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Introduction 
Maximum likelihood estimators of parameters in models based on the normality of disturbances  

assumption often retain the consistency property even if normality does not hold, but statistical 

inference may be influenced. In this paper this issue is considered in a concrete case, namely by 

considering the analysis of Aasness et al. (1993), who applied a structural equation modeling 

framework in the analysis of a consumer demand system.1 Their inference was based on classical 

normal theory. The focus is on Engel elasticities within a linear consumer demand system consisting 

of five commodities, characterized by measurement errors in total expenditure and the presence of 

unobserved preference heterogeneity. We compare standard errors of Engel elasticity estimates 

calculated in two different ways. The first one, which builds upon the assumption of normality, 

employs the delta method, whereas the second one is based upon bootstrapping.2 The main conclusion 

is that there is only a very modest deviation in the estimated standard errors when using the two 

approaches. 

 

The rest of the paper is organized in the following way. In Section 1 we provide notation and give the 

specification of the econometric model. Section 2 gives a very short description of the data. Besides, 

results related to univariate normality tests are reported. Section 3 is devoted to estimation issues. In 

Section 4 we compare the estimated standard errors obtained by using different approaches. Some 

concluding remarks are offered in Section 5.  

1. Modeling framework 
Consider the following complete system of linear Engel curves specified for panel data with 2 

replications, 5 commodities and 408 households 

(1) 
1 1 2 2 ; 1,...,5; 1,2; 1,2; 1,...,408.ith it i th i h i h iha b c z c z i t t hη ξ μ= + + + + = = = =  

In (1) ithη  and thξ  denote, respectively, latent expenditure at constant prices on consumption category i 

and total latent expenditure in period t by household h. To account for demographic effects we add 

two time-invariant observed demographic variables, namely 1hz  and 2hz  which represent the number 

                                                      
1 All their calculations were conducted using the software program LISREL. For a later version than the one used by Aasness 
et al. (1993) cf. Jöreskog and Sörbom (1996). 
2 For general description of bootstrapping cf. Efron and Tibshirani (1993), Hall (1994) and Horowitz (2001). For 
bootstrapping within the framework of structural equation models cf. Stine (1990) and Yung and Bentler (1998). 
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of children and number of adults, respectively. The variable ihμ  captures unobserved household 

specific heterogeneity and may be associated with commodity specific preferences attached to 

commodity i by household h. Lastly, time-specific intercepts are allowed for. 

 

The adding-up conditions, 
5

1
( 1,2; 1,...,408)ith th

i
t hη ξ

=

= = =∑ , imply that 
5

1
0( 1,...,408)ih

i
hμ

=

= =∑  

and the following parameter restrictions 

 
5 5 5

1 1 1

0; 1; 0; 1,2; 1,2.it i ij
i i i

a b c t j
= = =

= = = = =∑ ∑ ∑   

For later use we define the following symbols 

 [ ]/
1 2 3 4, , , , 1,2,t t t t ta a a a a t= =  

 [ ]/
1 2 3 4, , ,b b b b b= , 

 
/

1 2 3 4, , , , 1,2,j j j j jc c c c c j⎡ ⎤= =⎣ ⎦  

 [ ]/
1 2 3 4, , , , 1,...,408.h h h h h hμ μ μ μ μ= =  

The first- and second-order moments of hμ  are given by 

 ( ) 0hE μ =  

and 

 

1 1

2 1 2 2

3 1 3 2 3 3

4 1 4 2 4 3 4 4

2

2 2
/

2 2 2

2 2 2 2

( )h hE

μ μ

μ μ μ μ
μμ

μ μ μ μ μ μ

μ μ μ μ μ μ μ μ

σ

σ σ
μ μ

σ σ σ

σ σ σ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥

= Σ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

We have the following measurement error model that links the observed expenditures of the 

consumption categories to their latent counterparts 

(2) ; 1,...,5; 1,2; 1,...,408ith ith ithy i t hη ν= + = = = , 

where ithy  represents observed expenditure on consumption category i in period t by household h, and 

where ithν  is interpreted as measurement error. Let 
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 [ ]/
1 2 3 4 5, , , , , 1,2,th th th th th th tν ν ν ν ν ν= =  

and 

 
// /

1 2,h h hν ν ν⎡ ⎤= ⎣ ⎦ . 

The first- and second-order moments of this vector are given by 

 0hEν =   

and  

 ( ) 1 1 2 2 3 3 4 4 5 5

/
2 , , , ,h hE I Diag ν ν ν ν ν ν ν ν ν νν ν σ σ σ σ σ⎡ ⎤= ⊗ ⎣ ⎦ . 

Thus measurement errors in different periods are assumed to be uncorrelated, and so are the 

measurement errors of the different consumption categories in the same period. Besides the 

measurement errors are assumed to be homoskedastic.  

 

From adding-up it follows that  

 
5 5

1 1
: 1,2, 1,...,408th ith th ith

i i
x y t hξ ν

= =

= = + = =∑ ∑ .  

The total latent expenditure variable in the two periods, i.e., 1hξ  and 2hξ , are specified as 

 1 1h h huξ χ= +  

and 

 ( )2 02 2 2h h hq q uξ χ= + + . 

We refer to hχ  as the permanent component of total latent expenditure and uth (t = 1,2) 

as the volatile component of total latent expenditure.  

 

For later use it is convenient to introduce the vector 

 [ ]/
1 2 1 2, , , .h h h h h hz z u uκ χ=  

We assume that the two first order moments of hκ  are given by  
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1 2

/
, , , 0, 0h z zE κ χκ μ μ μ μ⎡ ⎤= = ⎣ ⎦  

and 

 
1 1 1

2 2 1 2 2

2

2 2

/ 2 2 2

2

2

( )( ) .

0 0 0
0 0 0 0

z z z

h h z z z z z

uu

uu

E

χχ

χ

κκ κ κ χ

σ
σ σ

κ μ κ μ σ σ σ

σ
σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤Σ = − − =⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

   

We also define  

 
1 1 1

2 2 1 2 2

2

2 2

2 2 2

a
z z z

z z z z z

κκ

κκ κ

κ

σ
σ σ

σ σ σ

⎡ ⎤
⎢ ⎥

Σ = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

for later use. 

 

The observed purchases of the different commodities can be viewed as indicators of latent total 

expenditure. In addition, two additional indicator variables of total latent expenditure are utilized 

(3) 1 1 2 2 ; 1,2; 1,2; 1,...,408.kth kt k th k h k h kh kthw d e f z c z k t hξ λ ε= + + + + + = = =  

In (3) wkth denotes the observed value of income measure k (k=1,2) in period t of household h. 

 

As in the consumer demand system we allow for time-specific intercepts. Latent total expenditure and 

the number of adults occur on the right hand side of (3). The latent variable khλ  takes care of 

unobserved heterogeneity across households and kthε  is a genuine error term.  

 

We introduce some more notation 

 [ ]/
1 2, , 1,2,t t td d d t= =  

 [ ]/
1 2, ,e e e=  

 [ ]/
1 2, , 1,2,k k kf f f k= =  

 [ ]1 2F f f= , 

 [ ]/
1 2, ,h h hλ λ λ=  
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 [ ]/
1 2, , 1,2.th th th tε ε ε= =  

 
// /

1 2, .h h hε ε ε⎡ ⎤= ⎣ ⎦  

The first- and second-order moments of hλ  are given by 

 ( ) 0hE λ =  

and 

 ( ) 1 1

2 1 2 2

2
/

2 2h hE λ λ
λλ

λ λ λ λ

σ
λ λ

σ σ

⎡ ⎤
= Σ = ⎢ ⎥

⎢ ⎥⎣ ⎦
,  

whereas the first and second order moments of hε  are given by 

 ( ) 0hE ε =  

and 

 ( )/
2 ,h hE I εεε ε = ⊗Σ  

where  

 1 1

2 1 2 2

2

2 2 .ε ε
εε

ε ε ε ε

σ

σ σ

⎡ ⎤
Σ = ⎢ ⎥

⎢ ⎥⎣ ⎦
 

Let us define the following observation vectors 

 [ ]/
1 2 3 4 5, , , , , 1,2,th th th th th thy y y y y y t= =  

 [ ]/
1 1, , 1,2,th th thw w w t= =  

 [ ]/
1 2, ,h h hz z z=  

 
// /

1 2, ,h h hy y y⎡ ⎤= ⎣ ⎦  

 
// /

1 2 ,h h hw w w⎡ ⎤= ⎣ ⎦  

 
/* / / /, , .h h h hy y w z⎡ ⎤= ⎣ ⎦  

Formally we may now write the vector equation for the whole observation vector of household h as 
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(4) ( )*
* .h h h h h hy

y B B B B Bκ κ μ ν λ εμ κ μ μ ν λ ε= + − + + + +  

The explicit expressions for the vector *
yμ  and the matrices , , , ,B B B B Bκ μ ν λ ε are reported in Appendix 

A. We assume that the vectors ( ), , , ,h h h h hκκ μ μ ν λ ε−  are all uncorrelated with each other. Hence we 

may write the first- and second-order moments of *
hy  as 

 *
*( )h y

E y μ=  

   { }* * * *
* * / / / / / /

2 2( )( ) ( ) ( ) .h hy y y y
E y y B B B B B I B B B B I Bκ κκ κ μ μμ μ ν νν ν λ λλ λ ε εε εμ μ− − = Σ = Σ + Σ + ⊗Σ + Σ + ⊗Σ  

The vectors * * *
1 2 408, , ,y y y are assumed to be stochastically independent. 

 

We next define three vectors with parameters which together constitutes all the parameters entering 

the first- and second-order theoretical moments. These are 

 
// / / / / /

12 1 2 1 2 2, , , , , , ,b c c e f f qθ ⎡ ⎤= ⎣ ⎦  

 ( ) ( ) ( ) ( )
1 1 2 2 3 3 4 4 5 5

// / / /2 2 2 2 2 2
2 , , , , , , , , , ,a

uuvech vech vech vechκκ μμ ν ν ν ν ν ν ν ν ν ν λλ εεθ σ σ σ σ σ σ⎡ ⎤= Σ Σ Σ Σ⎢ ⎥⎣ ⎦
 

 
1 2

// / / /
1 1 2 02 1 2, , , , , , ,z za a q d dχθ μ μ μ⎡ ⎤= ⎣ ⎦ . 

The theoretical first-order moments are functions of 1θ  and 12θ , whereas the second-order theoretical 

moments are functions of 12θ  and 2θ . 

2.  Data and univariate tests of skewness, excess kurtosis and non-
normality 

The data set is from the years 1975-1977 and are formally treated as a balanced panel data set with 

two observations for each of 408 observational units, i.e. households. The two data sources are the 

Norwegian Surveys of Consumer Expenditure and tax files. Altogether there are nine observable 

variables and seven of these are two-dimensional. Five of the variables are purchase expenditures in 

constant prices of the following commodities: (i) Food, tobacco and beverages (y1), (ii) Clothing and 

footwear (y2), (iii) Housing, fuel and furniture (y3), (iv) Travel and recreation (y4) and (v) Other goods 

and services (y5). Together these variables cover purchases of all goods and services. Furthermore we 

include two income variables, which we refer to as Income measure 1 and Income measure 2. Income 
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measure 1 (w1) is "Taxable income for the central government tax assessment minus taxes", whereas 

Income measure 2 (w2) is "Income base used for calculating social security premiums and pension 

rights in the public social security system". The two last variables are, respectively, the number of 

children (z1) and the number of adults (z2) in the households. These are time invariant variables. In 

each of the two period the upper tail distribution of the two-dimensional variables have been 

moderately winsorized. The first- and second-order empirical moments are reported in Aasness et al. 

(1993, pp. 1419-1421). 

 

In the next section the log-likelihood functions depend on the first- and second-order empirical 

moments. 

 

Let  

 
408

.
1

1 , 1,...,5, 1,2
408it ith

h
y y i t

=

= = =∑ , 

 
408

.
1

1 , 1,2, 1,2
408jt jth

h
w w j t

=

= = =∑ , 

 
408

.
1

1 , 1,2
408k kh

h
z z k

=

= =∑ , 

 [ ]/
1 . 2 . 3 . 4 . 5 ., , , , , 1,2,t t t t t ty y y y y y t= =  

 [ ]/
. 1 . 2 ., , 1,2,t t tw w w t= =  t=1,2, 

 [ ]/
1. 2., .z z z=  

The vector of empirical means is then given by 

 
/// / / /

11.. 2. 1. 2., , , ,m y y w w z⎡ ⎤= ⎣ ⎦ . The empirical covariance matrix is given by ( )( )/* *

1

1 .
H

h h
h

S y m y m
H =

= − −∑  

 

We test whether each of the variables y11,…,y51, y12,…,y52, w11, w21, w12, w22, z1, z2 are normally 

distributed. The test statistic for non-normality, which is asymptotically chi-square distributed with 

two degrees of freedom, is additive in two components each being chi-square distributed with one 

degree of freedom. They are functions of the sample skewness and kurtosis, respectively. For a further 

description and discussion of the test statistics cf. Davidson and MacKinnon (1993, pp. 568-569) and 
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Hall and Cummins (2005, p. 271). The test results are reported in Table D1 in Appendix D. For most 

of the variables the hypothesis that they are normally distributed is clearly rejected. Generally both 

skewness and excess kurtosis contribute to the rejection. Thus one cannot claim that the variables have 

been drawn from a normal distribution, at least not marginally. 

3. Normality, maximum likelihood and sufficient statistics 
Under the assumption that hy is normally distributed maximum likelihood estimation is implemented 

by minimizing the following fit function with respect to 12θ , 2θ  and 1θ  (cf. Jöreskog et al., 2000, p. 7) 

(5) 
( )

( )( ) ( )( )
* * * *

* * * *

1

12 1 12 2 12 2 12 2

/ 1

1 12 12 2 1 12

, , ; , log ( , ) ( , ) log 16

, ( , ) , .

y y y y

y y y y

L m S tr S S

m m

θ θ θ θ θ θ θ

μ θ θ θ θ μ θ θ

−

−

⎛ ⎞⎡ ⎤= Σ + Σ − −⎜ ⎟⎣ ⎦⎝ ⎠

⎡ ⎤+ − Σ −⎣ ⎦

  

In the model we are considering there is perfect fit of the theoretical first-order moments, which means 

that all the information in the first-order empirical moments is used to estimate the parameters in 1.θ 3 

This means that S is a sufficient statistic for 12θ  and 2θ  and that maximum likelihood estimates of 

these parameters vectors are obtained by minimizing the following fit function 

(6) ( ) * * * *

1

2 12 2 12 2 12 2, ; log ( , ) ( , ) log 16.
y y y y

L S tr S Sθ θ θ θ θ θ
−⎛ ⎞⎡ ⎤= Σ + Σ − −⎜ ⎟⎣ ⎦⎝ ⎠

  

Under non-normality the estimators of 12 2,θ θ  and 1θ  have status as pseudo-maximum likelihood 

estimators, which are consistent estimators. However the estimated standard errors based on normality 

theory may be biased. In light of this, we estimate standard errors using bootstrapping.  

4. Bootstrapped standard errors of Engel elasticities 
The model specified in Section 2 corresponds to the base model E3P3C1M14 in the nomenclature of 

Aasness et al. (1993). In Appendix C we report the parameter estimates, which corresponds to those 

reported in Aasness et al., op. cit. 

 

                                                      
3 In Appendix C we demonstrate how the estimates of parameters in 1θ  are obtained in a second round after having obtained 
estimates of the parameters in the vectors 2θ  and 12θ . 
4 Sometimes they apply a shorter form of this name. 
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Let the budget shares evaluated at the mean values of total latent expenditure, the demographic 

variables and the latent preference variables be defined as 

           ( ) ( ) ( )1 1 1 2 2 1 02 2 1 1 2 2
12 1

02 2

( )
, 0.5 0.5 , 1,...,5.i i i z i z i i i z i z

i

a b c c a b q q c c
i

q q
χ χ

χ χ

μ μ μ μ μ μ
ρ θ θ

μ μ

+ + + + + + +
= + =

+
 

The two additive terms correspond to the first and second period, respectively. 

 

We define the Engel elasticities as  

 
( )12 1

, 1,...,5.
,

i
i

i

bE i
ρ θ θ

= =   

The Engel-elasticities can be estimated by plugging in the ML-estimates of the parameters occurring 

in the expression of Ei. When it comes to standard errors of Engel elasticities we compare the results 

based on two different methods. In the first case the standard errors are calculated utilizing normal 

distribution theory and the delta method, which involves a first order linearization of the expression 

for Ei (cf. Kmenta, 1997, p. 486).5 As an alternative we employ non-parametric bootstrapping, i.e., we 

draw R new samples with replacement from the empirical distribution and minimize the fit function 

(5) each time. 

 

The bootstrapped Engel elasticities in replication r are, hence, given by 

 

[ ]
[ ]

[ ] , 1,...,5,
r

r i
i r

i

bE i
ρ

= =  

where 

            
( ) ( )[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

1 1 1 2 2 2 02 2 1 1 2 2[ ]
[ ] [ ] [ ] [ ]

02 2

( )
0.5 0.5 .

r r r r r r r r r r r r r r r r
i i i z i z i i i z i zr

i r r r r

a b c c a b q q c c
q q

χ χ

χ χ

μ μ μ μ μ μ
ρ

μ μ

+ + + + + + +
= +

+
 

Bootstrapped standard errors of the estimated Engel elasticities are then obtained by calculating the 

empirical standard deviations of the bootstrapped Engel elasticities, i.e., 

 ( )
2

[ ]
ˆ

1

1ˆ
1i

R
boot r boot

i ib
rR

σ ρ ρ
=

= −
− ∑ , 

                                                      
5 These calculations have been done in TSP 4.5 (cf. Hall and Cummins, 2005). 
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where 

 [ ]

1

1 .
R

boot r
i i

rR
ρ ρ

=

= ∑  

In the numerical calculations the number of replications, R, have been set to 100, 1000 and 10000, 

respectively. The results are reported in Table 1 below. In the second column we report the estimates 

of the Engel-elasticities. The estimated standard errors based on the normal distribution and the delta 

method are reported in the third column. The three last columns in Table 1 contain standard errors 

obtained by bootstrapping with 100, 1000 and 10 000 replications, respectively. All the four sets with 

standard errors are rather similar. There are some changes in the standard errors when increasing from 

100 to 1000 replications, but only minor changes when increasing from 1000 to 10 000 replications. If 

we compare the standard errors obtained by using 10 000 replications with those obtained using the 

delta method, we see that the former method produces higher standard errors for "Food, beverages and 

tobacco", "Housing, fuel and furniture" and "Travel and recreation" and lower standard errors for 

"Clothning and footwear" and "Other goods and services". The conclusions that "Food, beverages and 

tobacco" is a necessary and that "Other goods and services" is a luxury good go through in all four 

cases. 

 

Table 1.  Pseudo-maximum likelihood estimates of Engel elasticities and different measures of 
standard errors 

Standard errors 
Number of bootstrap replicationscCommodity Estimatea 

Delta methodb 

100 1,000 10,000 
Food, beverages tobacco 0.632 0.048 0.046 0.051 0.051 
Clothing and footwear 1.143 0.107 0.097 0.099 0.099 
Housing, fuel and furniture 1.079 0.068 0.072 0.074 0.075 
Travel and recreation 1.098 0.073 0.065 0.075 0.078 
Other goods and services 1.381 0.106 0.105 0.099 0.100 
a This is the Engel elasticities reported in Table VII in Aasness et al. (1993). 
b The estimated standard errors of the Engel elasticties reported in Table VII in Aasness et al. (1993) 
only accounted for the estimation uncertainty in the marginal budget shares, i.e., in the estimates of the 
bi-parameters. 
cThe means of the bootstrapped Engel-elasticities are very close to the quasi-maximum likelihood 
estimates. 
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5. Conclusions 
A complete set of linear Engel-curves where total expenditure is assumed to be contaminated by 

measurement error has been estimated using a structural equation modeling framework minimizing a 

fit function which is the optimal one under normality. However, normality is rejected by formal 

testing. In such a case the procedure can be labeled pseudo-maximum likelihood estimation, which is 

believed to yield consistent estimates of the parameters but may involve biased estimates of the 

standard errors. In the light of this we have calculated standard errors by bootstrapping. From an 

economic point of view focus is often on Engel elasticities. In our case the elasticity is not a 

parameter, but a function of a set of variables. We consider the case where the Engel elasticties are 

evaluated at the expected value of the variables of which they are functions. In this point the Engel 

elasticities are non-linear functions of parameters in the model. We calculate standard errors by two 

different methods. The first is based on normality and application of the delta method, whereas the 

second is based on bootstrapping. It turns out that the deviations between the estimated standard errors 

of the Engel elasticities are rather modest. For instance, the classification of the consumption 

categories as luxury and necessities is not influenced. 

 

The above results may be related to the fact that some literature in the structural equation modeling 

tradition shows that, asymptotically, estimation of standard errors of parameter estimates can proceed 

as if the observed variables were normally distributed even if this is not the case, cf. for instance the 

contribution by Satorra (1990, 1992) and Satorra and Bentler (1990). This is an interesting area for 

further work. 
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Appendix A 

Explicit expressions for the matrices , , , ,B B B B Bκ μ ν λ ε and the vector *y
μ . 

We start out with defining some vectors and matrices which will be employed below. 

 

Let jι  denote a column vector with j elements, all being equal to 1, Ij the identity matrix of order j, 0j a 

quadratic matrix of order zero in which all elements are equal to zero and 0i×j (where i≠j) a matrix with 

i rows and j columns where all elements are equal to zero. We define the following vectors and matrix 

 
/* / /

4, , 1,2,t t ta a a tι⎡ ⎤= − =⎣ ⎦  

 
/* / /

4, 1 ,b b bι⎡ ⎤= −⎣ ⎦  

 
/* / /

4, , 1,2,j j jc c c jι⎡ ⎤= − =⎣ ⎦  

 * * *
1 2 .C c c⎡ ⎤= ⎣ ⎦  

We partition the B-matrices in the following way: 

 
/(1) / (2) / (3) /

m m m mB B B B⎡ ⎤= ⎣ ⎦ , where , , , ,m κ μ ν λ ε= . 

The number of rows in these 3 submatrices are 10, 4 and 2 for all values of m, whereas the number of 

columns differ. We now specify all the submatrices: 

 
* * * *

1 1 2 5 1
* * * *

2 1 2 5 1 2

0
0

b c c b
B

q b c c q bκ
×

×

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 

 1 2 2 12

2 1 2 2 1 2

0
0

e f f e
B

q e f f q eκ
×

×

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 

 3 0 1 0 0 0
0 0 1 0 0

Bκ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 

 1 *
2 ,B Iμ ι= ⊗  

where  
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 *

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 1

I

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥− − − −⎣ ⎦

, 

 
 2

40Bμ = , 
 
 3

2 40Bμ ×= , 
 
 1

10B Iν = , 
 
 2

4 100Bν ×= , 
 
 3

2 100Bν ×= , 
 
 1

10 20Bλ ×= , 
 
 2

2 2B Iλ ι= ⊗ , 
 
 3

20 ,Bλ =  
 
 1

10 40 ,Bε ×=  
 
 2

4 ,B Iε =  
 
 3

2 40 ,Bε ×=  
 

The population covariance matrix is now given by 

* *

1 1/ 1 1/ 1 1/ 1 2 / 1 3/
2

2 1/ 2 2 / 2 2 / 2 2 / 2 3/
2

3 1/ 3 2 / 3 3/

( )
( )

y y

B B B B B I B B B B B
B B B B B B B I B B B
B B B B B B

κ κκ κ μ μμ μ ν νν ν κ κκ κ κ κκ κ

κ κκ κ κ κκ κ λ λλ λ ε νν ε κ κκ κ

κ κκ κ κ κκ κ κ κκ κ

⎡ ⎤Σ + Σ + ⊗Σ Σ Σ
⎢ ⎥Σ = Σ Σ + Σ + ⊗Σ Σ⎢ ⎥
⎢ ⎥Σ Σ Σ⎣ ⎦

 

We partition *yμ  as 

 * * * *

/
1/ 2 / 3/, , ,

y y y y
μ μ μ μ⎡ ⎤= ⎣ ⎦  

where the three subvectors contain 10, 4 and 2 elements, respectively. They are given, in partitioned 

form, by 
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 1 2
*

1 2

* * * *
1 1 21

* * * *
2 2 1 2

,z z

y
z z

a b c c

a q b c c
χ

χ

μ μ μ
μ

μ μ μ

⎡ ⎤+ + +
= ⎢ ⎥

+ + +⎢ ⎥⎣ ⎦
 

 

 1 2
*

1 2

1 1 22

2 2 1 2

z z

y
z z

d e f f

d q e f f
χ

χ

μ μ μ
μ

μ μ μ

+ + +⎡ ⎤
= ⎢ ⎥

+ + +⎢ ⎥⎣ ⎦
, 

 

 1
*

2

3 z

y
z

μ
μ

μ
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

. 
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Appendix B  

Estimation of the parameters occurring only in the first-order moments 
The theoretical first order moments may be written as 

(7) * 12 1( ) .y Gμ θ θ=  

Let us partition the G-matrix in the following way 

 

1
10 16
2
4 16
3
2 16

.
G

G G
G

×

×

×

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

  

The submatrices defining G are then given as   

 
* *

1 5 4 5 1 5 2 5 2
10 16 * * * *

5 4 2 02 5 2 5 2

0 0 0 0
0 0 0
I b C

G
I q b q b C
× × × ×

×
× × ×

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 

 

 2 4 2 4 2 1 2 22
4 16

2 4 2 4 2 02 2 2

0 0 0 0
0 0 0

e I F
G

q e q e I F
× × ×

×
× ×

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

and 

 [ ]3
2 16 2 4 2 4 2 1 2 1 2 1 2 1 20 0 0 0 0 0G I× × × × × × ×= . 

If we invert (7) we obtain 

 [ ] *

1
1 12( ) .

y
Gθ θ μ−=  

We can estimate *yμ  by m, and the ML-estimator of 1θ  is   

 ( )
1

1 12
ˆ ˆ ,G mθ θ

−
⎡ ⎤= ⎣ ⎦  

where 12θ̂  denotes the ML-estimator of 12θ . This means, in contrast to what is the case for the second- 

order moments, that there is a perfect fit as far as the theoretical first-order moments are concerned. 
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Appendix C 

Estimates of the parameters in the econometric model and estimated 
standard errors based on normal theory 
 

Table C1. Estimates of the parameters in the vector 12θ and estimated standard errors based on 
normal theorya 

Parameter    Estimate Standard error 
b1 0.162  0.012 
b2 0.122  0.011 
b3 0.268  0.016 
b4 0.343  0.021 
γ11 0.907  0.148 

γ21 0.109  0.132 

γ31 -0.330  0.192 

γ41 -0.492  0.253 

γ12 0.569  0.236 

γ22 0.048  0.210 

γ32 -1.526  0.307 

γ42 1.122  0.408 
q2 1.104  0.030 
e1 0.514  0.053 
e2 1.110  0.100 
f11 -1.384  0.673 
f21 -0.121  1.270 
f12 9.474  1.066 
f22 11.111  2.011 
a Most of these results are reproduced from tables V and VII in Aasness et al. (1993). The relevant 
column in Table V is the one labeled 'Base model'.  
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Table C2. Estimates of the parameters in the vector 2.θ  Estimates of standard errors based on 
normal theorya 

Parameter  Estimate Standard error 
2
χχσ  380.015  33.679  

1

2
z χσ  8.797  1.402  

2

2
z χσ  10.003  1.091  

1 1

2
z zσ  1.579  0.111  

2 1

2
z zσ  0.079  0.057  

2 2

2
z zσ  0.827  0.058  
2
uuσ  15.149  4.596  

1 1

2
μ μσ  6.228  0.839  

2 1

2
μ μσ  -0.204  0.512  

3 1

2
μ μσ  -0.804  0.756  

4 1

2
μ μσ  -4.938  1.107  

2 2

2
μ μσ  3.014  0.732  

3 2

2
μ μσ  -2.194  0.692  

4 2

2
μ μσ  -0.759  0.930  

3 3

2
μ μσ  7.735  1.458  

4 3

2
μ μσ  -4.103  1.519  

4 4

2
μ μσ  10.324  2.570  

1 1

2
ν νσ  9.819  0.719  

2 2

2
ν νσ  13.146  0.934  

3 3

2
ν νσ  26.914  1.963  

4 4

2
μ μσ  89.017  6.161  

5 5

2
ν νσ  5.316  0.395  

1 1

2
λ λσ  192.570  16.677  

2 1

2
λ λσ  276.534  27.716  

2 2

2
λ λσ  721.531  58.804  

1 1

2
ε εσ  57.440  4.441  

2 1

2
ε εσ  53.574  5.587  

2 2

2
ε εσ  92.816  9.128  

a Most of these results are reported in tables IV, V and VI in Aasness et al. (1993). The relevant 
columns in table IV, V and VI are those labeled M1, 'Base model' and P3, respectively. The notation 
in Table V differs slightly from the one used in the current paper. 



22 

Table C3. Estimates of the parameters in the vector 1.θ  Estimates of standard errors based on 
normal theorya 

Parameter Estimate Standard error 

μχ 39.750  1.151 
q02 -1.165  1.527 
μz1 0.804  0.062 

μz2 2.225  0.045 
a11 2.125  0.475 
a21 -0.674  0.428 
a31 2.908  0.620 
a41 -3.785  0.818 
a21 1.650  0.484 
a22 -0.991  0.436 
a32 2.795  0.632 
a42 -2.891  0.834 
d11 -2.291  2.138 
d21 -13.565  4.025 
d12 0.078  2.176 
d22 -13.483  4.097 
a Most of these results are reported in tables V and VII in Aasness et al. (1993). The relevant column 
in Table V is the one labeled E3P3M1C1.  
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Appendix D 

Testing for skewness, excess kurtosis and normality 
 

Table D1. Univariate tests of skewness, excess kurtosis and normality 

Skewnessa Excess kurtosisb Normality 
Variable 

Statistic    p-value  Statistic p-value   Statistic p-value 
y11 42.007  <0.00000 2.816  0.093 44.823  <0.00000 
y12 27.735  <0.00000 0.003  0.956 27.738  <0.00000 
y21 138.406  <0.00000 49.352  <0.00000 187.758  <0.00000 
y22 131.439  <0.00000 28.965  <0.00000 160.405  <0.00000 
y31 149.174  <0.00000 96.111  <0.00000 245.286  <0.00000 
y32 116.387  <0.00000 37.824  <0.00000 154.211  <0.00000 
y41 154.740  <0.00000 63.570  <0.00000 218.310  <0.00000 
y42 130.413  <0.00000 40.585  <0.00000 170.998  <0.00000 
y51 218.484  <0.00000 201.658  <0.00000 420.142  <0.00000 
y52 135.468  <0.00000 68.929  <0.00000 204.397  <0.00000 
w11 4.798  0.028 0.014  0.905 4.812  0.090 
w12 8.056  0.004 1.369  0.242 9.425  0.009 
w21 4.957  0.026 6.793  0.009 11.750  0.003 
w22 5.204  0.023 7.040  0.008 12.244  0.002 
z1 283.128  <0.00000 528.550  <0.00000 811.678  <0.00000 
z2 72.379  <0.00000 42.137  <0.00000 114.516  <0.00000 
a Cf. formula (16.41) of Davidson and MacKinnon (1993, p. 568). 
a Cf. formula (16.42) of Davidson and MacKinnon (1993, p. 569). 
 

 

 


