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1 Introduction

Systematic sampling has a long tradition in survey sampling (e.g. Madow and Madow, 1944;

Madow, 1949, 1953). When applied to a list of units it is known as the every kth rule, where k

refers to the sampling interval. Where the ordering of the units is conceivably uncorrelated with

the survey variable of interest, or contains at most a mild stratification effect, the systematic

sampling is generally considered as a convenient substitute for simple random sampling “with

little expectation of a gain in precision” (Cochran, 1977, p. 229). The same holds for sampling

within strata or sub-sampling under a multi-stage sampling design. By a modification (Madow,

1949) where the sampling interval is calculated in terms of an accumulated auxiliary total, the

systematic sampling can be used to select a πps sample with great ease.

In situations where auxiliary information is available for partial ordering of the population, it is

more natural to compare systematic sampling with stratified random sampling. The systematic

sampling is more convenient especially because it is neither subjected to restrictions on the

number of auxiliary variables, nor the number of levels each of them may take. So there is less

need for variable selection as may be necessary in the case of stratified random sampling. By

using many auxiliary variables the systematic sampling can introduce greater balance into the

sample, although a more parsimonious stratified sampling design may be just as efficient.

It is important to be clear that when speaking of the efficiency of the systematic sampling

above, we are referring to its sampling variance in expectation. Take for instance the case where

systematic sampling is applied to a fixed, conceivably random ordering of a given population. The

sampling variance, denoted by Vsys, is based on only k possible systematic samples, and is either

larger or smaller than that of the simple random sampling for the given population, denoted by

Vsrs. There are two results which show that Vsys may be equal to Vsrs in expectation. In the first

case, considering the fixed ordering to be randomly chosen from all N ! possible permutations

of the N units of a finite population, Madow and Madow (1944) showed that E(Vsys) = Vsrs,

where the expectation is taken over all permutations. Notice that Vsrs is a constant of the

permutations. Example 3.4.2 of Särndal, Swensson, and Wretman (1992) provides a simple

illustration on how greatly Vsys may vary for different population orderings. In the second

case, we regard the ordering of the population as fixed, and the associated values of interest

as realizations of independent random variables with constant mean (Cochran, 1977, Theorem

8.5). It can then be shown that E(Vsys) = E(Vsrs), with the expectation being over all possible

finite populations under the assumed model.

To clarify the choice between systematic and simple random sampling in the situation above,

we rephrase it as a decision problem. Let θ = (y1, ..., yN)T be the vector of variables of interest,

where U = (1, ..., N) is a particular ordering of the units prepared for the systematic sampling.

Given θ (and U), we can choose to draw a systematic sample, or we can choose to draw a simple

random sample (which does not depend on U). These are the two decision rules, or actions,

available to us, denoted by δ = SYS and δ = SRS, respectively. Let the sampling variance
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of the sample mean be our loss function, denoted by L(θ, δ) = Vδ(ȳs), where s denotes the

selected sample and ȳs the sample mean. Notice that this is a no-data problem, so that the

frequentist risk of δ is equal to the loss function (Berger, 1985), denoted by R(θ, δ) ≡ L(θ, δ).

Now, depending on the actual θ (and U), R(θ, SYS) = Vsys may be greater or less than

R(θ, SRS) = Vsrs, i.e. none of them is R-better than the other for all θ. Indeed, R(θ, δ) can be

arbitrarily large as long as there is no limit on how much variation θ can have, such that e.g.

the minimax principle is not well defined without further restrictions.

It is however possible to invoke other decision principles. For instance, denote by r(π, δ) =

Eθ(Vδ(ȳs)) the Bayes risk of δ with respect to some assumed distribution of θ, denoted by

π(θ), i.e. the expected sampling variance induced by δ in this case. Then, according to the

Bayes risk principle, the decision rule SYS may be preferred to SRS if r(π, SYS) < r(π, SRS).

However, as we have seen, r(π, SYS) = r(π, SRS) under the two models of θ above so that the

two actions are equivalent w.r.t. the Bayes risk. Thus, the decision can not be based on the

Bayes risk principle alone, but an additional criterion of cost, or easiness in execution, is invoked

to motivate the choice of SYS in practice. Notice that, since the conditional Bayes decision

principle gives the same answer as the Bayes risk principle to a no-data problem (Berger, 1985),

there is no difference between a Bayesian and a frequentistic treatment of the problem here.

Now, there are at least two reasons for which a reconsideration of the choice of SYS in the

situation above may be appropriate. In the first place, due to the development in computational

power and alternative random sampling techniques, easiness in execution is no longer a valid

argument in favor of the systematic sampling. Using a computer one can draw a simple random

sample as easily as a systematic sample. The same goes for πps sampling. For instance, the

sequential Poisson sampling (SPS, Ohlsson, 1998) is easy to implement, yielding an approximate

πps sample with a fixed sample size. Secondly, easiness in execution counts only if there are

no other more important decision principles that can be used to distinguish between the two

actions. So the choice can not be settled before we have considered the following question: Is

there any other reasonable decision principle that we may follow in this case, apart from the

minimax principle, the Bayes risk principle and the conditional Bayesian decision principle?

The situation we are considering here has an analogy in the Utility theory. Suppose that

one is offered a 50-50 lottery between 0 and 100 pounds. The expected utility is 50 pounds. It

is unlikely, however, that one is entirely indifferent between accepting the lottery and accepting

50 pounds for sure. In the Utility theory, a decision maker is risk averse if he prefers to accept

the 50 pounds for sure than to enter the lottery; whereas he is risk prone if he prefers to enter

the lottery instead (French, 1986). For statistical decisions, however, we can motivate the same

kind of distinction without reference to the lottery scenario. Let

d(π, δ) = Vθ(R(θ, δ)) (1)

be the second order Bayes risk of a decision rule δ w.r.t. π(θ). While the (first order) Bayes
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risk is the expectation of the risk w.r.t. π(θ), the second order Bayes risk is its variance. It is

non-negative by definition. In the case of zero second order Bayes risk, the risk of a decision

rule is the same no matter the value of θ. The smaller the second order Bayes risk, the more

robust a decision rule is as θ varies. A decision rule δ is preferred to another δ′ according to the

robust decision principle if

r(π, δ) = r(π, δ′) and d(π, δ) < d(π, δ′) (2)

That is, provided two rules have the same expected risk, we will choose the one that has less

variation around the expected risk, on the ground of its robustness towards θ.

In the situation above, we have two sampling designs to choose from, which have the same

Bayes risk under the assumed π(θ). The second order Bayes risk is d(π, δ) = Vθ(Vδ(ȳs)). It

follows that if we choose between SYS and SRS according to the robust decision principle, we

will have tighter control over the actual sampling variance over all possible θ. Notice that the

second order Bayes risk is a measure of robustness given π(θ). It is different from robustness

towards mis-specification of π(θ), which is a standard robustness concept in the statistical

decision theory. Thus, a decision rule δ may be preferred to another δ′ according to the robust

decision principle provided the conditions in (2) hold based on the assumed π(θ). Whereas what

happens to the choice as π(θ) varies is another robustness concern, i.e. robustness towards

mis-specification of π(θ). A numerical illustration will be provided later where both types of

robustness are brought into consideration at the same time.

In the rest of the paper we will mainly be dealing with two issues. Firstly, we will show

theoretically as well as by simulations that the systematic sampling has greater second order

Bayes risk than the corresponding random sampling alternatives in all the situations mentioned

at the beginning of this introduction, where the former is commonly preferred on the ground of

easiness in execution. Our approach is based on the population models, i.e. we fix the ordering

of the population and consider the values of interest as realized random variables under some

assumed population model. This seems to be more in accordance with the practice of systematic

sampling where the ordering is typically given once and for all. Moreover, we investigate the

possible consequences of ignoring the robust decision principle, i.e. to choose the systematic

sampling in spite of knowing that it has greater second order Bayes risks. In particular, by

simulations based on census Labour Force data, we show that the use of systematic sampling

in panel surveys causes the estimates of changes in a timely auto-correlated population to vary

considerably in precision over time, which we consider to be a fault that can not be overlooked

in panel surveys. A summary will be given in the end.
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2 Homogeneous populations

Consider first equal-probability systematic sampling from a fixed population ordering that may

be considered as uncorrelated with the variable of interest. Let the sample size be n, and let

the sampling interval be k. For simplicity we assume that k is naturally an integer satisfying

N = nk. Denote by sm the mth systematic sample, i.e. sm = {m,m + k,m + 2k, ..., m +

(n − 1)k}. Let ȳm be the corresponding sample mean, which is an unbiased estimator of

the population mean, denoted by Ȳ =
∑

i∈U yi/N . The sampling variance of ȳm is given as

Vsys = k−1
∑k

m=1(ȳm − Ȳ )2, which may or may not exceed the variance of the simple random

sample mean, i.e. Vsrs = (n−1 −N−1)σ2, where σ2 = (N − 1)−1
∑

i∈U(yi − Ȳ )2.

As mentioned before, there are two results which show that SYS and SRS have the same

Bayes risk, i.e. Eθ(Vsys) = Eθ(Vsrs). We now proceed to find their second order Bayes risks

under the following homogeneous population model

E(yi) = µ and E((yi − µ)r) = µr for i ∈ U and E(yiyj) = µ2 for i 6= j ∈ U (3)

where, for simplicity, we write E instead of Eθ. It follows that E(Vsys) = (1/n − 1/N)µ2 =

E(Vsrs). This is a special case of the more general Theorem 8.5 of Cochran (1977), where the

model variance of yi is allowed to vary over the units. The exact second order Bayes risk of SYS

is given in Appendix A. Here we have, approximately,

Vsys =
1

k

k∑
m=1

(ȳm − µ)2 − (Ȳ − µ)2 .
=

1

k

k∑
m=1

(ȳm − µ)2.

Let µr,n denote the rth central moment of ȳm w.r.t. the model. We have

E(Vsys)
.
= µ2,n and E(V 2

sys)
.
=

µ4,n

k
+

k − 1

k
µ2

2,n and V (Vsys) >
2

k
µ2

2,n

since µ4,n = µ4/n
3 + 3µ2

2,n > 3µ2
2,n. Meanwhile,

Vsrs
.
=

1

Nn

∑
i∈U

(yi − µ)2 and V (Vsys)
.
=

1

Nn2
(µ4 − µ2

2) =
1

Nn2
V {(yi − µ)2}

It follows that the coefficients of variation (CV) of Vsys and Vsrs under the model are, respectively,

CV (Vsys) >

√
2

k
=

√
2n

N
and CV (Vsrs)

.
=

√
1

N

V {(yi − µ)2}
{V (yi)}2

= O(
1√
N

) (4)

It is seen that the actual systematic sampling variance may considerably deviate from its

expectation. The lower bound of CV(Vsys) is proportional to the squared root of the sampling
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fraction. This can be highly damaging for large samples taken from a small population. For

instance, the overall sampling fraction is about 1/140 in the Norwegian Labour Force Survey

(LFS), such that by (4) the lower bound for CV(Vsys) is about 12%. In comparison, the second

order Bayes risk of the simple random sampling is negligible. Drawing systematic samples from

a seemingly random, but fixed list of population is a haphazard business without expectation

of gains compared to simple random sampling. One simply has less control over the actual

sampling variance. The same obviously holds for stratified systematic sampling compared to

stratified simple random sampling. In two-stage sampling where the systematic sampling is used

for sub-sampling of units within a primary sampling unit (PSU), what counts for the second

order Bayes risk is the within-PSU sampling fractions. It follows that the systematic sampling

can easily have a large second order Bayes risk in the case of multi-stage sampling, even if the

overall sampling fraction may be low.

3 Ratio regression populations

Consider now the situation for systematic πps sampling. In this case the “every kth” rule is

applied to the cumulated total of an auxiliary variable, denoted by xi for i ∈ U . Any fixed list

U can be used. For simplicity we assume that xi is an integer. Let X =
∑

i∈U xi. The interval

length is then given by k = X/n, where again we assume that k is naturally an integer. Looked

the other way around, equal probability systematic sampling becomes systematic πps sampling

with xi ≡ 1. The unit i may appear in xi different systematic samples. We assume that the

inclusion probability is such that πi = nxi/X < 1 for all i ∈ U . Base on any systematic πps

sample, denoted by sm for m = 1, ..., k, the estimator of Y is

Ŷm =
∑
i∈sm

yi

πi

=
X

n

∑
sm

bi = Xb̄m for bi =
yi

xi

and b̄m =
∑
i∈sm

bi

n
.

We have Esys(b̄m) = Y/X, and Esys(ȳm) = Y , and

Vsys(Ŷm) = X2Vsys(b̄m) = X2{1

k

k∑
m=1

(b̄m − Y/X)2}

Now, b̄m is the best linear unbiased estimator (BLUE) of β under the following model

yi = xiβ + xiεi where E(εi) = 0 and V (εi) = µ2 and Cov(εi, εj) = 0 (5)
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for i 6= j ∈ U , i.e. a ratio regression model with residual variance proportional to x2
i . We have

Vsys(b̄m) =
1

k

k∑
m=1

(b̄m − β)2 − (Y/X − β)2 .
=

1

k

k∑
m=1

(b̄m − β)2 =
1

k

k∑
m=1

ε̄2
m

where ε̄m =
∑

i∈sm
εi/n. It follows that

E(Vsys(b̄m))
.
= µ2/n and {Vsys(b̄m)}2 .

= k−2(
k∑

m=1

ε̄4
m +

∑

p6=m

ε̄2
mε̄2

p)

Notice that ε̄m and ε̄p are not necessarily independent of each other here, because some units

may appear both in sm and sp. However,

E(ε̄2
mε̄2

p) = n−4
∑

(i1,i2)∈sm,(j1,j2)∈sp

E(εi1εi2εj1εj2)

where E(εi1εi2εj1εj2) is not zero, indeed positive, only if it is of the form E(ε4
i ) or E(ε2

i ε
2
j). More

specifically, let smp denote the joint set of sm and sp. Let sp
m denote the units of sm that are

not included in sp, and let sm
p denote the units of sp that are not included in sm. We have

E(ε̄2
mε̄2

p) =
1

n4
E(

∑
i∈smp

ε4
i +

∑
i∈smp,g∈sm

p

ε2
i ε

2
g +

∑

i∈smp,h∈sp
m

ε2
i ε

2
h +

∑

g∈sm
p ,h∈sp

m

ε2
gε

2
h)

≥ 1

n4
(
∑

i∈smp

{E(ε2
i )}2 +

∑
i∈smp,g∈sm

p

µ2µ2 +
∑

i∈smp,h∈sp
m

µ2µ2 +
∑

g∈sm
p ,h∈sp

m

µ2µ2)

=
1

n4
(
∑
i∈sm

µ2)(
∑
i∈sp

µ2) = µ2
2/n

2.

with equality if smp is empty. Denote by µ4,n the fourth central moment of ε̄m. We have

V (Vsys(b̄m)) ≥ µ4,n

k
+ (

k − 1

k
− 1)

µ2
2

n2
>

2

k

µ2
2

n2

and

CV (Vsys(Ŷm)) = CV (Vsys(b̄m)) >

√
2

k
(6)

Meanwhile, there are a variety of alternative random πps sampling methods available. It

is easily shown that in the case of Poisson sampling (PS), the CV of Vps(Ŷ ) is of the order

O(1/
√

N) under the model (5). Provided a fixed-sized πps sampling design has smaller sampling

variance than the PS, the corresponding CV should not exceed the same order.
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4 A numerical illustration

For a numerical illustration of the results (4) and (6), let us consider sampling of 10 units from

a population of 100, denoted by U = {1, 2, ..., 100}. The auxiliary variables are simply given as

xi = i. The survey variables yi are to be simulated under the following ratio regression model,

yi = xi + xa
i εi where εi

iid∼ N(0, σ2) = 0 and 0 ≤ a ≤ 1 (7)

The conditional variance of yi given xi is thus equal to x2a
i σ2. In the case of a = 0, yi − xi

follows the homogeneous model (3). Whereas in the case of a = 1, we have the model (5) with

β = 1, which can be used to motivate the πps sampling.

Consider first the πps sampling. Let a = 0, 0.25, 0.5, 1 and σ = 0.001, 0.01, 0.1. Notice

that σ can not be too large before negative y-values can be generated with non-negligible

probabilities, in which case the rationale for πps sampling would be doubtful. For any (a, σ), we

generate a population θ = (y1, ..., y100)
T , for which three sampling variances are calculated. The

first one is the sampling variance of systematic πps sampling. The second one is the variance of

the SPS, which is an approximate random πps sampling method. This is calculated by simple

Monte Carlo. Finally, we calculate the asymptotic theoretical sampling variance of systematic

πps sampling, with random permutation of θ before a systematic sample is drawn, i.e.

Vasy =
100∑
i=1

πi(1− n− 1

n
πi)(

yi

πi

− Y

n
)2

(Hartley and Rao, 1962), which can be used to benchmark the efficiency of the other two.

Table 1: Simulation results in percentage: Systematic πps vs. random πps sampling

Relative Efficiency CV of Sampling Variance
Design Systematic SPS Systematic SPS Theoretical
a = 1 σ = 0.001 100 100 44 15 15

σ = 0.01 98 100 41 16 16
σ = 0.1 101 100 41 16 16

a = 0.5 σ = 0.001 100 99 32 14 14
σ = 0.01 101 100 34 15 15
σ = 0.1 99 99 34 15 15

a = 0.25 σ = 0.001 99 99 29 18 18
σ = 0.01 100 99 28 18 18
σ = 0.1 99 99 29 18 18

a = 0 σ = 0.001 99 99 40 37 37
σ = 0.01 100 99 37 36 35
σ = 0.1 101 99 40 38 37
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The simulations are repeated for 1000 independently generated θ. The results are given in

Table 1, where the relative efficiency (RE) refers to the ratio E(Vδ)/E(Vasy). We notice the

following. (I) It is seen that both the systematic πps sampling and the SPS achieve RE around

100%, such that the two sampling methods are equivalent w.r.t. the Bayes risk principle. (II)

Under the model (5), i.e. a = 1, the systematic πps sampling has much greater second order

Bayes risk than the random πps sampling alternatives. Clearly, this is due to the fact that the

systematic πps sampling is based on a fixed population list, because the variance fluctuation is

greatly reduced in the theoretical case, where the systematic sampling is applied after random

permutation of the population. Due to the covariance between the possible systematic samples,

the CV of the systematic πps sampling greatly exceeds the lower bound depicted by (6), which

is
√

2/k =
√

2/505 = 6.3% in this case. Indeed, it is rather close to
√

2f = 44.7% by (4),

where f = n/N is the usual sampling fraction. (III) The second order Bayes risk varies little

over σ given a. For 0.25 < a < 1 the second order Bayes risk of random πps sampling is almost

a constant, and is considerably lower than that of the systematic πps sampling. The second

order Bayes risks of the random πps sampling methods increase quickly as a gets close to 0,

but remain lower than that of the systematic πps sampling. In summary, random πps sampling

is preferred according to the robust decision principle (2) under the model (5), and the choice

is robust towards departures from the assumption a = 2, i.e. mis-specification of π(θ).

Consider next equal probability systematic sampling. There is a general result which states

that systematic sampling is more efficient than SRS provided that the within-sample variance is

larger than the population variance, due to the following decomposition

∑
i∈U

(yi − Ȳ )2 =
k∑

m=1

∑
i∈sm

(yi − ȳm)2 +
k∑

m=1

n(ȳm − Ȳ )2,

i.e. the variation within the k systematic samples and the variation between the systematic

samples. Since Vsys is proportional to the second component, it is minimized for a given θ when

the first component is maximized. Based on the corresponding ordering of the units, systematic

sampling could potentially lead to gains in efficiency over simple random sampling. For instance,

suppose the extreme case under the model (7) with σ = 0, i.e. yi = xi. The optimal ordering

for a systematic sample of 10 units is to alternate between increasing and decreasing order every

10 units in the population (Särndal, Swensson, and Wretman, 1992, Example 3.4.2), denoted

by Uopt = (1, ..., 10, 20, ..., 11, 21, ..., 30, 40, ..., 31, ..., 100, ..., 91), in which case Vsys(ȳs) = 0.

In practice, of course, one never knows yi exactly. However, the ordering Uopt remains

optimal under the model (7) with a = 0, now that x̄m = X/N is a constant of sampling. The

estimator based on an equal-probability systematic sample drawn from Uopt is given by

Ŷm = X + Nε̄m where X =
N∑

i=1

xi and ε̄m =
∑
i∈sm

(yi − xi)/n
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Table 2: Simulation results in percentage: Systematic sampling based on Uopt vs. combined use
of simple random sampling and difference estimator

a = 0 a = 0.5 a = 1
RE CVsys CVsrs RE CVsys CVsrs RE CVsys CVsrs

σ = 0.001 102 46 16 110 47 17 111 48 20
σ = 0.01 104 47 16 107 48 18 112 48 19
σ = 0.1 99 49 16 107 47 17 112 47 20

which is the same as the difference estimator (Särndal, Swensson, and Wretman, 1992, Chapter

6.3) based on a simple random sample. In other words, the efficiency of systematic sampling

based on Uopt can as well be achieved by the combined use of simple random sampling and

difference estimator. Of course, the second order Bayes risk of the latter strategy is only of

order O(1/
√

N). The situation is illustrated in Table 2, where RE refers to E(Vsys)/E(Vsrs),

and CVδ is the CV of the actual sampling variance induced by δ = SYS and SRS, respectively.

We notice the following. (I) As expected, the combined use of simple random sampling and

difference estimator is as efficient as the optimal systematic sampling under the model (7)

with a = 0. The systematic sampling becomes slightly less efficient under departures from

the assumption a = 0, i.e. as a moves from 0 towards 2. (II) The second order Bayes risk

of systematic sampling is much greater than that of the simple random sampling under the

assumption a = 0. There is little variation in both second order risks as a moves from 0 to 2.

In summary, the combined use of simple random sampling and difference estimator is preferred

to the optimal systematic sampling according to the robust decision principle under the model

(7) with a = 0, and the choice is robust towards departures from the assumption a = 2, i.e.

mis-specification of π(θ).

5 Systematic sampling for several occasions

A systematic sample, once drawn, may be used for several subsequent occasions. Such a sample

may constitute a group in a rotating panel design, such as that of the LFS in most countries.

It can also form the core of a panel survey, with supplementary units added to the sample from

time to time, designed to account for natural regenerations of the population. To simplify the

discussion we assume here that a single systematic sample is drawn on the first occasion and

used for all the subsequent occasions before it is abandoned, and that the population U remains

the same throughout the whole period.

The results (4) and (6) apply then directly to the entire active period of the panel. More

explicitly, let yi = (yi1, ..., yit, ..., yiT )T be the variables of interest associated with i ∈ U for

the period t = 1, ..., T . The results (4) and (6) apply directly to any function of yi. For
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instance, suppose that yi consists of 4 employment status measured in each of the 4 quarters

of a calender year from the LFS. The average yearly employment is given by the average of yi1

to yi4. By drawing a systematic sample on the first occasion, one risks a variance fluctuation in

the estimator of the average yearly employment rate as well as in any single quarter. Moreover,

an important use of panel data is to estimate changes in the population. Let δi = (δi2, ..., δiT )T ,

where δit = yit − yi,t−1 for t = 2, ..., T , be the changes from one period to the next for i ∈ U .

Again, the results (4) and (6) apply directly to any δit, such that the estimation of change may

have a high second order Bayes risk due to systematic sampling.

Considerations above do not take into account possible strong auto-correlation among yi,

which one often finds in natural populations. A conditional examination is needed in addition.

Consider the simplest setting where T = 2, and yit is a categorical variable such as the employ-

ment status. As a simple model of the dependence between yi1 and yi2 we assume (Markov)

transition probability pab for yi2 = b given yi1 = a, independent for i 6= j ∈ U . This amounts

to a homogeneous population model (3) conditional on y1i = a. The systematic sample mean

of δi = yi2 − yi1 is given as

δ̄m =
∑

a;yi1=a

na

n
δ̄m,a

where na is the number of units with yi1 = a and δ̄m,a is the mean of change among them. Closed

expression of the conditional variance Vsys(δ̄m|{yi1; i ∈ U}) appears intrackable in general.

Instead, consider any ordering where the units are segmented according to the value of yi1.

Assume that Na/k is naturally an integer for all a, where Na is the number of units with yi1 = a

in the population. Both na and ȳm,t=1 become then constants of sampling, such that the variance

of δ̄m is simply the variance of ȳm,t=2. The result (4) can now be applied to ȳm,a,t=2, i.e. within

each segment of yi1 under the Markov transition model, such that the second order Bayes risks

of ȳm,a,t=2 given {yi1; i ∈ U} carries straight over to δ̄m. Consideration of this special situation

suggests that the second order Bayes risk of systematic sampling can be high for estimators of

change in auto-correlated populations, also when the variance is evaluated conditionally.

6 Simulation: Labour market dynamics

We simulate the labour market dynamics using data from the Norwegian Census 2001 and the

Norwegian LFS as follows. From the Census 2001, we obtain the employment status, classified

as “Employed”, “Unemployed” and “Not in the labour force”, which are to be treated as the

variable of interest in the population at t = 1. Next, from the LFS of the last quarter in 2004

and the first quarter in 2005, we observe a 3 × 3-transition matrix for the employment status

between the two quarters. Using these Markov transition probabilities, we are able to simulate an

employment status in the population at t = 2. The population within each of the 19 counties in

Norway is sorted by municipality, age, sex, and the personal identification number (PIN), where
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the PIN may be considered as uncorrelated with the employment status of interest.

We consider four different strategies: (1) equal probability systematic sampling at t = 1

and estimation based on direct weighting, denoted by Sys-Dir, (2) simple random sampling at

t = 1 and estimation based on direct weighting, denoted by SRS, (3) proportionally allocated

stratified random sampling w.r.t. sex and age (22 groups) followed by stratified estimation,

denoted by Str-SRS, and (4) equal probability systematic sampling followed by post-stratified

estimation, with the 22 age-sex groups as the post-strata, denoted by Sys-Pst.
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Figure 1: Boxplot of standard error (SE) of employment rate at t = 2 (Emp), change in employment
rate (Change Emp), unemployment rate at t = 2 (UnEmp) and change in unemployment rate (Change
UnEmp) for county Østfold: direct weighting following simple random sampling (SRS), stratified
random sampling with proportional allocation (Str-SRS), systematic sampling (Sys-Dir), and post-
stratified estimation following systematic sampling (Sys-Pst)

The simulations are carried out separately within each of the 19 counties of Norway, reflecting

the stratified design of the Norwegian LFS. A sample selected at t = 1 is also used at t = 2, and

the within-county sample sizes are taken from the Norwegian LFS. The results are very similar in

all the counties. Here we show only the situation for Østfold in Figure 1. Systematic sampling

can in this case be considered as implicit stratification w.r.t. municipality, sex and age. The

stratification effects are notable only for employment rate at t = 2 (Emp), giving about 20%

variance reduction compared to SRS. Most of the effects, however, can be achieved through

stratification w.r.t. sex and age alone. Notice that stratification w.r.t. municipality in addition
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is unpractical due to the large number of strata. In all the other cases, no gains of efficiency

can be expected from using systematic sampling.

It is seen that, while the second order Bayes risks of SRS and Str-SRS are negligible for

a population of this size (about 179 thousand persons), they are appreciable under systematic

sampling also when the variances are evaluated conditionally as it is done here. The CV of Vsys

is 11.0% for Emp, 15.8% for Change Emp, 16.4% for UnEmp, and 15.4% for Change UnEmp,

which are comparable to the lower bound of the unconditional CV, i.e.
√

2f =
√

2/134.6 =

12.2% for Østfold. On certain occasions, therefore, the variance fluctuation may completely

cancel out the expected stratification effects on the estimation of Emp. Notice that the second

order Bayes risk of systematic sampling can not be reduced by means of post-stratification.

In particular, for the estimation of changes which is our primary concern here, the CVs of the

systematic sampling variances are about the same as in the case of level estimators. Thus, the

use of systematic sampling may cause the actual sampling variance of a change estimator to vary

greatly over time. For instance, if the actual variance is 15% above the expectation between

the first and second quarters, and it is 15% below the expectation between the second and third

quarters, then the two change estimates have a difference of 30% in their sampling variances,

caused by the use of systematic sampling alone. Now that the CV for the variance of either

change estimator is about 15% here, this is hardly an unusual scenario. In the more extreme case

of 2 standard deviations up or down from the expected sampling variance, the actual variances

of two subsequent change estimates can have almost 100% difference compared to each other.

It is certainly undesirable to keep this as a feature of the sampling design.

7 Summary

In the above we introduced the concept of second order Bayes risk and the robust decision

principle. We have considered a number of situations where systematic sampling is commonly

used as a substitute for alternative random sampling methods that are equally efficient. It is

shown that the practice can induce large second order Bayes risks, i.e. fluctuations in the actual

sampling variance, both in cross-sectional and longitudinal survey sampling. This can be highly

damaging for large samples taken from small populations, or large sub-samples from small sub-

populations. The use of systematic sampling for convenience is in such situations a haphazard

business without any expectation of gains in efficiency. Given the availability of computer-aided

random sampling, one certainly needs to reconsider whether the practice is worth keeping.

Systematic sampling is also frequently applied outside the situations that we have considered.

Cochran (1977) cited several examples. A case in point is the use of one or two dimensional

systematic sampling in forestry and land surveys. Such situations can be studied similarly as it

has been done here, but will require rather special population models containing both correlations

over time and space, which are beyond the scope of this paper.
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Finally, we have studied the systematic sampling from a statistical decision point of view,

where the loss function is defined as the sampling variance of the survey estimator. For the

model-based inference where the variance of an estimator is evaluated w.r.t. the population

model alone, the second order Bayes risk of systematic sampling does not differ from that of an

alternative random sampling method, provided the sampling is non-informative in both cases.

Indeed, there the systematic sampling is considered to be useful as a first step in constructing

various balanced samples (Valliant, Dorfman, and Royall, 2000, Chapter 3). Whether this

observation constitutes an argument against the irrelevance of the design-based inference, or

the lack of robustness of the model-based inference is another discussion beyond the scope of

this paper.

A Second order Bayes risk of systematic sampling

For equal probability systematic sampling under the homogeneous population model (3), we have

Vsys =
1
k

k∑

m=1

(ȳm − Ȳ )2 =
1
k

k∑

m=1

(ȳm − µ)2 − (Ȳ − µ)2

such that

V 2
sys =

1
k2
{

k∑

m=1

(ȳm − µ)4 +
∑

p6=m

(ȳm − µ)2(ȳp − µ)2} − 2
k

k∑

m=1

(ȳm − µ)2(Ȳ − µ)2 + (Ȳ − µ)4

Now, (ȳm − µ)2(Ȳ − µ)2 can be written as

(ȳm − µ)2{1
k

k∑

p=1

(ȳp − µ)}2 =
1
k2
{(ȳm − µ)4 +

∑

p6=m

(ȳm − µ)2(ȳp − µ)2

+ (ȳm − µ)2
∑

p6=q 6=m

(ȳp − µ)(ȳq − µ) + (ȳm − µ)3
∑

p6=m

(ȳp − µ)}

such that

E{(ȳm − µ)2(Ȳ − µ)2} =
µ4,n

k2
+

k − 1
k2

µ2
2

n2
for µ4,n = E{(ȳm − µ)4} =

µ4

n3
+

3µ2
2

n2
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where µ4,n denotes the fourth central moment of ȳm about its mean. We now have

E(V 2
sys) =

1
k2
{kµ4,n + k(k − 1)

µ2
2

n2
} − 2

k
k{µ4,n

k2
+

k − 1
k2

µ2
2

n2
}+ µ4,N

=
k − 2
k2

µ4,n + µ4,N +
(k − 1)(k − 2)

k2

µ2
2

n2

V (Vsys) =
k − 2
k2

µ4,n + µ4,N − k − 1
k2

µ2
2

n2
>

2k − 5
k2

µ2
2

n2

CV (Vsys) =
SD(Vsys)
E(Vsys)

>

√
2k − 5
k − 1

.=

√
2
k
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