
Discussion Papers No. 309, October 2001
Statistics Norway, Research Department

Håvard Hungnes

Estimating and Restricting
Growth Rates and
Cointegration Means
With Applications to
Consumption and Money
Demand

Abstract:
The parameters in the cointegration vector and the loading parameters are not the only
interesting parameters in a vector cointegration model. With a reformulation of the model the
intercept parameters can be decomposed into growth parameters and cointegration mean
parameters. These parameters have economic interpretations and are therefore also
important. We show how these parameters can be estimated and restricted. The latter can
be achieved by using a linear switching algorithm. Consumption and money demand
applications illustrate the method.

Keywords: Johansen procedure, cointegrated VAR, growth rates, cointegration means,
linear switching algorithm, consumption, money demand, savings ratio.

JEL classification: C32, C51, C52, E21, E41.

Acknowledgement: Thanks to Gunnar Bårdsen, Søren Johansen, Bjørn Naug, Terje
Skjerpen and Anders Rygh Swensen for valuable comments on various versions of the
paper. Earlier versions of the paper have been presented at conferences in Norges Bank,
Oslo (March 21-22, 2001) and at the European University Institute, Florence (June 6-9,
2001).

Address: Håvard Hungnes, Statistics Norway, Research Department, P. O. Box 8131 Dep.,
N-0033 Oslo, Norway. E-mail: havard.hungnes@ssb.no



Discussion Papers comprise research papers intended for international journals or books. As a pre-
print a Discussion Paper can be longer and more elaborate than a standard jour-
nal article by including intermediate calculation and background material etc.

Abstracts with downloadable PDF files of
Discussion Papers are available on the Internet: http://www.ssb.no

For printed Discussion Papers contact:

Statistics Norway
Sales- and subscription service
N-2225 Kongsvinger

Telephone: +47 62 88 55 00
Telefax: +47 62 88 55 95
E-mail: Salg-abonnement@ssb.no



1 Introduction
Cointegrated vector autoregressive (VAR) models are a powerful tool in analysing
time series. Granger’s representation theorem (see Engle and Granger, 1987) shows
that cointegrated time series can be represented in an equilibrium correction vector
autoregressive model. Furthermore, Johansen (1988) shows that canonical corre-
lation technique combined with reduced rank regression technique can be used to
estimate such models. These techniques are implemented in standard time series
packages such as PcGive (see Doornik and Hendry, 2001) and Cats in Rats (see
Hansen and Juselius, 1994). A lot of work has been accomplished in estimating
long-run cointegration relationships in economics. The cointegration vectors can be
tested against economic theory.
However, other parameters in a cointegrated VAR model also have economic in-

terpretations. By rewriting the equilibrium correction form of the VAR model (VEq-
CM), we can identify the underlying growth of the variables as well as the long-run
means of the cointegration relationships.
Within the VEqCM the intercepts can either be restricted to lie in the cointe-

gration space, or not. If the intercepts are not restricted to lie in the cointegration
space (’unrestricted’), they allow the system to have both growth and cointegration
means. If, however, the intercepts are restricted, there is no growth in the system,
(see Johansen and Juselius, 1990).
The growth rates tell us how much to expect (unconditionally) the variables in

the system to grow from one period to the next. If the system is used for forecasting,
the vector of growth rates will be one of the most important ones in providing good
forecasts. In fact, as the forecast horizon approaches infinity, the forecasts will rely
on this vector only, see Clements and Hendry (1999, p. 49-51).
There are also variables we do not believe will grow over time. If the interest rate

or the inflation rate is assumed to be I(1), we may not want to allow them to grow.
Especially not if we want to use the system for forecasting. However, restricting the
intercepts to lie in the cointegration space may be too restrictive, as the system may
include variables we believe do grow over time. We then want to restrict some of the
variables to have no growth and let other variables in the system grow. We develop
an estimation procedure in which we allow restrictions in the system on some or all
of the growth rates.
The cointegration means may also have economic interpretations. In a system

with (the logs of) consumption and income, the intercept in the cointegration vector
can be interpreted as the equilibrium savings ratio (see example 1 below) if the income
elasticity is unity. A system with nominal interest rate and inflation (both assumed
to be I(1)), where the cointegration mean can be interpreted as the equilibrium real
interest rate, is another example.
Sometimes we may want to restrict the cointegration mean. Assume we are testing

the law of one price, and are analysing a system with an unrestricted intercept to
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allow the prices to grow over time.1 We may find that p− e− p∗ is the cointegration
relationship, (where p and p∗ are the domestic and foreign price respectively, and e
the exchange rate, all variables measured in logs,) and want to test the strict version
of the law of one price. This implies testing if the cointegration mean is equal to
zero. To achieve this, we have to decompose the intercepts in the system in growth
rates and a cointegration mean, and test if the mean is equal to zero. This can also
be achieved by the estimation procedure presented here.
The paper is organized as follows: In section 2 we show how the growth rates

and cointegration means can be estimated, illustrating this with an example for the
private savings ratio in Norway. In section 3 a linear switching algorithm is presented,
together with an illustration on money demand in Denmark. The switching algorithm
we derive here is an extension of the linear switching algorithm in Boswijk (1995).

2 Growth rates and cointegration means
In this section we look at some properties of the cointegrated VAR model. In par-
ticular, we focus on how the growth rates and cointegration means can be estimated.
The method is illustrated by an analysis of income and consumption.

2.1 Granger’s representation theorem

In (1) Xt is an n-dimensional vector of non-stationary I(1) variables, δ is a vector
of intercepts, α and β are matrixes of dimension n × r (where r is the number
of cointegration vectors) and β Xt is I(0). Furthermore, Γi is a n × n matrix of
coefficients and ∆ is the difference operator. CSt is a vector of centred seasonal
dummies. The residual ε is assumed to be white noise Gaussian (εt ∼ N (0,Ω)).

∆Xt = δ + αβ Xt−1 +
p−1

i=1

Γi∆Xt−i + sCSt + εt, t = 1, 2, ..., T (1)

The system grows at the unconditional rates E [∆X] = γ with long run (cointe-
gration) means E [β X] = µ apart from terms involving seasonal dummies. Then we
can rewrite the relationship as

∆Xt − γ = α (β Xt−1 − µ) +
p−1

i=1

Γi (∆Xt−i − γ) + sCSt + εt. (2)

1The law of one price states that one product shall have the same price in two different regions.
Let P be the price of the product in one of the regions and P ∗ the price in the other region.
Furthermore, let E be the exchange rate (if the two regions lie in two different countries). Then the
law of one price states that P = A ·E · P ∗, where A is a constant capturing differences in the price
level due to transportation costs etc. The strict version of the law of one price states that A = 1,
i.e. there are no differences in the prices of the product in the two regions.
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Notice that β γ = 0. To prove this, we premultiply the left hand side of (2) with
β .

β (∆Xt − γ) = (β Xt − β Xt−1)− β γ (3)

We see that since E [∆X] = γ the unconditional expectation of the left hand side of
(3) equals zero. And since E [β X] = µ the unconditional expectation of the right
hand side of (3) will equal zero only if β γ = 0.
We define a matrix β⊥ with columns orthogonal to the columns in β. The matrix

β⊥ is a n× (n− r) matrix of full column rank, such that β β⊥ = 0. If we can write
β = (b1, b2) , where b1 is r × r of full rank, then we can take β⊥ = −b2b−11 , In−r
(see Johansen (1995, p. 48) or Johansen and Swensen (1999, p. 80)).2

Another way to write the relationship between the cointegration vectors and the
growth rates are γ = β⊥ψ, where ψ is a vector with n − r elements. To see this
replace γ in (3) with Hψ, where H is an n × (n− r) matrix. Then β Hψ = 0.
However, Hψ = γ and is generally not equal to zero. The only way β Hψ = 0 is
therefore when β H = 0, and this holds when H = β⊥.
For given values of α and β we can now estimate γ and µ. By comparing equation

(1) and (2) we see that
δ = Γγ − αµ, (4)

where Γ = I − p−1
i=1 Γi . After some rearrangement we find

3

γ = Cδ (5)

and
µ = α (Γγ − δ) , (6)

where C = β⊥ (α⊥Γβ⊥)
−1 α⊥ and α = α (α α)−1. These properties are known

from Granger’s representation theorem, see Engle and Granger (1987) and Johansen
(1991).

2.2 Example 1: Norwegian consumption

We use quarterly data for households’ total income and total consumption, measured
on the natural logarithmic scale. The estimation period is 1991Q2-2000Q4. From
figure 1 we see that both income (y) and consumption (c) fluctuate over the quarters.
Centred seasonal dummies are therefore included in the empirical analysis.4

2This expression will only be valid if Rank (b1) = r. However, since Rank (β) = r, it is always
possible to order the variables in the system such that Rank (b1) = r.

3To find (5), premultiply (4) by α⊥; α⊥δ = (α⊥Γβ⊥)ψ. The n− r quadratic matrix (α⊥Γβ⊥)
must have full rank, or some of the variables in the system are I(2). Therefore; ψ = (α⊥Γβ⊥)

−1
α⊥δ,

or γ = β⊥ψ = β⊥ (α⊥Γβ⊥)
−1

α⊥δ. To find (6), rearrange (4) to αµ = Γβγ − δ and premultiply
with α .

4The results are obtained by combining PcFiml 9.2 (see Doornik and Hendry, 1997) and Ox 2.1
(see Doornik, 1996).
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Figure 1: Private income and consumption in Norway
In the upper part logs of real income and real consumption are plotted. The lower graph plots
quarterly growth rates in real income and consumption. Data for 1999 and 2000 are preliminary.
Source: Statistics Norway, National Accounts.

In the analysis we use 2 lags (p = 2). The cointegration rank tests yield the test
statistics reported in table 1.
Both the λ−max and the trace statistic support one cointegration vector at a 1

per cent level. The Reimers (1992) adjusted versions of the tests also indicate one
cointegration vector.
Estimating the system under the restriction of one cointegration vector, and uti-

lizing the results from Section 2.1 to calculate the growth rates and cointegration
mean yields ∆yt − 0.0078

(0.0013)

∆ct − 0.0076
(0.0013)

 =

 −0.464(0.166)

0.601
(0.192)

 yt−1 − 1.023
(0.026)

· ct−1 + 0.206
(0.305)

+Γ1
∆yt−i − 0.0078
∆ct−i − 0.0076 + sCSt + εt. (7)

From (7) we see that both income and consumption grow at a rate of about 0.8
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Table 1: Consumption: Cointegration rank
H0 : rank = r λ λ−max 95% trace 95%
r = 0 0.4776 25.32∗∗ 14.1 25.88∗∗ 15.4
r ≤ 1 0.0142 0.56 3.8 0.56 3.8
Two asterisks denotes significance at the 1 per cent level. The reported critical values are taken
from Osterwald-Lenum (1992).

Table 2: Consumption: Likelihood ratio test of reductions
Equation logL p-value [d.f.]
7 339.09
8 338.66 0.36 [1]

per cent each quarter. This corresponds to an annual growth rate of about 3.1 per
cent.5 However, consumption and income do not grow at exactly the same rate, since
the cointegration vector β = (1,−1).
In (7), the cointegration mean has no economic interpretation alone. However,

we can interpret 0.023 · ct−1 − 0.206 as the long-run savings ratio. We see that the
equilibrium savings ratio increases with the consumption level. On the other hand,
the coefficient for consumption in the cointegration vector differs from unity with less
than one standard deviation. We therefore restrict the cointegration vector to be
β = (1,−1). ∆yt − 0.0077

(0.0013)

∆ct − 0.0077
(0.0013)

 =

 −0.462(0.162)

0.563
(0.190)

 yt − ct − 0.0628
(0.003)

+Γ1
∆yt−i − 0.0077
∆ct−i − 0.0077 + sCSt + εt, (8)

When restricting the savings ratio to be stationary the growth rates become 0.008,
which corresponds to an annual growth rate of 3.1 per cent. The estimate of the
equilibrium savings ratio is 6.3 per cent.6

The savings ratio is plotted in figure 2. The average savings ratio in the estimation
period is 6.1 per cent, which is a bit smaller than the savings ratio in (8). The reason
is that the latter is adjusted for system dynamics. If we had used (8) to forecast, the
savings ratio would converge to 6.3 per cent (apart from seasonality) as the forecasting
horizon approach infinity.
An underlying growth rate of 3.1 per cent is high. Our data sample covers a

period with a boom in the economy. In 1991 (the beginning of the sample) Norway
5The annual growth rate g is calculated by g = exp (4 · γ)− 1.
6More precisely, the savings ratio is defined as st = (Yt −Ct) /Yt. By using this definition

s = exp (µ)− 1, which in the last estimation yields a saving ratio of 6.5 per cent.
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Figure 2: Savings Ratio, both seasonally adjusted and unadjusted.
Seasonal adjustment is based on a static regression of the savings ratio on an intercept and centred
seasonal dummies in the estimation period.

was in a recession with a high unemployment rate. In 2000 Norway might have been
on the top of a business cycle. The estimated trend is therefore probably cutting
through the true underlying trend from below. Forecasts of consumption and income
based on this model would probably be too high. If we had estimated α and β only,
we would not discovered this important source to forecasting failure.
Table 2 reports the log likelihood value of the different models together with

likelihood ratio tests which are χ2-distributed asymptotically . Let H0 be the null
hypothesis and HA the alternative, where the latter is the model where only the
cointegration rank is restricted (here equation (7)). The likelihood ratio value can
be calculated by

2 [logL (HA)− logL (H0)] as∼ χ2 (d.f) ,

where d.f. is the degrees of freedom. From the table we see that the hypothesis of a
stationary savings ratio is not rejected.
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3 Testing restrictions on γ and µ
When no restrictions are imposed on the growth rates γ and the cointegration means
µ, the vector of intercepts δ in (1) have n variation free elements, and these could
be estimated with ordinary least square. However, when we restrict γ and/or on
µ, another estimation procedure must be used. Since we are imposing restrictions
on the growth parameters and cointegration means as a part of the cointegration
analysis, our estimation procedure must also allow for restrictions on α and β. We
extend the linear switching algorithm in Boswijk (1995) to also involve restrictions
on the growth rates. We define β∗ = (β ,−µ) and X∗

t = (Xt, 1) , so restrictions on
the cointegration means can be imposed on β∗.

3.1 The maximum likelihood problem with restrictions

The algorithm in Boswijk (1995) allows for linear restrictions on α and β. The
restrictions on the cointegration vectors can be written as Rβvecβ

∗ = cβ or

vecβ∗ = Hβφ+ hβ, (9)

where Hβ = (Rβ)⊥ and hβ = Rβcβ. Since we are stacking the cointegration vectors
into one vector, we can allow for restrictions between the cointegration vectors as well
as within them.
Similarly, restrictions on the loading parameters can be written Rαvecα = 0 or

vecα = Hαϕ, (10)

where Hα = (Rα)⊥. Here the intercepts are excluded, since we normally only test
exclusion restrictions on α.7

The restrictions on γ are a bit more complex, since - in addition to the restrictions
we want to place on γ - the cointegration vector also imposes restrictions on γ.
The restrictions we want to impose on γ can be written as Rγγ = cγ , whereas the
restrictions imposed by the cointegration vectors can be expressed as β γ = 0. In a
compact notation, these restrictions involve (β, Rγ) γ = 0 , cγ , which equivalently
can be written as

γ = Hγψ + hγ, (11)

where Hγ = (β, Rγ)⊥ and hγ = Rγcγ .
Before we present the log likelihood function, we must define some variables. We

first define Zt = vec (∆Xt,∆Xt−1, ...,∆Xt−p+1), Φ = (In,−Γ1,−Γ2, ...,−Γp−1) and
7It is straightforward to include intercepts in (10).
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E = ep×1 ⊗ In, where ep×1 = (1, 1, .., 1) . This log likelihood function becomes

logL (α,β∗, γ,Γ1,Γ2, ...,Γp−1, s,Ω)

= −T
2
n log (2π)− T

2
log |Ω| (12)

−1
2

T

t=1

Φ (Zt − Eγ)− αβ∗X∗
t−1 − sCSt Ω−1

× Φ (Zt − Eγ)− αβ∗X∗
t−1 − sCSt

.

The maximisation problem is to maximize (12) under the restrictions (9) - (11).
In the next subsection we derive a switching algorithm to deal with this maximisation
problem.

3.2 The linear switching algorithm

It turns out to be convenient also to use a log likelihood function where we condition
on the growth rates. For a given set of growth rates satisfying (11) we can define
Z∗0t (ψ) = ∆Xt−γ, Z∗1t = X∗

t−1, Z
∗
2t (ψ) = vec ( ∆Xt−1−γ,∆Xt−2−γ, ...,∆Xt−(p−1)−γ,

CSt ) and Θ = (Γ1,Γ2, ...,Γp−1, s). The log likelihood function conditioned on the
growth rates is

logL (α, β∗,Γ1,Γ2, ...,Γp−1, s,Ω; γ)

= −T
2
n log (2π)− T

2
log |Ω| (13)

−1
2

T

t=1

(Z∗0t − αβ∗ Z∗1t −ΘZ∗2t) Ω
−1 (Z∗0t − αβ∗ Z∗1t −ΘZ∗2t) .

Furthermore, we define

M∗
ij (ψ) = T

−1
T

t=1

Z∗itZ
∗
jt, i, j = 0, 1, 2, (14)

and

S∗ij (ψ) = T
−1

T

t=1

R∗itR
∗
jt, i, j = 0, 1, (15)

where R∗0t (ψ) and R
∗
1t (ψ) are the residuals we obtain by regressing Z

∗
0t (ψ) and Z

∗
1t

on Z∗2t (ψ) respectively. Finally, ⊗ is the Kronecker product.

Theorem 1 (The conditional maximum likelihood estimators) The conditio-
nal maximum likelihood estimators for Θ, φ, ϕ, Ω and ψ in (12) under the restrictions
(9) - (11) are given by
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Θ (ψ,φ,ϕ) = M∗
02 (M

∗
22)

−1 − αβ∗M∗
12 (M

∗
22)

−1 , (16)

φ (ψ,ϕ,Ω) = Hβ α Ω−1α⊗ S∗11 Hβ
−1

×Hβ α Ω−1 ⊗ In+1 vecS∗10 − α Ω−1α⊗ S∗11 hβ , (17)

ϕ (ψ,φ,Ω) = Hα Ω−1 ⊗ β∗ S∗11β
∗ Hα

−1
Hα Ω−1 ⊗ β∗ vecS∗10 , (18)

Ω (ψ,φ,ϕ) = S∗00 − αβ∗ S∗10 − S∗01β∗α + αβ∗ S∗11β
∗α , (19)

ψ (φ,ϕ,Θ,Ω) = HγE Φ Ω−1ΦEHγ
−1

× HγE Φ Ω−1 ΦZ − αβ∗X∗ − sCS − ΦEhγ , (20)

where Z = T−1 T
t=1 Zt, X

∗ = T−1 X∗
t−1 and CS = T

−1 CSt.

See the appendix for the proof.
The term sCS in (20) equals to zero if we have the same number of observations

for each season in the calendar year. If, however, we have an estimation period with
more observation from some seasons than from others, this term will generally not
equal zero. In the example below the estimation period is 1974Q3-1987Q3, which
means that we have one more observation from the third quarter than the others.
Note that β∗X∗ = β X − µ in (20). The first part is the average cointegration

mean in the estimation period, and µ is the system cointegration mean. These will
not generally be equal, as we saw in the example above.
We now suggest the following estimation procedure:
The maximum likelihood estimators of ψ, φ, ϕ, Θ and Ω may be obtained by the

following iterative procedure, starting from a set of initial values {ψ0,φ0,ϕ0, Θ0,Ω0} :

I ψj = ψ φj−1,ϕj−1,Θj−1,Ωj−1 II φj = φ ψj,ϕj−1,Ωj−1

III ϕj = ϕ ψj ,φj ,Ωj−1 IV Θj = Θ ψj ,φj ,ϕj

V Ωj = Ω ψj ,φj ,ϕj j = 1, 2, ...

The iterative procedure needs a set of starting values. In fact, it only needs
starting values for the free growth rates parameters (ψ), the cointegration vectors (φ)
and the loading parameters (ϕ) since starting values for the other parameters (Θ and
Ω) can be calculated by (16) and (19).
It may be tempting to use the relations in theorem 1 with unrestricted parameters

to compute starting values for ψ, φ and ϕ too. However, this is not a good idea
when there are more than one cointegration vector. The unrestricted estimator of
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β∗ is only unique up to a rotation which spans the same space. When restrictions
are imposed on β these restrictions may lead to a rotation of this space. To take
account of this, we use the method described in Doornik (1995).
Let

vecb∗ = Hβφ+ hβ = Hβ Hβ β∗unr − hβ + hβ,

where Hβ = Hβ HβHβ
−1
and the subscript unr indicates the parameters are re-

vealed by the unrestricted cointegrated VAR model. Define [·] as dropping those
rows which have no restrictions in them; if this yields less than r rows, then add rows
back in, so that the [·] matrix is q × r, with q ≥ r. Then the least square estimator

A = β∗unr β∗unr
−1

β∗unr b∗

is used to derive
α−1 = αunr · A −1.

Now the loading matrix α is consistent with the restricted β, and we can use the
relations in theorem 1 to calculate starting values for ψ, φ and ϕ;

φ0 = φ γunr,α−1,Ωunr ,

ϕ0 = ϕ γunr,φ0,Ωunr ,

ψ0 = ψ φ0,ϕ0,Θunr,Ωunr .

As discussed in Johansen (1991), the distribution of β is mixed normal, i.e. the
variance matrix is stochastic. The discussion there also indicates that inference on β
may be done as if α were known, and vice versa. Following this result, we compute
the ’variance’ of β as

V (vecβ∗) =
T

T − k Hβ THβ α Ω−1α⊗ S∗11 Hβ
−1
Hβ , (21)

where the term inside the square brackets is (the negative of) the double derivative
of (13) with respect to φ. The scale factor T/ (T − k) (where k is the integer part of
the ratio between the freely estimated parameters in the system and the number of
the dependent variables in the system) is used to control for degrees of freedom, see
Doornik (1995).
Similarly, the ’variance’ of α is

V (vecα ) =
T

T − k Hα THα Ω−1 ⊗ β S11β Hα
−1
Hα . (22)

In (22) we use

S11 = T
−1

T

t=1

R1tR1t,
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Table 3: Money demand: Cointegration rank
H0 : rank = r λ λ−max 95% 95%† trace 95% 95%†
r = 0 0.4169 28.59∗ 27.1 27.1 45.67 47.2 48.3
r ≤ 1 0.1776 10.36 21.0 21.1 17.07 29.7 31.5
r ≤ 2 0.1125 6.33 14.1 14.9 6.71 15.4 18.0
r ≤ 3 0.0072 0.38 3.8 8.2 0.38 3.8 8.2
One asterisk denotes significance at the 5 per cent level. The rows labelled ’95%’ contains the
standard critical values, and in the rows labelled ’95%†’ the critical values for the case where the
true model has no deterministic trends are reported. The critical values are taken from Osterwald-
Lenum (1992).

where R1t are the residuals we obtain by regressing Z1t = Xt−1 on Z2t = 1,∆Xt−1,
∆Xt−2, ...,∆Xt−p+1, CSt . The reason for using β S11β in (22) instead of β

∗ S∗11β
∗

(which we would obtain if we used the double derivatives of (13) with respect to ψ) is
to take account to the covariance between the intercepts in the cointegration relations
and the other coefficients outside the cointegration vectors. The expression in (22)
is used to compute the ’variance’ of α in the standard literature, see e.g. Johansen
(1991).
Since the estimator of γ is on expectation orthogonal to the other coefficients (see

appendix), we compute this ’variance’ as

V (γ) =
T

T − k Hγ THγ E Φ Ω−1ΦE Hγ
−1
Hγ . (23)

3.3 Example 2: Danish money demand

To illustrate the estimation method we use data for money demand in Denmark. This
is the data used by Johansen and Juselius (1990) to illustrate how one can restrict
the intercepts to lie in the cointegration space. Restricting the intercepts to lie in
the cointegration space implies restricting the variables in the system not to grow
over time. This might be realistic for the bond rate (ib) and the deposit rate (id),
but not for (the logs of) real money (m2) and real income (y). The data are plotted
in figure 3.
Centred seasonal dummies are included in the empirical analysis. We use the

same estimation period as Johansen and Juselius (1990): 1974Q3-1987Q3. In the
VEqCM 2 lags are included. In contrast to Johansen and Juselius (1990) we include
the intercepts unrestricted.
Table 3 includes two columns of critical values for each of the two tests. The

first row (labelled 95%) contains the standard critical values in a system with the
intercepts unrestricted. In the second row (labelled 95%†) the critical values for the
case where the true model has no deterministic trends are reported, see Osterwald-
Lenum (1992). The latter set of critical values is reported since we cannot reject the
hypothesis that there is no growth in the system.
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Figure 3: Danish money demand
Plot of real money (m2), real income (y), the bond rate (ib) and the deposit rate (id). Source:

Johansen and Juselius (1991).

The rank test indicates that there is one or zero cointegration vectors in the data.
The λ-max test supports one cointegration vector at a five per cent significance level
and the trace test supports one cointegration vector at a 10 per cent level (independent
of which of the two tables of critical values we use).8 We continue the analysis by
assuming that there is one cointegration vector among the variables. Estimating the
system with one cointegration vector yields the following equilibrium relation:

m2 = 1.04
(0.14)

y − 5.22
(0.56)

ib + 4.23
(1.10)

id − 6.02
(0.87)

(24)

We follow Johansen and Juselius (1990) by restricting the income elasticity to equal
unity and the money demand is homogenous of degree zero in the two interest rates,

8In Johansen and Juselius (1990) the λ-max test is significant at five per cent. However, their
trace test is not significant even at the 10 per cent level (though very close to be so).
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i.e.

β∗ = Hβφ+ hβ =


0 0
0 0
1 0
−1 0
0 1

 b1
b2

+


1
−1
0
0
0

 .
This yields 

∆m2− 0.0081
(0.0035)

∆y − 0.0038
(0.0036)

∆ib + 0.0012
(0.0012)

∆id + 0.0005
(0.0011)


t

=


−0.166
(0.058)

0.101
(0.061)

0.016
(0.022)

0.032
(0.015)

 m2− y + 5.91
(0.53)

ib − id − 6.19
(0.04) t−1

(25)

+Γ1


∆m2− 0.0081
∆y − 0.0038
∆ib + 0.0012
∆id + 0.0005


t−1

+ sCSt + εt.

The results indicate a positive growth in money and income. In annual terms
these growth rates are 3.3 and 1.5 per cent respectively. The results also indicate a
negative growth in the interest rates; a 0.5 percentage points annual decrease in the
bond rate and a 0.2 percentage points decrease annually in the deposit rate. However,
most of the growth rates parameters are insignificant (measured with the t-value).
We now impose the restriction that there is no underlying growth in the two

interest rates. These restrictions imply

Rγ =
0 0 1 0
0 0 0 1

.

In addition we have the restriction β γ = 0. With the restriction we have imposed on
the cointegration vector, this restriction involves (1,−1, b1,−b1) γ = 0. Therefore,
the total set of restrictions on γ can be written as

β
Rγ

γ =

 1 −1 b1 −b1
0 0 1 0
0 0 0 1




γ1
γ2
γ3
γ4

 =

 0
0
0

 .
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Table 4: Money demand: Likelihood ratio test of reductions
Equation logL − log |Ω| p-value [d.f.]
24 970.92 36.6386
25 970.47 36.6214 0.64 [2]
26 970.08 36.6070 0.80 [4]
27 967.42 36.5065 0.32 [6]

The restrictions can also be expressed as

γ = Hγψ =


1
1
0
0

ψ,

where ψ is a scalar.9

We see that the restrictions imposed on the growth rates imply that real money
and real income grow at the same rate, i.e. γ1 = γ2. Imposing the restrictions on
the growth rates we get the following results:


∆m2− 0.0040

(0.0033)

∆y − 0.0040
(0.0033)

∆ib

∆id


t

=


−0.165
(0.058)

0.107
(0.060)

0.019
(0.022)

0.032
(0.015)

 m2− y + 5.89
(0.52)

ib − id − 6.21
(0.04) t−1

(26)

+Γ1


∆m2− 0.0040
∆y − 0.0040

∆ib

∆id


t−1

+ sCSt + εt

The common estimated growth rate for money and income corresponds to an
annual growth rate of 1.6 per cent. From the estimated model we see that the two

9In our example Hγ is independent of b, which means we do not have to update Hγ for each
iteration. Generally, however, Hγ will change when the unrestricted parameters in β changes, and
Hγ must therefore be updated for each iteration.
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Table 5: Cointegration coefficient estimates for different restrictions on α and γ
α = (∗, ∗, ∗, ∗) α = (∗, ∗, 0, 0)

γ = (∗, ∗, ∗, ∗) b1 = 5.907
(0.531)

, b2 = −6.193
(0.037)

b1 = 5.808
(0.560)

, b2 = −6.189
(0.038)

γ = (∗, ∗, 0, 0) b1 = 5.889
(0.523)

, b2 = −6.209
(0.037)

b1 = 5.805
(0.559)

, b2 = −6.204
(0.039)

γ = (0, 0, 0, 0) b1 = 5.884
(0.523)

, b2 = −6.214
(0.038)

b1 = 5.811
(0.560)

, b2 = −6.207
(0.040)

Asterisk denote that the parameter is unrestricted.

interest rates may be weakly exogenous. Imposing weak exogeneity yields equation
(27). 

∆m2− 0.0047
(0.0034)

∆y − 0.0047
(0.0034)

∆ib

∆id


t

=


−0.126
(0.053)

0.146
(0.059)

0
0

 m2− y + 5.80
(0.56)

ib − id − 6.20
(0.04) t−1

(27)

+Γ1


∆m2− 0.0047
∆y − 0.0047

∆ib

∆id


t−1

+ sCSt + εt

Table 4 shows that none of the restrictions imposed are rejected. (The unre-
stricted system (24) is always the alternative hypothesis.) From equation (27) we
see that the growth rates for money and income is probably not significant (t-value of
1.3). Imposing the restriction that there is no growth in the system (the restrictions
imposed by Johansen and Juselius, 1990), we get a log likelihood value of 966.56 and
a corresponding p-value of 0.27 (with 7 degrees of freedom). We can therefore not
reject that all the growth rates equals zero.
In table 5 we see how the estimates of the parameters in the restricted cointegrated

vector β∗ = (1,−1, b1,−b1, b2) change with different restrictions on the loading para-
meters (α) and growth rates (γ). From the table we see that the restrictions on the
loading parameters change the estimates of the cointegration vector (and particularly
b1) more than restrictions on the growth rates do. There can be two reasons for this
result. First, the restrictions on the loading vector are more binding, as can be seen
from the relatively large drop in the log likelihood value as the restrictions of weak
exogeneity are imposed. More binding restrictions will normally change the other
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parameters more. Second, the multiplicative relationship between α and β may lead
to that restrictions on α will be more important than restrictions on γ with respect
to the cointegration vector.

4 Conclusions and suggestions for further work
Sometimes it is relevant to estimate and restrict growth rates and cointegration means
in VAR models. These parameters may have economic interpretations, and in par-
ticular restrictions on the growth rates are interesting to test. We show that this
can be achieved by using an iterative procedure.
When restricting growth rates and cointegration means, the degrees of freedom

increases. If these restrictions are valid, the estimates of the other parameters in the
system will be more precise. On the other hand, the parameters in the cointegration
vectors are superconsistent, and the gain may not be large. In the Danish data we
see that the estimates hardly changes by including these restrictions. However, this
may be so as these restrictions are barely binding. More research will be needed in
order to learn how important restrictions on growth rates and cointegration means
are for the estimates of the cointegration vectors.
The method presented here can easily be extended to models including more

deterministic variables. A deterministic trend is often included in the cointegration
vectors. When a trend is included, the growth rates are no longer orthogonal to
the cointegration vectors. However, if ρ is the vector of trend coefficients in the
cointegration vectors, β γ = ρ (or γ = βρ) will capture the restrictions between the
coefficients
Sometimes we also want to include step dummies in the system. If included, these

will pick up changes in the growth rates as well as changes in the cointegration means.
However, we may also want to know how the step dummy influences the system: Does
the step dummy change the cointegration means, or the growth rates only? Do all
growth rates change when the step dummy is included? Such questions can be
answered by applying the same method to the step dummy as for the intercepts.
As an example take testing of purchasing power parity: In many countries the

inflation rate was higher in the 1980s than in the 1990s. If we test for purchasing
power parity, we may include a shift dummy to take account of the shift in the growth
rate for prices. However, the shift dummy may pick up shift in the real exchange
rate as well as shift in the growth rates. Utilizing the estimation procedure presented
here we can test whether the shift in the real exchange rate is significant or not.

18



5 References
Boswijk, P. (1995), ”Identifiability of Cointegrated Systems”, Working Paper, Uni-

versity of Amsterdam.

Clements, M. P. and D. F. Hendry (1999), ”Forecasting Non-stationary Economic
Time Series”, The MIT Press.

Doornik, J. A. (1995), ”Testing General Restrictions on the Cointegrating Space”,
Nuffield College.

Doornik, J. A. (1996), ”Object-oriented Matrix Programming using Ox”, Timber-
lake Consultants Ltd.

Doornik, J. A. and D. F. Hendry (1997), ”Modelling Dynamic Systems Using PcFiml
9.0 for Windows”, International Thomson Business Press.

Doornik, J. A. and D. F. Hendry (2001), ”Modelling Dynamic Systems Using Pc-
Give, Volume II”, Timberlake Consultants Ltd.

Engle, R. F. and C. W. J. Granger (1987), ”Co-integration and Error Correction:
Representation, Estimating and Testing”, Econometrica, 55, 251-276.

Hansen, H. and K. Juselius (1994), ”Manual to Cointegration Analysis of Time
Series CATS in RATS”, Institute of Economics, University of Copenhagen.

Johansen, S. (1988), ”Statistical Analysis of Cointegration vectors”, Journal of Eco-
nomic Dynamics and Control, 12, 231-254.

Johansen, S. (1991), ”Estimation and Hypothesis Testing of Cointegration Vectors
in Gaussian Vector Autoregressive Models”, Econometrica, 59, 1551-1580.

Johansen, S. (1995), ”Likelihood-based Inference in Cointegrated Vector Autore-
gressive Models”, Oxford University Press.

Johansen, S. and K. Juselius (1990), ”Maximum Likelihood Estimation and Infer-
ence on Cointegration - With Application to the Demand for Money”, Oxford
Bulletin of Economics and Statistics, 52, 169-210.

Johansen, S. and A. R. Swensen (1999), ”Testing Exact Rational Expectations in
Cointegrated Vector Autoregressive Models”, Journal of Econometrics, 93, 73-
91.

Osterwald-Lenum, M. (1992), ”A Note with Quantiles of the Asymptotic Distrib-
ution of the ML Cointegration Rank Test Statistics”, Oxford Bulletin of Eco-
nomics and Statistics, 54, 461-472.

19



Reimers, H.-E. (1992), ”Comparisons of Tests for Multivariate Cointegration”, Sta-
tistical Papers, 33, 335-359.

20



6 Appendix
Proof of Theorem 1. To prove the theorem we use trAB = trBA = (vecA ) vecB
and vec (AXB) = (B ⊗A) vecX = ((A⊗B ) vecX ) , where tr is the trace operator.
Deriving equation (16) is straightforward, see e.g. Johansen (1995, p. 90).
Equations (17) and (18) (see Boswijk, 1995 Theorem 2): The derivatives

of (13) with respect to φ and ϕ (under restrictions (10) and (9)) are

∂ logL

∂φ
= THβvec S

∗
10Ω

−1α− S∗11β∗α Ω−1α , (28)

∂ logL

∂ϕ
= THαvec β∗ S∗10Ω

−1 − β∗ S∗11β
∗α Ω−1 . (29)

Setting (28) equal zero, substituting (9) in (28) and solving for φ yields (17). Simi-
larly, setting (29) equal to zero and using (29) and (10) leads to (18).
Equation (19): Solving (13) with respect to Ω and using ∂ log |Ω| /∂Ω = Ω−1 =

Ω−1 together with (14) and (15) leads to (19).
Equation (20): The derivative of (12) with respect to ψ (under the restriction

(11)) is

∂ logL

∂ψ

= THγvec Z Φ −Xβ∗α − CS s − γ E Φ Ω−1ΦE (30)

Setting (30) equal to zero and using (11) lead to (20).

Proof of the claim that the estimator for γ is expectationally ortohogo-
nal to the estimators for β and Θ. To prove this claim we must prove that the
derivatives of (30) with respect to ϕ and vecΘ has expectation zero. The derivative
of (30) with respect to ϕ is

∂ logL

∂ (vecΘ ) ∂ψ
= −THγ E Φ Ω−1 ⊗X∗ β∗ Hα. (31)

Since X∗ β∗ = β∗X∗ = (β X − µ) has unconditional expectation equal to zero,
(31) will have unconditional expectation equal to zero as well.
Since Φ = (In,−Θ) proving E ∂2 logL/∂ (vecΘ ) ∂ψ = 0 is equivalent to proving

E ∂2 logL/∂ (vecΘ ) ∂ψ = 0. From (30) we have

∂ logL

∂ψ
= THγvec Z − γ E Φ −Xβ∗α − CS s Ω−1ΦE . (32)

Note that the expression inside the square brackets is zero. Therefore we get an
expression equal to zero when we take the derivative with respect to the last Φ.
Note also that the element within the normal parentheses has expectation zero, so
the expectation of the derivative with respect to the first Φ is also equal to zero.
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