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1 Introduction

The relationship between schooling and earnings is one of the most frequently stud-

ied in empirical economics. A large number of these studies build upon versions of

the earnings equation proposed by Mincer (1974). A key parameter in the Mincer

earnings equation is the coe¢ cient associated with years of schooling, intended to

capture the e¤ect on earnings di¤erences caused by di¤erences in schooling. How-

ever, to give a causal interpretation of the parameters in the earnings equation, one

must take into account that the independent variable �years of schooling� is en-

dogenous because it is the outcome of a choice variable. The endogeneity problem

is related to the fact that the econometrician does not observe all factors that a¤ect

schooling choice. If some of these unobserved factors are correlated with unobserv-

ables in the earnings equation, OLS will produce biased estimates of the returns to

schooling (ability bias).

Traditionally, ability bias is assumed to arise because of correlation between

length of schooling and the additive error term in the earnings equation. If such

correlation exists and is positive, it implies that people with high earnings capacity

(irrespective of level of schooling) systematically choose a higher schooling level

than people with low earnings capacity. In the literature, such heterogeneity is often

termed �absolute advantage�. Various econometric methods have been developed to

deal with this problem, see Griliches (1977) for an overview of the early literature.

Several more recent econometric studies have also taken into account that there

may be heterogeneity not only associated with general earning capacity, but also

associated with returns to schooling: Some individuals gain more from an extra

year of schooling than others, cf. for example the theoretical model of Willis and
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Rosen (1979). Heterogeneity of this sort is often termed �comparative advantage�,

and is typically dealt with by formulating a random coe¢ cient model, in which the

coe¢ cient associated with years of schooling is allowed to vary across individuals

according to some distribution function. If this random coe¢ cient is correlated

with the schooling variable or the additive error term in the earnings equation, then

standard OLS estimates of returns to schooling will be biased.

To deal with ability bias and endogeneity of schooling, instrumental variable

approaches have often been applied. As a result, there is now a substantial literature

on how to interpret instrumental variable estimates in the case of heterogeneity in

returns to schooling. See for example Angrist, Imbens and Rubin (1996), Wooldridge

(2002) and Heckman and Vytlacil (2005). A somewhat closely related approach is

the so-called two-stage- or control function approach. In this approach a choice-of-

schooling equation is estimated in the �rst stage from which suitable variables are

computed. In a second stage, these variables are used as additional regressors in

the earnings equation, to account for the correlations between the schooling variable

and the error terms, see Heckman (1979) and Garen (1984). Card (2001) gives

an overview of these approaches to estimating earnings relations in the presence of

individual heterogeneity in the returns to schooling.

In addition to the focus on di¤erent types of selection biases there has been

a growing attention to the speci�cation of the Mincer equation in the literature.

One of the most important features of the Mincer equation is that log earnings is

assumed to be linear in years of schooling, while another is the assumed separability

between schooling and experience. Several papers, e.g. Heckman and Polachek

(1974), Heckman, Lochner and Todd (2003) and Belzil (2007) have examined the

validity of � and the consequences of relaxing � these and other functional form

assumptions of the standard Mincer framework. A general �nding is that some of the
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simplifying assumptions are rejected, and hence that there is need for a framework

that accommodates more �exibility.

Several authors have incorporated a structural, discrete choice dynamic program-

ming approach to model schooling and related labor market decisions. Keane and

Wolpin (1997) estimate a dynamic human capital investment model of schooling-,

employment- and occupation-decisions, where skill heterogeneity and hence self-

selection plays a role in all three choices. Belzil and Hansen (2002a) estimate a

dynamic programming model where individuals di¤er in market and schooling abil-

ity, and relax the assumption of constant marginal returns to schooling. They �nd

clear evidence of ability bias, and, perhaps more importantly, that the (log) wage-

schooling relationship is highly non-linear, so that �...estimation methods that do

not allow for a �exible estimation of the local returns to schooling will lead to un-

reliable estimates of both the local and the average return to schooling.�Belzil and

Hansen (2007) estimate a model with both absolute and comparative advantage (a

correlated random coe¢ cient wage regression model) within a dynamic program-

ming framework. Belzil (2007) provides a thorough review of structural approaches

to estimating the returns to schooling. He also compares this approach to the in-

strumental variables approach, and discusses commonalities and di¤erences. On this

latter point, see also Keane (2005).

The approach developed in this paper is, from the perspective of structural choice

modelling, more modest than the dynamic programming setting. Speci�cally, in

line with other works dating back to Cameron and Heckman (1998), we represent

schooling choice by a simple stochastic index function that yields an ordered probit

model. The idea of approximating individual schooling choices by a semi-structural

model dates back to Cameron and Heckman (1998). The ordered model accounts

for forward-looking behavior and unobserved heterogeneity. However, by essentially
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modelling schooling choice as a static decision, an implicit assumption is that all

future uncertainty is observed initially. Since the focus of our analysis is on the

associated earnings relation, a structural dynamic schooling choice model does not

seem necessary. In contrast, if the purpose is to analyze schooling choices per se,

then a structural dynamic choice model is of interest.

In our study the earnings relation is rather general and �exible, both with respect

to assumptions about the distribution of unobserved variables, functional forms, and

the correlation structure of the random coe¢ cients. As a result, we are able to allow

for two types of self-selection into schooling; namely selection by �absolute advan-

tage� (correlation between schooling and the additive error term in the earnings

equation) and selection by �comparative advantage�(correlation between schooling

and the random coe¢ cients associated with the returns to schooling and experience).

Our approach o¤ers several advantages over the traditional two-stage, control

function approach. First, since estimation is carried out in one stage, we do not

have to worry about biased estimates of the standard errors. Such biases may arise

because of imputation of parameters estimated in the �rst-stage and because, con-

ditional on the individual�s choice, the error term is heteroscedastic. Second, our

approach allows us to deal with non-linear transformations of earnings, schooling

and experience that may contain unknown parameters (such as in Box-Cox trans-

formations), as well as random components that can be represented as mixtures of

normally distributed random variables. Third, our approach makes it easy to test

interesting hypotheses by means of the likelihood ratio test, whereas in the two-stage

method exact testing will be cumbersome.

Our framework has many similarities with Carneiro et al. (2003), who consider a

setting with one probit model for the schooling choice and several measurement equa-

tions, with mixed multinormally distributed random components. Their estimation
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strategy is based on a particular Bayesian approach which requires Markov Chain

Monte Carlo methods. In contrast, we show that when the random components

are mixed multinormally distributed one can express the corresponding likelihood

function on closed form and derive explicit formulas for several types of treatment

e¤ects.

A key issue in the recent literature on returns to schooling (and more generally

in the program evaluation literature), is the discussion of how key structural para-

meters associated with the returns to schooling can be identi�ed. The strategy in

the IV/experimentalist literature is to search for valid exclusion restrictions, where

the excluded variables are the source of exogenous variation in the level of schooling.

On the other hand, the structural literature relies more explicitly on parametric as-

sumptions (�identi�cation by functional form�). We emphasize that also within our

framework interpretation of the results depends on exclusion restrictions, although

such restrictions are not formally needed to obtain identi�cation.

In an application of our method on Norwegian data, it is con�rmed that selection

e¤ects due to unobservables are important when analyzing the returns to schooling.

Speci�cally, we �nd a signi�cant positive correlation between the error term of the

schooling choice equation and the random coe¢ cient of schooling in the earnings

equation, and a signi�cant negative correlation between the additive error term of

the schooling choice equation and the additive error term of the earnings equa-

tion. Moreover, our study shows, similar to Heckman and Polachek (1974), that,

for all practical purposes, the speci�cation with logarithm of earnings �ts the data

best (within the class of Box-Cox transformations). Regarding the transformation

of the independent variables, we �nd that piecewise linear functions of �length of

schooling�and of �experience�give better �t and also substantially di¤erent results

than generalized Box-Cox transformations (Box-Cox transformations with arbitrary
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translations). While allowance for mixed normally distributed error terms is essen-

tial for obtaining a good �t to the empirical distributions of log earnings (given

di¤erent levels of schooling), many of our results are quite robust with respect to

the speci�cation of the error distribution, including the estimated marginal returns

to schooling as a function of years of schooling.

The rest of the paper is organized as follows. In Section 2 we present the modeling

framework and derive several results that enable us to carry out empirical inferences.

In Section 3 we present the empirical application, while Section 4 concludes the

paper.

2 The modelling framework

In this section we specify the modelling framework for estimating the earnings equa-

tion and the choice of schooling relation. We �rst present a benchmark model with

normally distributed error terms. We then extend this model to incorporate mix-

tures of normal distributions.

2.1 The basic model

We follow Cameron and Heckman (1998) in assuming a semi-structural probit model

for the choice of length of schooling. From a choice theoretic perspective this model

may be viewed a reduced form one, but it is semi-structural in the sense that it

accounts for the hierarchical and discrete nature of the choice setting, in the presence

of unobserved heterogeneity in preferences1.

1The choice model only considers length of schooling and is silent about other potential impor-
tant dimensions of the choice setting, such as type of schooling and occupational choice. Techni-
cally, this means that when we condition on length of schooling, type of schooling and occupation
is exogeneous. This means that we implicitly make the (rather strong) assumption that, given the
length of schooling, there is no self-selection into �elds of study. While relaxing this assumption is
outside the scope of the present paper, this is certainly an interesting topic for future research.
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Let X� be a latent index that represents the desired level of schooling on a

continuous scale. The observed level of education, J , is a categorical variable with

M possible categories; J 2 f1; 2; ::;Mg. It is related to X� through the relation

J = j i¤ �j�1 < X� < �j , j = 1; :::;M , (1)

where f�jg are unknown threshold values, except for �0 = �1 and �M = 1.

The variable J represents the choice of level of schooling as constrained by the

institutional schooling system, whereas X� represents the individual�s preferences

with regard to the level of schooling on a continuous scale. The threshold values

f�jg determine the level of schooling in the institutional schooling system that

corresponds to X�.

Furthermore, we assume that

X� = Z1
1 + "1; (2)

where Z1 is a row-vector of exogenous variables a¤ecting the individual�s choice of

schooling (typically family background variables describing the situation prior to

the choice of schooling), "1 is a normally distributed random variable with zero

mean and unit variance and 
1 is a �xed, unknown coe¢ cient vector. Thus, (1)-(2)

speci�es a standard ordered probit model for the discrete choice variable J .

Consider now the earnings equation. Let T1(X1;�1) be a transformation of years

of schooling, X1; and T2(X2;�2) a transformation of labor market experience, X2.

By experience we mean age minus years of schooling minus seven years, i.e., potential

experience. Each of the transformations T1(X1;�1) and T2(X2;�2) may be a Box-

Cox, polynomial, or spline function and possibly depend on unknown parameter

vectors, �1 and �2, respectively. Our earnings equation is given by

(Y � � 1)=� = T (X;�)(� + �) + Z2
2 + "2, (3)
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where � is an unknown parameter to be estimated, X = (X1; X2) and T (X;�) =

(T1(X1;�1); T2(X2;�2)). Moreover, � = (�1; �2)
0 is a zero mean random coe¢ cient

vector, � = (�1; �2)
0 is the corresponding �xed coe¢ cient vector, Z2 is a vector of

exogenous variables which �in addition to the components of Z1 �also may contain

other variables a¤ecting earnings, 
2 is a vector of corresponding coe¢ cients, and

"2 is a zero mean random term.

Note that, with the usual convention that (Y � � 1)=� = lnY when � = 0, the

dependent variable in (3) is a continuously di¤erentiable transformation of Y . Also

note that, through the random coe¢ cient vector �, our model allows for hetero-

geneity in the coe¢ cients of both schooling and experience. The vector of random

terms ("1; "2; �0) is assumed to be multinormally distributed with zero mean and a

general covariance matrix, apart from the conventional identifying restriction that

"1 has unit variance. Even in the special case where the parameters � and � are

known (or given), one cannot estimate (3) by standard methods due to the fact that

T (X;�) depends on "1, which may be correlated with both � and "2.2

Let �(X1) be the function that assigns the schooling level that corresponds to

X1 years of schooling, i.e., J = �(X1). If �(�) is one-to-one, then X1 = ��1(J) and

X2 =age�X1�7 (in this case �(�) is, in fact, redundant). However, it may be useful

to have a framework which allows a given level of schooling to cover several possible

values for X1. For example, one may want to assume (after initial exploration)

that the self-selection is related to broader educational levels, such as short and long

tertiary education, rather than actual years of schooling within these levels. For some

speci�c years of schooling there may also be few observations. In our application in

2In the speci�cation of the earnings relation given in (3), we have assumed separability between
length of schooling and experience. Several papers, see, e.g., Heckman, Lochner and Todd (2008),
have shown that this assumption may be unrealstic. In principle, it is possible also within our
framework to incorporate transformations with interactions. However, since such an extension
raises many new questions; e.g. with respect to functional form assumptions, how to incorporate
heterogeneity in the interaction e¤ects and interpretation of the results, we have decided to leave
this problem aside for future research.
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Section 3, the highest category of schooling (j = 8) covers the interval from 16 to

18 years of schooling. In that case, �(�) is not one-to-one. However, the actual

realization of X1 within the interval is assumed to be exogenous in the sense that

the distribution of X1 conditional on J is independent of the random terms "1; "2

and �. Thus, in our application we ignore any selectivity issues related to the choice

between, say, 16 and 17 years of schooling.

To denote the outcome of X given a particular level of schooling J = j, we use

the notation Xj. Thus Xj may denote any value of X that is consistent with the

choice J = j. Whereas X is an endogenous variable, Xj is exogenous. For example,

given that J = j, Xj
2 depends on age, which is exogenous.

Let Z denote the vector of all relevant exogenous variable of the model (including

age and the variables in Z1 and Z2) and let

E("1"2) = �, E("1�k) = �k; k = 1; 2, (4)

and � = (�1; �2)
0. Then, we can write

"2 = �"1 + e"2, � = �"1 + e�, (5)

where e"2 and e� are independent of "1, with mean zero and a general covariance
matrix, �. Let �(�) denote the standard normal c.d.f. and �(�) the corresponding

density. We have the following result:

Theorem 1 Assume that ("1; "2; �0) is multinormally distributed with zero mean

and let � be the covariance matrix of (e"2;e�0),
g(T (Xj;�))2 =

h�
1; T (Xj;�)

�
�
�
1; T (Xj;�)

�0i
(6)

and

 (T (Xj;�))2 = g(T (Xj;�))2 + (T (Xj;�)�+ �)2: (7)
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If f(y; jjZ) denotes the joint density of (Y; J) given Z; then

f(y; jjZ) =
y��1

 (T (Xj;�))
�

�
(y� � 1)=� � T (Xj;�)� � Z2
2

 (T (Xj;�))

�
�

�
�

��
�j � Z1
1 �

((y� � 1)=� � T (Xj;�)� � Z2
2) (T (X
j;�)�+ �)

 (T (Xj;�))2

�
 (T (Xj;�))

g(T (Xj;�))

�

��
��
�j�1 � Z1
1 �

((y� � 1)=� � T (Xj;�)� � Z2
2) (T (X
j;�)�+ �)

 (T (Xj;�))2

�
 (T (Xj;�))

g(T (Xj;�))

��
:

(8)

The proof of the theorem is given in Appendix A.

Theorem 1 shows that the joint density of (Y; J) (conditional on Z) can be

expressed on closed form by means of the normal c.d.f. and p.d.f. The �rst factor

in (8) can be interpreted as the marginal distribution of Y when level of schooling

is considered a �xed index (j) �that is, not as the outcome of the choice variable

J . The second factor expresses the conditional distribution of J given Y .

The fact that one can express f(y; jjZ) on closed form has several important

advantages. First, it becomes easy to carry out maximum likelihood estimation and

to perform statistical tests by means of the likelihood ratio statistic. Second, as we

show in Corollary 2 below, it is easy to extend the model to the case where the

distribution of the random components ("1; "2; �0) can be expressed as a particular

�nite mixture of multinormal distributions. Third, by utilizing the results in Corol-

lary 3 below, several types of treatment e¤ects commonly discussed in the literature,

can be estimated.
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2.2 Extension to normal mixtures

Similarly to Carneiro et al. (2003) we now consider the case where the distribution

of the error term in the earnings equation is a �nite mixture of normal distributions.

Moreover, this distribution is allowed to depend on the chosen level of schooling, J .

These extensions are highly relevant from an applied point of view. First, earnings

data typically have heavy tails and may be skewed (also after applying appropriate

transformations). Second, the shape of the earnings distribution may vary across

di¤erent levels of schooling. Speci�cally, we assume in this section that the vec-

tor of error terms ("1; "2; �0) in the model analyzed in section 2.1 is replaced by

("1(R); "
J
2 (R); �(R)

0), with

"J2 (R) = �JR"2(R) + �JR, (9)

where, for �xed j and r, �jr and �jr are unknown scale and location parameters, re-

spectively, and ("1(r); "2(r); �(r)0) is an i.i.d. vector with the same (�standardized�)

mean-zero multivariate normal distribution as ("1; "2; �0) (speci�ed in Section 2.1).

Equations (2) and (3) in Section 2.1. are then replaced, respectively, by

X� = Z1
1 + "1(R) (10)

and

(Y � � 1)=� = T (X;�)(� + �(R)) + Z2
2 + "J2 (R). (11)

The above speci�cation means that "J2 (R) is mixed Gaussian, whereas ("1(R); �(R)
0)

is multinormally distributed.3

Now let f(y; jjZ;R = r) denote the joint density of earnings and chosen schooling

level (Y; J), given Z and R = r. We then have the following result:

3Tecnically it is possible to allow both "1(R) and �(R) to be mixed Gaussian (similarly to
"J2 (R)). But this extension is hardly interesting from an empirical point of view, as the data reveal
little (if anything) about the shapes of the distributions of these variables.
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Corollary 2 Let ("1(r); "2(r); �(r)0), r = 1; 2; : : : ; Q, be i.i.d. multinormal random

vectors with the same distribution as ("1; "2,�0) for every r. Let R be a multinomi-

ally distributed random variable, independent of ("1(r); "2(r); �(r)0) for each r, with

P (R = r) = qr. Assume that in the model in Section 2.1, (2) and (3) are replaced

by (10) and (11), respectively, where "J2 (R) is given by (9). Then

f(y; jjZ;R = r) =

y��1

 jr(T (X
j;�))

�

�
(y� � 1)=� � T (Xj;�)� � Z2
2 � �jr

 jr(T (X
j;�))

�
�

(
�

 "
�j � Z1
1 �

�
(y� � 1)=� � T (Xj;�)� � Z2
2 � �jr

�
(T (Xj;�)�+ �)

 2jr(T (X
j;�))

#
 jr(T (X

j;�))

gjr(T (Xj;�))

!

��
 "

�j�1 � Z1
1 �
�
(y� � 1)=� � T (Xj;�)� � Z2
2 � �jr

�
(T (Xj;�)�+ �)

 2jr(T (X
j;�))

#
 jr(T (X

j;�))

gjr(T (Xj;�))

!)
;

(12)

where

gjr(T (X
j;�))2 =

h�
1; T (Xj;�)

�
�jr(r)

�
1; T (Xj;�)

�0i
(13)

�jr(r) = Djr�Djr;Djr =

24 �jr 0 0
0 1 0
0 0 1

35 (14)

 jr(T (X
j;�))2 = gjr(T (X

j;�))2 + (T (Xj;�)�+ �jr�)
2: (15)

The proof of the Corollary is given in Appendix A.

Consequently, the joint density of (Y; J) conditional on Z can be expressed as

f(y; jjZ) =
QX
r=1

qrf(y; jjZ;R = r):

We have thus shown that in the special case with only one outcome equation in

addition to the choice equation, the likelihood function can be expressed on closed
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form also in the case when the distribution of the the error term in the earnings

equation is a �nite mixture of normal distributions.

Our model can be seen as a (non-Bayesian) version of the model estimated in

Carneiro et al. (2003) (see Section 7 and Appendix B in their paper). They con-

sider (complicated) simulation based Bayesian inference in a model with several

measurement or outcome equations (in addition to the schooling choice equation).

The factor structure and the distributional assumptions they impose on the random

terms, coincide with the distributional assumptions made in this paper when there

is only one measurement equation (i.e., the earnings equation), except that we al-

low more �exibility by letting the parameters in the distribution of "j2(r) also to be

speci�c for each level of schooling, j. This extension raises speci�c identi�cation

issues.

First, to obtain identi�cation of the intercept in (11), we assume that

QX
r=1

qr�jr = 0; for j = 1; :::;M . (16)

Thus, E("j2(R)) = 0 for every level of schooling, j. As a further identifying restriction

we impose
QX
r=1

qr�jr = 1; for j = 1; ::;M: (17)

As seen fromCorollary 3 below, (17) has the important implication thatE("k2(R)jJ =

j) is independent of k. Thus, a person who actually chooses J = j, will by assump-

tion have the same expected value of the additive error term "k2(R) at all (other)

levels of schooling, k. The restriction (17) rules out that the idiosyncratic part of

the marginal returns to schooling, which is assumed to be picked up by the random

coe¢ cient �(R), may be confounded by a shift in the mean of the additive error

term, leading to obvious problems of identifying and interpreting our model.
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Corollary 3 Under the assumptions of Corollary 2 and the restrictions in (16);

E(�(R)jJ = j) = ���(j) (18)

and

E("k2(R)jJ = j) = ��
 

QX
r=1

qr�kr

!
�(j) ; j; k = 1; ::;M , (19)

where

�(j) =
�(�j � Z1
1)� �(�j�1 � Z1
1)

�(�j � Z1
1)� �(�j�1 � Z1
1)
. (20)

The proof of Corollary 3 is given in Appendix A.

From Corollary 3 and the additional restriction (17), it follows that we can

express (11) as

(Y � � 1)=� = T (X;�)� � �(j)T (X;�)�+ Z2
2 � �(j)� + "�; j = 1; ::;M , (21)

where

"� = "J2 (R) + ��(j) + T (X;�)(�(R) + ��(j)),

and the error term, "�; has the property that E("�jJ = j) = 0. Thus, if � is known,

it is possible to estimate �, �, 
2 and � consistently by a two-stage procedure in

which �(j) is obtained in a �rst stage probit analysis using data on schooling choices,

whereas the earnings equation is estimated in a second stage by (a possibly non-

linear) least squares with �(j) and �(j)T (X;�) as additional regressors. Note that

the coe¢ cients of these regressors do not depend on the mixing parameters. This is

due to (17). If (17) is not imposed, the coe¢ cient of �(j) becomes��
PQ

r=1 qr�jr and

hence depends on j. Thus (17) ensures that the mixing parameters only a¤ect the

shape of the earnings distribution at di¤erent levels of schooling (variance, skewness,

kurtosis, etc.), but not the causal e¤ects of schooling. Also note that despite the fact

that there are several endogenous unobservables in the earnings equation, i.e., "J2 (R)

and �(R), only one �control function�, �(j), is needed to control for selectivity bias.
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2.3 De�nition of treatment e¤ects

When analyzing the implications of alternative schooling choices, it is of interest to

calculate causal e¤ects (treatment e¤ects). The �rst is the average treatment e¤ect,

ATE(x):

ATE(x) = �1[T1(x;�1)� T1(x� 1;�1)];

where the expression in the squared bracket is the change in the transformation of

schooling, when years of schooling increases from x � 1 to x. The second is the

�e¤ect of the treatment on the treated�, TT (x), given by

TT (x) = (�1 + E(�1(R)jX1 = x� 1)))) [T1(x;�1)� T1(x� 1;�1)]

= (�1 � �1�(�(x� 1))) [T1(x;�1)� T1(x� 1;�1)],

cf. (18), which has the interpretation of the marginal return of increasing years of

schooling from x� 1 to x for those who did in fact choose X1 = x� 1. Note that

E
�
"
�(x)
2 (R)� "

�(x�1)
2 (R)jJ = �(x� 1)

�
= 0

due to (17) and Corollary 3, and hence does not enter the expression for TT (x).

The third e¤ect is the observed di¤erentials between levels of schooling, OD(x):

OD(x) = TT (x) + E("
�(x)
2 (R)jX1 = x)� E("

�(x�1)
2 (R)jX1 = x� 1)

= (�1 � �1�(�(x� 1))) [T1(x;�1)� T1(x� 1;�1)]� �(�(�(x))� �(�(x� 1))),

cf. (18) and (19). This is the sum of (i) the average treatment e¤ect, (ii) the average

of the idiosyncratic marginal returns to schooling for the individuals with this level

of schooling and (iii) the average idiosyncratic earnings level e¤ect for the same

individuals.
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3 An empirical application on Norwegian data

3.1 Data and transformations

The data for this application are taken from the Norwegian system of register data,

where individual information about essentially all Norwegian residents is gathered

from a number of governmental administrative registers. Our sample is randomly

drawn from the population of native-born males, who were born between 1952 and

1970, and who were living in Norway in both 1970 and 1997. The data contain

information on years of schooling and type of education for each individual. The

earnings equation sample is further restricted to full-time wage-earners, de�ned as

individuals working 30 hours or more per week, leaving us with 29332 observations.

Labor market experience is represented by potential experience, i.e., age minus years

of schooling minus seven years. The earnings measure used is total annual taxable

labor income. Because the earnings measure re�ects annual earnings, observations

where employment relationships started or terminated within the actual year were

excluded. Holders of multiple jobs and individuals who have received labor market

compensation or have participated in active labor market programs have been ex-

cluded. Family background information is taken from the National Census of the

Population and Housing in 1970. A full list of variables with key summary statistics

is given in Tables 2-4.

In our application the level of schooling is divided into eight groups, i.e., J 2

f1; 2; ::; 8g. Level 1 covers the interval [7; 9] years of schooling, levels 2 to 7 corre-

spond to 10-15 years, respectively, whereas level 8 covers the interval [16; 18] years.

The �rst category represents compulsory level of schooling (which was gradually

increased from seven to nine years from the late 1950s to the early 1970s). The last

category comprises longer tertiary education. We consider four types of transfor-
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mation functions of schooling (k = 1) and experience (k = 2). Assume that x is an

integer and let [j=2] denote the integer value of j=2:

Linear: Tk(x;�k) = x
Quadratic: Tk(x;�k) = [(x+ �k;1)

2 � 1] =2
Generalized Box-Cox: Tk(x;�k) = [(x+ �k;1)

�k;2 � 1] =�k;2
Spline: Tk(x;�k) =

Pxk
j=1 �k;[j=2], �k;0 = 1.

(22)

When k = 1, x denotes years of schooling exceeding 7 years (which is the minimum

value of X1 in our data). When k = 2, x denotes potential experience, de�ned as age

minus years of schooling minus seven years. The spline transformation of x has knots

every even year (2; 4; 6; 8; :::). Thus, because the maximum values of X1 and X2 in

our sample is 18 years of schooling and 29 years of experience, respectively, we are

able to identify �ve �1;[j=2]-parameters ([(18� 7)=2] = 5) and 14 �2;[j=2]-parameters

([29=2] = 14). Note that the linear and quadratic transformations are special cases of

the (generalized) Box-Cox transformation, obtained by setting �k;2 = 1 and �k;2 = 2,

respectively.

The vector of explanatory variables in the earnings equation, Z2, includes indi-

cators about sector of occupation (public, private services, manufacturing), �eld of

education (general, technical, humanistic, teaching, administrative, etc.) and indi-

cators for each of 19 counties where the individual works. The vector of explanatory

variables of the ordered probit model for schooling choice, Z1, contains variables

regarding the family background. These include dummy variables for birth cohort,

indicators of whether the individual as a child lived with both parents or alone

with either mother or father, the labor market status of the parents, indicators of

household income (quintile and both the father�s and mother�s education level), and

whether the person had a mother and/or father who was born abroad. In addition,

the schooling choice equation contains indicator variables for the county where the

individual grew up, for example, where the individual lived in 1970. The main exclu-
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sion restriction in this application, which in addition to functional form assumptions

identi�es the parameters of the model, is that given all the other covariates in the

model, the region where you grew up may a¤ect your choice of schooling, but not

your earnings. It is well documented that educational choices vary considerably

across regions in Norway. This is true also when conditioning on, for example, fam-

ily background variables. This exclusion restriction is in the spirit of Card (1995)

who used college proximity as an instrument, but may be interpreted in a more

general sense as variations in the opportunity cost of education.

3.2 Results with normally distributed error terms

Estimation results for some key combinations of transformations of earnings, school-

ing and experience are displayed in Table 1 in the case with normally distributed

error terms. A full set of results is reported in Tables 2-4. When interpreting the

results in Table 1, it is important to bear in mind that the parameter estimates of

�1 and �2 are not comparable across di¤erent models, as they are coe¢ cients of dif-

ferent transformations of schooling and experience. Moreover, whereas the models

reported in the �rst three columns of Table 1 have log earnings as the dependent

variable, the last column reports results from a speci�cation with a general Box-Cox

transformation of earnings.

From Table 1, we �rst note that the linear-quadratic speci�cation with regard

to schooling and experience, i.e., the traditional Mincer model, gives a substan-

tially lower log-likelihood than the Box-Cox model (Model 2) and � particularly

� the spline models (Models 3-4). On the other hand, when � = 0, the spline

transformations of x1 and x2 give considerably higher likelihood than the Box-Cox

transformations �but at the cost of 15 more parameters. Although the model with

spline transformations of x1 and x2 is clearly the most �exible with respect to para-
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meterization, it is not a special case of neither the Box-Cox nor the linear-quadratic

speci�cation. On the other hand, the linear-quadratic speci�cation is a special case

of Box-Cox, with three parameters less. Because the maximum likelihood estimates

are b�2;1 = 2:49 and b�2;2 � 0, we see that the estimated Box-Cox transformation of
experience amounts to ln(x2 + 2:49):

With regard to the transformation of earnings, the general Box-Cox transforma-

tion leads to an estimate of � equal to -.17, with a standard error of only .003. The

results suggest that � is signi�cantly di¤erent from zero. However, from the point

of view of economic signi�cance � = �:17 is so close to zero that the Box-Cox and

logarithmic transformation are equivalent for practical purposes. We illustrate this

point below.

The estimated correlations between the stochastic terms have interesting eco-

nomic interpretations and give information on the nature of self-selection. However,

the pair-wise correlations reported in Table 1 show that many of these are not ro-

bust across di¤erent model speci�cations. For example, we �nd strong evidence of

negative correlation between �2 and "2 when � = 0, but not at the maximum like-

lihood estimate � = �:17. However, with regard to the correlations that have the

clearest economic interpretation we get quite striking results. First of all, it is evi-

dent that self-selection does matter. Concentrating henceforth on the results from

the Box-Cox and spline transformations of schooling and experience, which overall

give the best �t to the data and the most plausible results, there are signi�cant

negative correlations between "1 and "2, i.e., the residual terms of the earnings and

schooling equations. We also �nd strong positive correlations between �1 and "1.

Using spline transformations of x1 and x2, we obtain correlation coe¢ cients of the

same magnitude as for the Box-Cox transformations, regardless of whether � = 0

or � = �:17. The robust �nding that Corr(�1; "1) > 0 implies that individuals
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who have a high preference for schooling (conditional on the exogenous variables)

also have high marginal returns to schooling. On the other hand, the �nding that

Corr("1; "2) < 0 means that if an individual with a high preference for schooling

takes a short education, his earnings potential is lower than for an individual with

the same education, but with a low preference for schooling. The correlations men-

tioned above have the interpretation of positive selection by comparative advantage

and negative selection by absolute advantage, respectively. These patterns may also

be interpreted as selection by di¤erent type of skills, with a high "2 re�ecting high

blue-collar skills, and a high "1 re�ecting high white-collar skills. It should be kept

in mind that the correlations reported in Table 1 depend on the respective speci�-

cations and cannot be interpreted independently of the chosen transformations of

length of schooling and experience.

There is considerable heterogeneity in the returns to schooling and experience,

as seen from the estimated standard deviations SD(�1) and SD(�2) of �1 and �2,

respectively, which are of the same magnitude as the estimated �xed coe¢ cients, b�1
and b�2. To evaluate the importance of individual heterogeneity in the returns to
experience and schooling, it is natural to look at the variation coe¢ cients SD(�1)=b�1
and SD(�2)=b�2: These ratios lie between 1/10 and 1 in all the model speci�cations
and are smaller for schooling than for experience. Thus, it seems that relative to the

�xed coe¢ cient, �1 and �2, the unobserved heterogeneity in returns to experience is

larger than in returns to schooling. This higher cross section dispersion in returns

to experience is consistent with what is reported in Belzil and Hansen (2002b). As a

further check of the importance of heterogeneity in the coe¢ cients of schooling and

experience, a model with only a �xed coe¢ cient vector (i.e., no �-vector) has been

estimated. This restriction reduces the number of parameters by nine. However, it

is �rmly rejected by a likelihood ratio test.
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The di¤erences in results across the four model speci�cations are illustrated in

Figures 1�4, along with the results from a linear-quadratic speci�cation without se-

lection e¤ects (equivalent to OLS estimation of a standard Mincer equation). Figure

1 shows expected log earnings as a function of years of schooling when all the other

variables of the earnings equation are set equal to their sample mean. In particular,

years of experience is �xed at 15 years. The intercepts of the di¤erent graphs in the

�gure are determined by the (identifying) condition that when all the variables are

at their sample means, expected log earnings should be equal in all the four model

speci�cations. We see that the two versions of the model with spline transformations

of schooling depicted in Figure 1, i.e., with � = 0 and � = �:17 as the dependent

variables, are almost identical, except for small discrepancies at low values of years

of schooling.

In analyses of returns to schooling and experience, the marginal returns to school-

ing and the earnings-experience pro�les are of key interest. In models allowing for

heterogeneity in returns, there are several possible �marginal returns�or �treatment

e¤ects�that may be calculated, based on the estimation results. Which e¤ects that

are most relevant, depend on the purpose of the analysis. In models with no het-

erogeneity in the returns, all treatment e¤ects coincide.

Figure 2 shows the expected marginal returns to schooling corresponding to the

three speci�cations depicted in Figure 1 that have lnY as the dependent variable.

The natural interpretation of the estimates from the models with selection e¤ects is

as the �average treatment e¤ect�of schooling (ATE). This means that the graphs

show the marginal e¤ect on earnings of the last year of schooling, for a randomly

selected individual whose years of schooling is shown on the horizontal axis. In

contrast, the interpretation of the OLS estimate shows the (conditional) earnings

di¤erentials between individuals with di¤erent levels of schooling. In the absence of
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selection e¤ects, OLS and the linear speci�cation will coincide.

Comparing OLS with full information maximum likelihood estimation of the lin-

ear speci�cation, we see from Figures 1 and 2 that allowing for selection e¤ects does

matter for the estimated returns to schooling. From Figure 2 we �nd a marginal

returns to schooling which is around one percentage point higher when we allow

for selection e¤ects. When comparing the linear speci�cation with the more �ex-

ible speci�cations, we see that there are considerable di¤erences in the estimated

marginal returns across di¤erent levels of schooling. In particular, there are high

returns to completing upper secondary school (12 years) and to take one or two

years of higher education, whereas the marginal return to the last year of schooling,

if the current level of schooling is 15 years or more, is considerably smaller. This is

consistent with the �ndings of several empirical studies of returns to schooling using

Norwegian data, cf. e.g. Hægeland, Klette and Salvanes (1999). Thus the strongest

non-linearity in returns to education in Norway appears to arise from a particular

high return to taking some higher education. One may speculate that this partly

re�ects a positive signal of high productivity to employers.

Figure 3 shows expected log earnings as a function of years of experience, with

all the other variables of the earnings equation �xed at their sample means. In

contrast to the estimated returns to schooling, allowing for selection e¤ects only has

minor implications for the estimated returns to experience. We see from Figure 3

that the Box-Cox speci�cation gives higher marginal returns for years of experience

up to four to �ve years compared to the other speci�cations.

Concentrating on our preferred speci�cation, with spline transformations of both

schooling and experience and with log earnings as the dependent variable in the

earnings equation, Figure 4 depicts the three di¤erent kinds of marginal returns to

schooling de�ned in Section 2.3. We see that the average e¤ect of the treatment
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on the treated (TT) in general is higher than the average treatment e¤ect (ATE).

This re�ects the positive correlation between "2 and �1 that was reported in Table

1: Individuals with higher (idiosyncratic) returns to schooling also invest more in

schooling. Hence the marginal returns at a speci�c level are higher for those who

actually have completed this level of schooling than for the average individual. In

other words, there is selection by comparative advantage. On the other hand, we

also estimated a negative correlation between "1 and "2; conditional on idiosyncratic

returns to schooling, those with higher earnings potential regardless of schooling �

all else equal �tend to choose a lower level of schooling. This is clearly seen from

the earnings-schooling pro�les in Figure 1. The self-selection related to "2 gives a

�atter pro�le, i.e., individuals with high "2 tend to have low levels of schooling and

vice versa.

To evaluate the �t of our preferred speci�cation, Figure 5 plots (i) the discrete

probability density functions over a grid of 100 intervals, with equal width, for the

estimated spline model with log earnings as the dependent variable, and (ii) his-

tograms of the log earnings data. This is done conditional on the chosen level of

schooling, i.e., for eight di¤erent levels. Note that the derived theoretical distribu-

tions are not normal. They are obtained from (8), by integrating out (Z1; Z2) using

the empirical distribution function of these covariates (given the level of schooling).

We see that the estimated model based on the normal distribution is unable to pick

up the heavy tails that characterize the histograms in Figure 5.

3.3 Results for the case with mixture distributions

We con�ne our analyses here to the case with lnY as the dependent variable and

with spline transformations of both years of schooling and years of experience. The

results in Table 5 refer to the mixture model with Q = 2 and Q = 3, i.e., two and

three mixture distributions, respectively. The new results are comparable to Model

25



3 in Table 1, i.e., the (benchmark) model with normally distributed error terms

and identical "2-distribution across levels of schooling. The benchmark model is a

special case of a mixture model with Q = 1. Detailed results regarding the mixture

parameters are given in Table 6 for the case with Q = 3. By comparing the next-

to-last row in Table 1 and 5, we see a formidable increase in log-likelihood when we

allow normal mixtures. When Q = 3 we obtain a log-likelihood which is 1600 points

higher than the benchmark model with Q = 1 reported in Table 1 (Model 3). The

increase in log-likelihood when going from Q = 2 to Q = 3 is also very large; about

230 points, at the cost of 17 additional parameters.

The estimated coe¢ cients of skewness and kurtosis in Table 5 for the error term

"J2 (R) show clear evidence of non-normality.
4 The coe¢ cient of kurtosis is signif-

icantly above 3 in both models. When Q = 3 we obtain the highest coe¢ cient

of kurtosis (about 6), thus indicating an aggregate earnings distribution (across

schooling levels) with very heavy tails. Also the coe¢ cient of skewness is signif-

icantly di¤erent from zero according to the latter model, and the estimate (0.15

in both models) indicates a modest skewness to the right. Regarding the correla-

tion coe¢ cients Corr("J2 (R); "1) and Corr(�1; "1), these have the same sign as in the

benchmark model (Model 3) and they are both signi�cantly di¤erent from zero.

The most interesting question is perhaps how the estimated returns to schooling

are a¤ected when we allow normal mixtures. The answer is evident from �gures

6 and 7. The normal benchmark model (Model 3) and the two mixture models

have estimated average returns to schooling (ATE) that are quite similar. The

only notable di¤erence is that the two latter models exhibit about 2 percentage

points lower ATE when years of schooling is less than or equal to 11 years, and 1-2

percentage points higher for 15-16 years of schooling. We see that the estimated

4The results involving "J2 (R) in Table 5 are obtained by simulations from the estimated distri-
butions of "j(r), J and R.

26



returns to schooling is modestly a¤ected by whether we choose Q = 2 or Q = 3.

Concentrating henceforth on the mixture model with with Q = 3, Figure 7

depicts estimates of the three types of treatment e¤ects regarding the returns to

schooling de�ned in Section 2.3. The graphs are quite similar to the corresponding

graphs in Figure 4, with normally distributed error terms. Again, we see that average

e¤ect of the treatment on the treated (TT) in general is higher than the average

treatment e¤ect (ATE). Note, however, that the di¤erences between the graphs in

Figure 7 are generally smaller than between the corresponding graphs in Figure

4. This is related to the fact that Corr("J2 (R); "1) and Corr(�1; "1) when Q = 3

(reported in Table 5) are smaller in magnitude than the corresponding correlations

for Model 3 reported in Table 1.

Figure 8 reproduces Figure 5 in the case where the theoretical model depicted

in Figure 5 is replaced by the normal mixture model with Q = 3. For all levels of

schooling we see that the estimated conditional probability density functions �t the

histograms of the log earnings data well. The improvement compared to Figure 5

is particularly striking for schooling levels 7 and 8, where the normal benchmark

model �ts the data quite poorly (cf. Figure 5, chart 7 and 8). A QQ- plot for the

marginal distribution of log-earnings is presented in Figure 9. The plot compares the

empirical distribution function (the straight line) with the mixture model (Q = 3)

and the normal benchmark model (Q = 1). The overall impression from these

graphs is that the depicted mixture model �ts the data well, and that a substantial

improvement compared to the normal benchmark model is achieved. Similar graphs

for the mixture model with Q = 2 reveal a somewhat poorer �t than when Q = 3,

especially for schooling level 7 and 8, but we still get a clear improvement compared

to the benchmark model.
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4 Conclusion

In this paper we have discussed maximum likelihood estimation of a joint model for

earnings and the choice of level of schooling. The earnings relation is allowed to

be very general with random coe¢ cients and explanatory variables that are �exible

transformations of schooling and experience. The choice of level of schooling is

assumed to be an ordered probit model. Under the assumption that the random

terms of the model have a mixed multinormal distribution, we have demonstrated

that the joint distribution of the choice of level of schooling and earnings as well

as explicit formulas for several types of treatment e¤ects regarding the returns to

schooling, can be expressed on closed form.

We have applied this framework and methodology to analyze the structure of

the earnings relation on micro data for Norway. The estimation results show that

if we constrain the transformation of the dependent variable to be of the Box-Cox

type, the logarithm of earnings seems to be the best one in terms of �t. Within

the class of Box-Cox transformations, or alternatively spline transformations of the

independent variables �years of schooling� and �potential experience�, the latter

family turns out to give the best �t. Compared to a multinormal benchmark model,

the mixed multinormal model o¤ers a substantially improved �t to the (heavy-tailed)

empirical distribution of the actual log-earnings data.

We believe that the econometric framework developed in this paper o¤ers several

advantages to the researcher compared to the two-stage control function approach.

First, because it is a maximum likelihood approach based on the mixed Gaussian

distribution, it o¤ers considerable �exibility. Second, it allows for nonlinear transfor-

mations of the dependent variable that contain unknown parameters. Third, biases

due to heteroscedasticity and imputed estimates from the �rst stage that typically

plague the control function approach no longer exist. Fourth, the maximum likeli-
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hood approach facilitates testing of alternative model speci�cations.
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Appendix A: Proofs

Proof of Theorem 1.

De�ne Y [�] = (Y � � 1)=�. Inserting (5) into (3) we obtain

Y [�] = T (X;�)� + Z2
2 + (T (X;�)�+ �)"1 + T (X;�)e� + e"2:
Since J is independent of e"2 and e�, we have:

Var(T (X;�)e� + e"2jJ = j; Z) = Var(T (Xj;�)e� + e"2jZ)
= g(T (Xj;�))2,

using the de�nition of g(�) in (6). Given ("1, J; Z) we therefore obtain

P (Y [�] 2 (z; z+dz)j"1; J = j; Z) =
dz

g(T (Xj;�))
�

�
z � T (Xj;�)� � Z2
2 � (T (Xj;�)�+ �)"1

g(T (Xj;�))

�
.

(23)

Let Kj = (�j�1 � Z1
1; �j � Z1
1]. Since J = j , "1 2 Kj, we obtain from (23)

that

P (Y [�] 2 (z; z + dz); J = jjZ)

=

Z
P (Y [�] 2 (z; z + dz)j"1; J = j; Z)P (J = jjZ1; "1)�("1) d"1

=

Z
P (Y [�] 2 (z; z + dz)j"1; J = j; Z)1("1 2 Kj)�("1) d"1

=

Z �j�Z1
1

�j�1�Z1
1

dz

g(T (Xj;�))
�

�
z � T (Xj;�)� � Z2
2 � (T (Xj;�)�+ �)"1

g(T (Xj;�))

�
�("1) d"1;

(24)

where 1(B) is the indicator function which is one if the event B is true and zero

else. Since

1

�
�(
a� b"1
�

)�("1) =
1

(�2 + b2)1=2
�(

a

(�2 + b2)1=2
)� d

d"1
�

 �
"1 �

ab

(�2 + b2)

�
(�2 + b2)

1
2

�

!
,

(25)
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we obtain from (24), using (25) with a = z � T (Xj;�)� � Z2
2, b = T (Xj;�)�+ �

and � = g(T (Xj;�)), that

P (Y [�] 2 (z; z + dz); J = jjZ) = dz

 (T (Xj;�))
�

�
z � T (Xj;�)� � Z2
2

 (T (Xj;�))

�
��

�

��
�j � Z1
1 �

(y � T (Xj;�)� � Z2
2) (T (X
j;�)�+ �)

 (T (Xj;�))2

�
 (T (Xj;�))

g(T (Xj;�))

�
��

��
�j�1 � Z1
1 �

(y � T (Xj;�)� � Z2
2) (T (X
j;�)�+ �)

 (T (Xj;�))2

�
 (T (Xj;�))

g(T (Xj;�))

��
.

(26)

Now, letting z = (y��1)=�, we get dz = y��1dy by the change-of-variables formula.

Hence the density in terms of untransformed earnings, y, becomes equal to (8). This

completes the proof.

Proof of Corollary 2.

Similarly to (5), we can write

"2(r) = �"1(r) + e"2(r), �(r) = �"1(r) + e�(r); (27)

where (e"2(r);e�(r)0) has covariance matrix � and is independent of "1(r). Using (9)
and (27), we then obtain

"j2(r) = �jr�"1(r) + �jr + e"j2(r), (28)

wheree"j2(r) = �jre"2(r) is independent of "1(r) and the covariance matrix of (e"j2(r);e�(r)0)
is �jr(r) �de�ned in (14). We realize that when R = r and J = j, the proof of

Corollary 2 is completely analogous to the proof of Theorem 1, with ("1; "2; �0) and

(e"2;e�0) now being replaced by ("1(r); "j2(r); �(r)0) and (e"j2(r);e�(r)0), respectively. The
modi�cations in (12) compared to (8) occur because the mean of "j2(r) is �jr, � in

(6) is replaced by �jr(r) (yielding (13)); and � in (7) is replaced by �jr� (yielding

(15)).
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Proof of Corollary 3.

Recall that J = j , "1 2 Kj. Using the rule of double expectation and (27), we

obtain

E(�(R)jJ = j) =

QX
r=1

qrE(�(r)j"1(r) 2 Kj; R = r) =

QX
r=1

qrE(�"1(r) + e�(r)j"1(r) 2 Kj; R = r)

= �E("1(r)j"1(r) 2 Kj) = �
E ("1(r)1f"1(r) 2 Kjg)

P (J = j)
= �

R �j�Z1
1
�j�1�Z1
1

u�(u) du

P (J = j)

= ��
�(�j � Z1
1)� �(�j�1 � Z1
1)

�(�j � Z1
1)� �(�j�1 � Z1
1)
= ���(j); (29)

where, in the third equation, we have used that e�(r) is independent of "1(r) and
R is independent of ("1(r); e�(r)0) for every r. This proves (18). Consider next the
proof of (19). Similarly to (29), we obtain

E("2(R)jJ = j; R = r) = E(�"1(r) + e"2(r)j"1(r) 2 Kj; R = r) = �E("1(r)j"1(r) 2 Kj)

= �
E ("1(r)1f"1(r) 2 Kjg)

P (J = j)
= ���(j), (30)

where we used that e"1(r) is independent of "1(r) and R is independent of ("1(r);

e"2(r)). From (9) and the rule of double expectation, we obtain

E("k2(R)jJ = j) = E (�kR"2(R) + �kRjJ = j)

=

QX
r=1

qrE (�kR"2(R) + �kRjJ = j; R = r)

=

QX
r=1

qr (�krE("2(R)jJ = j; R = r) + �kr)

= �
 

QX
r=1

qr�kr

!
��(j);

where, in the last equality, we used (30) and the summation restriction (16). This

completes the proof of (19).
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Figures and tables

Table 1: Parameter estimates of earnings equation for di¤erent model
speci�cations. Standard errors in parentheses

Model speci�cation
Model 1 Model 2 Model 3 Model 4

Earnings: ln y ln y ln y (Y � � 1) =�
Schooling: Linear Box-Cox Splines Splines
Experience: Quadratic Box-Cox Splines Splines

� 0 (-) 0 (-) 0 (-) -.17 (.003)
�1 .08 (.003) .66 (.09) .06 (.005) .01 (.001)
�2 -.0005 (.0001) .21 (.01) .01 (.001) .05 (.005)
SD("2) .26 (.01) .51 (.10) .24 (.03) .05 (.001)
SD(�1) .01 (.004) .08 (.02) .01 (.001) .001 (.0002)
SD(�2) .0003 (.00004) .13 (.02) .01 (.001) .03 (.004)
Corr("2; "1) -.12 (.05) -.34 (.06) -.25 (.05) -.25 (.04)
Corr(�1; "1) .03 (.24) .39 (.06) .35 (07) .47 (.16)
Corr(�1; "2) .92 (.13) -.82 (.06) -.13 (.23) .30 (.16)
Corr(�2; "1) -.04 (.07) -.01 (.03) -.03 (.03) .06 (.05)
Corr(�2; "2) -.62 (.07) -.93 (.02) -.48 (.11) -.15 (.08)
Corr(�2; �1) -.87 (.17) .77 (.06) .64 (.11) -.77 (.15)
�1;1 11.26 (1.39)
�1;2 1 (-) .28 (.03)
�2;1 -29.5 (2.48) 2.49 (.62)
�2;2 2 (-) .002 (.002)
log-likelihood -27274 -27251 -27179 -27058
Sample size 29,332 29,332 29,332 29,332

Table 2: Descriptive statistics for schooling, experience and earnings

Variable Mean St.dev. Min Max
Years of schooling 12.2 2.3 7 18.0
Years of experience 15.2 5.9 0 29.0
Log of earnings 7.7 0.3 6.4 9.8
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Figure 1: Expected log earnings as a function of years of schooling
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Figure 2: Expected marginal returns to schooling (ATE)
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Figure 3: Expected log earnings as a function of experience
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Figure 4: Estimates of marginal treatment e¤ects. Models with normally
distributed error terms

38



SCHOOLING LEVEL = 1

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

6.40 6.67 6.95 7.23 7.50 7.78 8.06 8.33 8.61 8.88 9.16 9.44 9.71

LOG EARNINGS

Histogram of data Estimated splines model

SCHOOLING LEVEL = 2

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

6.40 6.67 6.95 7.23 7.50 7.78 8.06 8.33 8.61 8.88 9.16 9.44 9.71

LOG EARNINGS

SCHOOLING LEVEL = 3

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

6.40 6.67 6.95 7.23 7.50 7.78 8.06 8.33 8.61 8.88 9.16 9.44 9.71

LOG EARNINGS

SCHOOLING LEVEL = 4

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

6.40 6.67 6.95 7.23 7.50 7.78 8.06 8.33 8.61 8.88 9.16 9.44 9.71

LOG EARNINGS

SCHOOLING LEVEL = 5

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

6.40 6.67 6.95 7.23 7.50 7.78 8.06 8.33 8.61 8.88 9.16 9.44 9.71

LOG EARNINGS

SCHOOLING LEVEL = 6

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

6.40 6.67 6.95 7.23 7.50 7.78 8.06 8.33 8.61 8.88 9.16 9.44 9.71

LOG EARNINGS

SCHOOLING LEVEL = 7

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

6.40 6.67 6.95 7.23 7.50 7.78 8.06 8.33 8.61 8.88 9.16 9.44 9.71

LOG EARNINGS

SCHOOLING LEVEL = 8

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

6.40 6.67 6.95 7.23 7.50 7.78 8.06 8.33 8.61 8.88 9.16 9.44 9.71

LOG EARNINGS

Figure 5: Normally distributed error terms: The conditional distributions
of log earnings given the level of schooling. Estimated probability distribution
functions and histograms of log earning data
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multinormally distributed error terms (Q=3)
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Figure 8: Mixed multinormally distributed error terms (Q=3): The condi-
tional distributions of log earnings given the level of schooling. Estimated
probability distribution functions and histograms of log earning data
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Figure 9: Comparing estimated and empirical distribution functions: QQ-
plot for the marginal distribution of log earnings
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Table 3: Descriptive statistics for Z1 with corresponding parameter esti-
mates

Z1-variables Mean St.dev Min Max Parameter S.E.
estimate

Lone mother 0.05 0.21 0 1 0.27 0.07
Lone father 0.01 0.08 0 1 -0.05 0.08
No parents 0.01 0.09 0 1 -0.13 0.07
Mother working 0.33 0.47 0 1 0.02 0.01
Father working 0.93 0.25 0 1 0.07 0.04
Family income:
quintile 2 0.20 0.40 0 1 0.09 0.02
quintile 3 0.21 0.41 0 1 0.15 0.02
quintile 4 0.21 0.41 0 1 0.23 0.02
quintile 5 0.20 0.40 0 1 0.32 0.03
Mother�s schooling:
lower secondary 0.15 0.35 0 1 0.35 0.02
upper secondary 0.07 0.25 0 1 0.45 0.03
lower tertiary 0.04 0.19 0 1 0.71 0.04
upper teritary 0.00 0.06 0 1 0.88 0.13
Father�s schooling:
lower secondary 0.14 0.35 0 1 0.31 0.02
upper secondary 0.13 0.34 0 1 0.39 0.02
lower tertiary 0.07 0.26 0 1 0.69 0.03
upper teritary 0.04 0.19 0 1 0.99 0.04
Born abroad 0.00 0.02 0 1 -0.31 0.27
Father born abroad 0.06 0.24 0 1 -0.08 0.05
Mother born abroad 0.03 0.16 0 1 -0.08 0.04
Østfold 0.06 0.24 0 1 0.03 0.03
Akershus 0.09 0.28 0 1 -0.04 0.03
Hedmark 0.04 0.20 0 1 0.07 0.04
Oppland 0.04 0.20 0 1 0.14 0.04
Buskerud 0.05 0.22 0 1 0.04 0.03
Vestfold 0.05 0.21 0 1 0.09 0.04
Telemark 0.04 0.19 0 1 0.14 0.04
A-Agder 0.02 0.14 0 1 0.24 0.05
V-Agder 0.04 0.19 0 1 0.22 0.04
Rogaland 0.08 0.28 0 1 0.11 0.03
Hordaland 0.11 0.31 0 1 0.20 0.03
Sogn Fj. 0.03 0.17 0 1 0.36 0.04
Møre Roms. 0.07 0.25 0 1 0.26 0.03
S-Tr. 0.06 0.24 0 1 0.21 0.03
N-Tr. 0.03 0.18 0 1 0.42 0.04
Nordland 0.06 0.24 0 1 0.34 0.03
Troms 0.03 0.18 0 1 0.24 0.04
Finnmark 0.02 0.13 0 1 0.27 0.05
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Table 4: Descriptive statistics for Z2 with corresponding parameter esti-
mates

Z2-variables Mean St.dev. Min Max Parameter S.E.
estimate

Intercept 7.33 0.04
Manufacturing 0 -
Public services 0.28 0.45 0 1 -0.20 0.03
Private services 0.40 0.49 0 1 -0.04 0.03
Unspeci�ed 0.00 0.04 0 1 -0.23 0.04
General 0.19 0.40 0 1 0.05 0.03
Humanities 0.03 0.18 0 1 -0.10 0.04
Teaching 0.06 0.23 0 1 -0.14 0.05
Technical 0 -
Business/administrative 0.21 0.41 0 1 0.02 0.02
Transport 0.03 0.17 0 1 0.03 0.01
Health 0.05 0.23 0 1 0.07 0.00
Farming/�sheries 0.02 0.13 0 1 -0.06 0.05
Services/military 0.06 0.23 0 1 0.08 0.01
Østfold 0.05 0.21 0 1 -0.15 0.01
Akershus 0.09 0.28 0 1 -0.03 0.01
Oslo 0 -
Hedmark 0.03 0.18 0 1 -0.19 0.00
Oppland 0.03 0.18 0 1 -0.22 0.01
Buskerud 0.05 0.21 0 1 -0.11 0.01
Vestfold 0.04 0.19 0 1 -0.14 0.01
Telemark 0.03 0.17 0 1 -0.13 0.01
A-Agder 0.02 0.13 0 1 -0.18 0.01
V-Agder 0.03 0.17 0 1 -0.14 0.01
Rogaland 0.08 0.27 0 1 -0.02 0.01
Hordaland 0.09 0.29 0 1 -0.11 0.01
Sogn Fj. 0.02 0.15 0 1 -0.18 0.01
Møre Roms. 0.05 0.22 0 1 -0.16 0.01
S-Tr. 0.06 0.23 0 1 -0.18 0.01
N-Tr. 0.02 0.15 0 1 -0.23 0.01
Nordland 0.05 0.21 0 1 -0.20 0.01
Tromsø 0.03 0.18 0 1 -0.16 0.01
Finnmark 0.02 0.12 0 1 -0.21 0.01
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Table 5: Parameter estimates of earnings equation for two normal mixture
models: Q=2 and Q=3. Standard errors in parentheses

Mixture distribution:
Q = 2 Q = 3

Earnings: ln y ln y
Schooling: Splines Splines
Experience: Splines Splines

�1 0:003 (:00006) 0:002 (:00005)
�2 1:61 (:21) 0:58 (:06)
SD ("J2 (R)) 0:31 (:029) 0:28 (:01)
Coe¤. of skewness "J2 (R) 0:15 (:08) 0:15 (:07)
Coe¤. of kurtosis "J2 (R) 4:99 (:86) 6:02 (:74)
SD(�1) 0:0005 (:00005) 0:0003 (:00005)
SD(�2) 0:63 (:05) 0:19 (:01)
Corr("J2 (R); "1) �0:08 (:03) �0:10 (:04)
Corr(�1; "1) 0:41 (:13) 0:22 (:07)
Corr(�1; "

J
2 (R)) 0:84 (:08) 0:82 (:10)

Corr(�2; "1) �010 (:03) �0:11 (:03)
Corr(�2; "

J
2 (R)) �0:92 (:03) �0:80 (:01)

Corr(�2; �1) 0:86 (:07) �0:45 (:15)
log-likelihood �25810 �25579
Sample size 29; 332 29; 332
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Table 6: Estimates of mixture parameters when Q=3. Standard errors in
parentheses

Parameter Mixture distribution (r):
r = 1 r = 2 r = 3

qr 0:80 0:19 (:013) 0:01 (:001)
�1r 1:24 0:00 (�) 0:15 (:17)
�2r 1:24 0:00 (�) 0:00 (�)
�3r 1:20 0:00 (�) 2:39 (:35)
�4r 0:71 2:13 (:09) 2:50 (:25)
�5r 0:13 2:95 (:20) 24:9 (4:82)
�6r 0:80 1:74 (:18) 2:32 (:48)
�7r 1:22 0:00 (�) 1:44 (:45)
�8r 0:75 1:92 (:12) 2:97 (:61)
�1r 0.05 0.27 (:03) -0.73 (:05)
�2r 0.04 0:26 (:02) -0.88 (:05)
�3r 0.05 0.27 (:03) -0.77 (:08)
�4r 0.05 0.26 (:03) -0.74 (:07)
�5r -0.08 0.21 (:05) -7.75 (1.05)
�6r 0.05 0.28 (:03) -0.90 (.12)
�7r -0.01 -0.11 (:04) 0.91 (:08)
�8r 0.06 0.30 (:03) -0.69 (:17)
* All estimates for r = 1 determined by summation
restrictions, cf. (16) and (17)
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