relative duration dependence dominance). Let 
1 2
, ∈ℑG G  have R-curves 

R1 and R2 and weak positive duration dependent hazard rates. If 

 [ ]1 2
( ) ( ) for all 0,1≥ ∈R u R u u  

and the inequality holds strictly for some u 

then 
1 2
p

p
G G . 

 

Then, by replacing Condition 1A with Condition 1B, Theorem 1B follows directly from the proof of 

Theorem 1A. 

 

THEOREM 4.1B. A positive relative duration dependence ordering p
%

p
 defined on ℑ  satisfies 

Conditions 1B and 2-4 if and only if there exists a continuous and increasing function q(·) defined on 

the unit interval, such that for all 
1 2
, ∈ℑG G  

(4.5) ( ) ( )
1 1 1

1 1

1 2 2 1

0 0 02 1

1 1
1 ( ) ( ) 1 ( ) ( ) ( )− −

⇔ − ≤ − ≤∫ ∫ ∫p
%

p
G G t q t d G t t q t d G t q t dt

µ µ
. 

Moreover, q is unique up to a positive affine transformation. 

 

 Now, let DP be a functional, : 0,
P

D R → ∞ , defined by 

(4.6) 
1

0

( ) ( ) ( )
P

D G R u d P u= ∫  
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where R is the R-curve of G and P is a bounded weight-function. For convenience and with no loss of 

generality we assume (0) 0P =  and (1) 1P = . This is a normalization condition which ensures that 

DP(G) takes the value 1 when G is the exponential distribution function. Moreover, G is said to exhibit 

average negative relative duration dependence when ( ) 1>
P

D G  and average positive relative duration 

dependence when ( ) 1<
P

D G . Note that DP is equal to D when ( )P t t=  for all t. Thus, the D-

coefficient is rationalizable under Conditions 1A, 1B and 2-4. 

 By inserting for R defined by (3.2) and (3.5) in (4.6) and changing the order of integration 

we get 

(4.7) ( )
1

1

0 0

1 1
( ) 1 ( ) ( )

1

−

= −

−

∫ ∫
u

P
D G u d P t d G u

tµ
. 

Then it follows from Theorems 4.1A and 4.1B that DP is a measure of duration dependence that is 

rationalizable under Conditions 1A, 1B and 2-4 provided that 

(4.8) ( ) 0 for all 0 1′ > < <P t t . 

This means that the duration dependence measure DP is more sensitive to changes in the upper part 

than in the lower part of the quantile-specific expected remaining duration curve. Moreover, condition 

(4.8) proves to play a key role in the following dominance result. 

 

THEOREM 4.2. Let G1 and G2 be cumulative distribution functions with R-curves R1 and R2. Then the 

following statements are equivalent, 

(i) [ ]1 2
( ) ( ) for all 0,1≥ ∈R u R u u  

and the inequality holds strictly for some u 

(ii) ( ) ( )1 2
for all continuous and differentiable with ( ) 0 for all 0,1 .′≥ > ∈

P P
D G D G P P u u  

 

PROOF. From the definition (4.6) of ( )
P

D G  it follows that 

 ( ) ( ) ( )1 2 1 2
( ) ( ) ( )′− = −∫P P

D G D G R u R u P u du . 

Thus, if (i) holds then ( ) ( )1 2
>

P P
D G D G  for all continuous and differentiable P with ( ) 0′ >P u  for all 

0,1∈u . 
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 Conversely, by assuming that (ii) is true, application of Lemma 1 in the Appendix gives 

(i). Hence, the equivalent of (i) and (ii) is proved. 

 

 The characterization of increasing (decreasing) weak relative duration dependence 

provided by Theorem 4.2 shows that non-intersecting R-curves can be ordered without specifying 

further the functional form of the weight-function P other than P being increasing.  

 As will be demonstrated below the following family of P-functions 

(4.9) 
1

1

1
1

2

1
( ) , 0 1, 1,2,...

1

+

+

+

=

=

 
= − ≤ ≤ = 

 
∑

∑

ik
k

k k
i

i

u
P u u u k

i

i

 

with ( ) 0 for all 0,1′ > ∈
k
P u u  proves to form the basis of the following convenient family of duration 

dependence measures 

(4.10) 1

1

2

max1
( ) 1 , 1,2,...

1
≤ +

+

=

 
 = − =
 
 ∑

i
i k

k k

i

E X

D G k

i

µ
 

where 
1 2 1
, ,...,

+k
X X X  is a random sample of size 1+k  drawn from G. 

 The expression (4.10) for Dk is obtained by inserting for the derivative of Pk defined by 

(4.9) in (4.7), which yields 

(4.11) 

( )

( ) ( )

1

1 1

1
10

2

1 1

1

1 1
10 0

2 2

1
( ) 1 ( )

1

1 1
1 ( ) ( ) 1 ( ) .

1 1

− −

+
=

=

−

+ +
=

= =

 = −  
   
 
 

 = − = − 
    
   
   

∑∫ ∫
∑

∑∫ ∫
∑ ∑

u k
i

k k
io

i

k
i k

k k
i

i i

D G u i t dt d G u

i

u u d G u G y G y dy

i i

µ

µ µ

 

From expression (4.10) we get that Dk claims that there is average negative relative duration 

dependence if and only if 

(4.12) 
1

1
1

1
max

+

≤ +
=

≥ ∑
k

i
i k

i

E X
i

µ . 
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Thus, D1 claims that there is average negative relative duration dependence when the expected 

maximum of two randomly drawn observations from the duration distribution G is larger than 1.5 

times the mean.7 

 Note that Dk increases its focus on large duration spells when k increases. At the extreme 

as 
1

2

1
,

+

=

 
→∞  

 
∑
k

k

i

k D
i

 approaches ( )1
(1)

−

−G µ µ  where 1(1)−

G  denotes the largest duration spell. 

5. Duration dependence in PH and MPH models 

The duration distributions considered in Sections 2-4 may be considered as individual-specific. 

However, in practical situations lack of data normally makes it impossible to obtain separate estimates 

of individual-specific duration distributions. Thus, in these situations a parametric or semi-parametric 

modeling framework is needed. The most popular and extensively used econometric models for 

duration data are the proportional hazard rate (PH) and the mixed proportional hazard rate (MPH) 

models. A convenient feature of the PH and the MPH models is that they allow for a decomposition of 

the hazard rate into a duration dependent term and an individual-specific component. The PH and 

MPH models are defined by 

(5.1) ( ) ( )=h t aq t , 

where ( )q t  is the duration dependence term and a is a term that capture observed heterogeneity in the 

PH model case whereas it is supposed to account for observed as well as unobserved heterogeneity in 

the MPH model case. 

 When analyzing economic data the importance of distinguishing between the effects of 

genuine duration dependence and unobserved heterogeneity on exit rates has long been acknowledged 

simply because the policy response to the effect of these two factors may differ. Although the 

specification (5.1) suggests that genuine duration dependence and unobserved (and/or observed) 

heterogeneity are separate phenomena within the MPH models, we can in general not claim that 

observed and unobserved heterogeneity does not affect the extent of duration dependence. One notable 

exception is the Weibull duration distribution where expressions (2.3), (3.11) and (4.3) demonstrate 

that the measurement of relative duration dependence is independent of the scale parameter λ, i.e. the 

term a in (5.1) does not have any influence on the extent of relative duration dependence. To further 

                                                      
7 Note that D1/2 is equal to the Gini coefficient, which is the most widely used device for measuring inequality in 

distributions of income. 
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explore the relationship between the term a and the extent of relative duration dependence it will be 

convenient to introduce the following notation, 

(5.2) 
0

( ) ( )= ∫
t

Q t q v dv . 

Provided that (5.1) is valid we may use the following expression for the duration distribution G 

(5.3) ( )( ) 1 exp ( )= − −G t aQ t . 

It follows from the definitions of R, D and DP that D and DP depend on a if and only if R depend on a. 

Thus, without loss of essential information we may restrict to employ D as basis for examining the 

impact of a on the extent of relative duration dependence for various parametric choices of q. 

 By inserting for (5.3) in (4.1) we get 

(5.4) 

( )

0

( )

0

( )

( )

∞

−

∞

−

=

∫

∫

aQ t

aQ t

a Q t e dt

D G

e dt

. 

 Now, let us consider the following family of distribution functions defined by 

(5.5) ( )( ) 1 1= − −

a

G y t
α

θθ  

where 0≥t  and 0<θ , or 0 1≤ ≤t θ  and 0>θ . The parameters a and α are assumed to be positive. 

Note that G is a Pareto distribution when 0<θ  and a power-function distribution when 0>θ . The 

hazard rate of G is given by 

(5.6) ( )
1

=

−

a
h y

y

α

θ
. 

It follows from (5.6) that h is decreasing when 0<θ  and increasing when 0>θ . Inserting for 

0

( ) ( )= ∫
t

Q t h y dy a  in (5.4) yields 

(5.7) ( ) =
+

a
D G

a

α

α θ
. 

Thus, as opposed to Weibull distributed duration spells the extent of negative relative duration 

dependence decreases with increasing a in the case of Pareto distributed spells and increases with 
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increasing a when G is a power-function distribution. This means that we cannot distinguish between 

observed/unobserved heterogeneity and relative duration dependence when concern is directed to 

comparison and measurement of the extent of relative duration dependence, even in cases when non-

parametric identification of the components of the MPH model is obtained. Note that identification of 

the shape parameter (α) of the MPH model with a Weibull base-line hazard requires that the additional 

condition of a finite mean of the mixing distribution is imposed. For a further discussion on this result 

and more general identification results for generalized accelerated failure-time models we refer to 

Ridder (1990). Note, however, that the results of Ridder (1990) is closely linked to the above results 

since non-parametric identification of the MPH models can solely be achieved up to a positive affine 

transformation. As demonstrated by Brinch (2001) a similar identification result can be obtained for a 

general family of mixed hazard rate models, provided that data on time-varying covariates is available. 

6. Concluding remarks 

Most analyses of unemployment duration data are primarily concerned with the occurrence of negative 

duration dependence that may arise from stigma or discouragement effects, see e.g. Lancaster (1979), 

Flinn and Heckman (1983), Heckman and Singer (1986) and Van den Berg (1994). These studies 

discuss and employ alternative methods for distinguishing duration dependence from unobserved 

heterogeneity. A situation dominated by negative duration dependence may require a different policy 

from what is required in a situation dominated by unobserved heterogeneity. However, since policy 

instruments may affect the strength of the duration dependence as well as the overall mean duration a 

conflict between diminished negative duration dependence and reduced mean duration may arise. To 

deal with this problem a method that separates the effects from changes in the mean duration and the 

duration dependence is called for. To this end this paper introduces appropriate definitions of duration 

dependence and methods for comparison and measurement of duration dependence in hazard rate 

models. However, since the proposed methods are general in nature they are applicable for other 

purposes than analyses of unemployment duration spells. 

 Although a social decision-maker primarily may be concerned with the presence and 

structure of duration dependence in individual-specific hazard rates the aggregate effects that emerge 

in the distribution of duration spells across individuals are normally paid equally much attention. The 

focus is then turned to concentration and questions of how the burden of unemployment is distributed 

among the unemployed. Is the distribution of duration spells for the unemployed characterized by a 

large group of people with short spells and a small group of people that suffers from long spells? To 

examine this type of questions the framework proposed in Sections 3 and 4 can be applied. However, a 

reinterpretation that is consistent with the problem under study is required. 
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Appendix 

 

LEMMA 1. Let H be the family of bounded, continuous and non-negative functions on [0,1] which are 

positive on 〈0,1〉 and let g be an arbitrary bounded and continuous function on [0,1]. Then 

 ( ) ( ) 0 for all> ∈∫ g t h t dt h H  

implies 

 [ ]( ) 0 for all 0,1≥ ∈g t t  

and the inequality holds strictly for at least one 0,1∈ .t  

 

 The proof of Lemma 1 is known from mathematical textbooks. 
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