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1. Introduction
 This work is motivated by the considerable nonresponse rate in the Norwegian Consumer

Expenditure Surveys (CES) for private households, for example 32% in the 1992 survey. The

primary aim is to estimate the number of households of various sizes and the total number of

households, trying to take into account the fact that nonresponse may produce biased estimates.

Estimating household-size totals is an important issue in social planning. It is a difficult problem, as

indicated by the results in the 1990 Norwegian Population and Housing Census where the number of

one-person households was underestimated by about 100 000, as shown by  The Post Enumeration

Survey (see Schjalm 1996). Our application is based on the data from the 1992 CES. CES is a yearly

survey and until 1992 used a form of poststratified estimation method. This was not satisfactory and

since 1992 a modified Horvitz-Thompson estimator, including a correction for nonresponse by

estimating response probabilities given household size, has been employed (see Belsby 1995).  Also

this estimation method has shown weaknesses in CES.

We shall instead consider a completely model-based approach, modeling and estimating the

distribution of household size given registered family size and the response mechanism conditional on

the household size. This model takes into account that the nonresponse mechanism may be

nonignorable, in the sense that the probability of response is allowed to depend on the size of the

household. The response model is used to correct for nonresponse and thus improve the estimation

method currently in use. Model-based approaches with nonresponse included, sometimes called the

prediction approach, have been considered by, among others, Little (1982), Greenlees, Reece and

Zieschang (1982), Baker and Laird (1988), Bjørnstad and Walsøe (1991) and Bjørnstad and Skjold

(1992).

For various models of household size and response we consider mainly two model-based approaches,

a regression estimator and imputation-based poststratification after registered family size. These

methods are compared to pure poststratification, simple expansion estimation and the methods in

current use in CES .

We have not computed estimated standard errors of the estimates under the different models. The main

issue here is a comparison of models  with estimation bias as the basic problem. Moreover, the

regression estimation and imputation-based poststratification turn out to be identically the same for

some of the models that we end up recommending, However, standard errors of the estimates should,

of course, be computed in the publication of the estimates in CES.
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Section 2 describes the data-structure of CES, and Section 3 considers modeling issues. Section 3.1

presents the various models to be considered for the 1992 CES, and Section 3.2 describes the

maximum likelihood method for parameter estimation. Section 3.3 evaluates the various models for

household size and response. We consider two different types of models for the household-size

distribution. They give different estimates for this distribution. However, the two models lead to

similar estimates for the probabilities of nonresponse. This indicates that the model choice for the size-

distribution does not seem to influence the estimated nonresponse probabilities strongly. A family size

group model for household size and a logistic link for the response probability using household size as

a categorical variable gives the best fit of the models under consideration.

Section 4 considers model-based estimation, the imputation method and imputation-based estimators.

It is shown that for the chosen model for household size from Section 3.3, the regression estimator and

imputation-based poststratified estimator are identical.

Section 5 deals with the main goal of estimating the total number of household of various sizes based

on the 1992 CES, using the estimators in Section 4. The model that gave the best fit seems to work

well for our estimation problem. We conclude that poststratification, response modeling and im-

putation are the key ingredients for a satisfactory approach.

2. Norwegian Consumer Expenditure Survey
The main purpose of the Norwegian Consumer Expenditure Surveys (CES) is to estimate the average

consumer expenditure in private households. In this regard it is important to gain information about

the composition of households, which is our goal in this paper. Hence, the variable of interest  is the

size of the household which is observed only in the response sample. A household is defined as

persons having a common dwelling and sharing at least one meal each day (having common board).

Persons who are temporarily absent due to school, vacation, etc., are included. Servants living in and

lodgers receiving board are included in the household, while lodgers not receiving board are

considered to be a separate household. For a complete description of CES we refer to Statistics

Norway (1996). In CES, the auxiliary variables known for the total sample, including the non-

respondents, are the family size, the time of the survey (summer/not summer), and the place of

residence (urban/ rural). Families are registered in Norwegian Family Register, (NFR) and may differ

from the household the persons in the family belong to. Hence, the registered family size from NFR
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differs to some extent from the household size. Initially, based on experience from previous surveys,

all the auxiliary variables and household size are assumed to affect the response rate.

Every person in the sample population (persons in Norway  between the ages of 16 and 80) has the

same inclusion probability to the total sample. The whole household  where the selected person lives is

included in the survey for expenditure variables. It follows that the probability for a household to be

included in the survey is approximately proportional to the household size. For our purpose (of esti-

mating household size-distribution and the total number of households) we only consider those

persons actually selected by the survey design, not the entire corresponding households.

The population of interest consists of all persons less than 80 years old including those under 16 years

of age, since we are interested in the sizes of households. Let N be the total number of persons in this

population. We let Ny denote the number of persons living in households of size y, and Hy  the number

of households of size y,  y = 1, . . . , J. The largest size J is chosen such that there are few households

of size greater than J. Strictly speaking, HJ is the number of households of size J or more, and likewise

for NJ. The total number of households is denoted by H, H = ΣyHy.  Then, Ny = yHy for j = 1, . . ., J-1

and  NJ ≈ JHJ . In our application we choose J = 5 due to the low frequency in the sample of

households size greater than five.

Table 1 shows the data for the 1992 CES. We base our modeling and estimation on two corresponding

tables, one for the households in rural areas and one for the households in urban areas. These data are

given in appendix A. Initially we also split these households in two groups, one for the households

interviewed during summer and another group the rest of the year. But the time of the survey did not

turn out to be significant in any of the models. Thus, appendix A has the data for our analysis.
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Table 1. Family and household sizes for the 1992 Norwegian Consumer Expenditure Survey

Household size

Family size 1 2 3 4 ≥ 5
Total Non-

response
1 83 48 20 9 2 162 153
2 9 177 37 4 3 230 160
3 10 25 131 40 6 212 91
4 2 13 37 231 17 300 123
≥ 5 1 4 4 17 181 207 60

Total 105 267 229 301 209 1111 587

For example, the number 48 in cell (1,2) means that of the 162 persons registered to live alone in the

response sample, as many as 48 are actually living in a two-persons household. This is explained

mostly by young people’s  tendency to cohabitate without being married, see for example Keilman

and Brunborg (1995).

3. Modeling of household size and nonresponse
Let the variable Y denote household size, and let Yi  denote household size for person i in the

population , for i = 1, . . ., N. The main statistical problem is to estimate H1, . . . , HJ  and H. In terms

of the variable Y, H I Y y yy ii
N= =∑ = ( ) /1  where the indicator function I(Yi =y) = 1 if Yi =y, and 0

otherwise.

We shall assume a population model for Y, given auxiliary variables x, i.e., we model  the conditional

probability P(Y=y | x). Let nonresponse be indicated by the variable R, where R= 1/0 according to

response/nonresponse. To take nonresponse into account in the statistical analysis, we must model the

response mechanism, i.e., the distribution of R conditional on y and x. The sampling mechanism is

ignorable for the survey we consider, i.e., is independent of the population vector y of household sizes.

The statistical analysis is therefore done conditional on the total sample s, following the likelihood

principle, see (Bjørnstad, 1996).

For CES, the auxiliary vector xt = (x1, x2, x3) where x1 is  family size, x2 is  place of residence with x2 =

0 if rural area and 1 if urban area, and x3 is time of survey.  The notation xt symbolizes that the vector

is transposed. Let xi denote the values of the auxiliary variables for person i.
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3.1. The Models

We shall consider various models for Y given x and for R given y and x. If units i,j belong to the same

household then Yi = Yj. If i,j belong to different households Yi and Yj  are assumed to be independent.

Let us first consider the simple model, where the household size is assumed to depend  only on the

family size x1i with no additional assumptions, expressed

(3.1) P Y y P Y y x pi i i y x i
( | ) ( | ) ,,= = = =xi 1 1

 

where  py x
y

ii, 1 1∑ =  1 ,  for each possible value of x  .  

The model (3.1) is flexible in the sense that it does not include any restrictions on the assumed model

function of x1i.  We will later refer to this model as the "free" model. The drawback is the high number

of parameters compared with a model  using a link function. If nonresponse is ignored, the estimates

in this model would simply be the observed rates.

The household size takes values on an ordinal scale. Thus a natural choice for a model is the

cumulative logit model, known as the proportional-odds model,  see (McCullagh and Nelder, 1991).

We shall denote it by CLM(x),

(3.2) CLM(x) : P Y y
y

y
i y

t( | ) exp( )
, , ,

.
≤ = + − +

=

≥






x x 

  for 

                1                  for 
 

1

1
1 2 3 4

5
θ β

The parameters θy  take values increasing in y, and are represented as θ θ θ θ1 1 1 1= = +− −, y y yk , for y

= 2,3,4. The vector β consists of the parameters that measure the influence of the auxiliary variables.

The auxiliary vector here is x = (x1,x2)
t  (x1= family size, and x2 = place of residence). In Section 3.3

we discuss the estimates and the validity of the assumed link function.

The data are incomplete due to nonresponse. It is assumed that the probability of nonresponse may

depend on the household size. For example, one-person households are less likely to respond than

households of larger size since larger households are easier to «find at home». Nonresponse is

indicated by the variable R, where Ri = 1 if person i responds and 0 otherwise. Nonignorable response

mechanism is equivalent to

P Y y r Y y ri i i i i i( | , ) ( | , )= = ≠ = =x xi i0 1   P  
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and then both are different from    P( ).Y yi i=  |  xi

Thus estimating the parameters in the model for P(Y=y | x) using only the response sample, ignoring

that the probability of response depends on the household size, would most likely give biased

estimates for the unknown parameters. Also the poststratification estimator would give biased

estimates because it assumes that the distribution of R only depends on the auxiliary x. For example,

the observ-ed lower response rate among one-person families indicates that the same may hold for

one-person households. If so, the estimated probability of household size 1, based on respondents

only, would be too small. Poststratification with respect to family size will most likely correct only

some of this bias.

The model for the probability of response, given auxiliary variables and household size yi, is assumed

to be logistic. It  depends on the auxiliary variables zi , which includes part of xi, expressed by

(3.3) RM1(y,z) : P R y
y

i i
i

t
( | , )

exp( )
= =

+ − − −
1

1

1
z

z
i

iα γ ψ
  .

Here, α and γ are scalar parameters and ψ is a vector. The variable yi has an order. Motivated by this

fact, and to avoid introducing  many parameters, yi is used in (3.3) as an ordinal variable rather than a

class variable. Thus the logit function,

log{ ( | , ) / ( | , )}P R y P R yi i i i= =1 0z zi i  = α + γyi + ψtzi ,

is linear in yi. . To avoid the assumption of linear logit in yi we also consider a model with  yi   as a

categorical variable, i.e.,

RM2(y,z):

(3.4) P R y
I y I y I y I y

i i
i i i i

t
( | , )

exp( ( ) ( ) ( ) ( ) )
= =

+ − − − − − −
1

1

1 0 1 1 2 2 3 3 4 4

z
z

i
iα α α α α ψ

  ,

where the indicator variable Iy(yj) equals 1 if  yi =y and 0 otherwise. The drawback with this model is

that it includes three parameters more than model (3.3).
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3.2. Maximum likelihood parameter estimation

All the selected persons in the sample s are from different households (duplicates have been removed),

such that all Yi, i ∈  s are assumed to be independent.

We consider the likelihood function for estimating the unknown parameters, assuming that all pairs

(Yi,Ri) are independent and response model RM1 given by (3.3). To simplify notation we relabel the

observations such that observations 1 to nr  are the respondents and observations nr +1 to n are the

nonrespondents. With response model RM2 the expression for the likelihood is of the same form with

(3.4) replacing (3.3).

For the respondents let L P Y y Ri i i i= = ∩ =( | ).1 xi  Then, for model (3.1)

(3.5) L
y

p i ni
i

t y x ri i
=

+ − − −
⋅ =1

1
1

1exp( )
, ...,,α γ ψ zi

 ,  .

For the nonrespondents let Li  =P(Ri =0 | xi ). Then

(3.6) L
y

p n ni
y

t y x ri
= ∑

+ + +
⋅ = +

=1

5 1

1
1

1exp( )
,...,,α γ ψ zi

 ,  i .

With model (3.2) instead, the expression for the respondents is given by

(3.7) L
y

P Y y P Y y i ni
i

t i i i i r=
+ − − −

⋅ ≤ − ≤ − =1

1
1 1

exp( )
( ( | ) ( | )) , ...,

α γ ψ z
x x

i
i i  ,  ,

where P(Yi  ≤ yi |xi ) is given by (3.2). The  expression for the nonrespondents equals

(3.8) L
y

P Y y P Y y n ni
y

t i i r= ∑
+ + +

⋅ ≤ − ≤ − = +
=1

5 1

1
1 1

exp( )
( ( | ) ( | )) ,...,

α γ ψ z
x x

i
i i  ,  i .

The likelihood function for the entire sample of persons from different households is given by
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(3.9) L Lii

n
( , , , , ) .θ β α γ ψ =

=∏ 1

For i = 1,..., nr , Li  is according to (3.5) or (3.7), and for i = nr +1, . . . , n, Li is given by (3.6) or (3.8).

Estimates are found by maximizing the likelihood function (3.9). The maximization was done

numerically using the software TSP(1991). The optimizing algorithm is a standard gradient method,

using the analytical first and second derivatives. These derivatives are obtained by the program, saving

us a substantial piece of programming. The model fitting is based on the chi-square statistic and on the

t-values, provided by TSP, where the standard errors are derived from the analytical second

derivatives. The t-values have to be interpreted with some care, since the unbiasedness of the

estimated standard errors depends on how well the model is specified as well as the number of

observations  compared with the number of parameters.

3.3. Evaluation of the models for household size and response

We present the estimated models together with the Pearson goodness-of- fit statistics. The model as-

sumptions are illuminated with plots and we discuss the assumed linear logit function in the models

(3.2) -(3.4). The estimates are based on the 1992 CES. The parameters are considered to be significant

when the absolute t-values are greater than 2. However, we do not want a model that is too restrictive,

and therefore some variables are kept even though their absolute t-values are less than 2.

In the response models RM1 and RM2 we use  the variable z = x2, place of residence. It was observed

in the CES 1986-88 and CES 1992-94, see Statistics Norway (1990, 1996), that there is more nonre-

sponse during the summer. Therefore, the time of the survey was also included in the model, that is

whether or not the data were collected in the period May 21 - August 12. However, the time of the

survey was found to be nonsignificant, with t-value clearly less than 2. Also the family size was found

to be nonsignificant. But if the household size is omitted in the response model, then the family size

turns out to be significant.

For models with no latent structure it would have been standard procedure to plot the data in order to

illuminate our model assumptions. Consider the cumulative logit model. This model  is based on the

restriction that the cumulative logit, i.e., the function log{ P Y y( ≤ | x1)/(1-  P Y y( ≤ | x1))  is ap-

proximately linear with respect to family size.  The logit functions for household sizes 1,...,4 should

also be approximately parallel. CES does not have callbacks. Neither does the survey include any
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quality control survey. Hence there are no data available to illuminate the  model assumption for the

nonrespondents, making it difficult to investigate the assumption. What we can do is to plot the logit

function for the estimated  P Y y( ≤ | x1 ) based on the free model (3.1) together with RM2(y,x2). This

estimate is not restricted by an assumed function for the household size, and the estimate is adjusted

according to a rather flexible model for the response mechanism.

Figure 1. The estimated cumulative logit function, log{ |� ( ) / ( � ( | ))},P Y y x P Y y x≤ − ≤1 11  for

household sizes 1,.., 4 with respect to family size x1. The estimates are based on the
free model (3.1) in combination with the response model RM2( y,x2 )
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Figure 1 shows that the logit functions for the household sizes are clearly not parallel nor linear, which

they should have been, at least approximately, in order to fulfil the model assumptions. Moreover, a

goodness of fit test shows that the cumulative logit model fit the data badly. Therefore we choose to

reject this model.

We also want to investigate the empirical logit function for response as a function of household size.

However, the household size is unavailable for the nonrespondents. Instead we plot the logit-function

against family size, see Figure 2.  From family size one to two, the rural and urban functions increase

fairly parallel. However, for family size three and four the logit functions depart from being linear and

parallel. Thus we suspect that coding household size as a categorial variable, as in model RM2, will



12

give better fit than restricting the logit functions to be parallel for rural and urban and linear with re-

spect to the household size, as in model RM1.

Figure 2 The logit function for the empirical response rate with respect to family size 1, ..., 5

in urban and rural areas, respectively. The computation is based on both the
respondents and the nonrespondents from Table A1 in Appendix A
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We now proceed with the free model in (3.1) combined with the response models RM1(y,x2) and

RM2(y,x2), respectively. In order to test the goodness of fit of the models, we consider the Pearson

chi-square statistics, conditional on the auxiliary variables family size, x1 , and place of residence, x2,.

Given rural or urban type of residence and registered family size, there are six possible outcomes;

household sizes 1, ... ,5 and nonresponse. Altogether there are ten multinomial trials and sixty cells.

For family sizes (1,2) and (4,5), the extreme household sizes (4,5) and (1,2), respectively, are combi-

ned because the expected sizes under the models are too small. This reduces the number of cells to 52.

The degrees of freedom (d.f.) is calculated as : number of cells - number of trials - number of parame-

ters. For model (3.1)& RM1(y,x2),  d.f. = 52 -10-(20+3)=19, and for model (3.1)& RM2(y,x2),  d.f. =

52 -10-(20+6)=16.

The estimates for free model in (3.1) and response model RM1 are displayed in table 2.
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Table 2. 1992 CES. Parameter estimates for py x, 1
, the free model  (3.1), in percentages

combined with the response model RM1(y,x2) in  (3.3). In parentheses, the estimates
based on the free model (3.1) for respondents only, i.e., ignoring the response
mechanism

Household size
Family size, x1 1 2 3 4 5 or more

1 57.61 (51.23) 27.68 (29.63) 9.93 (12.35) 3.98   (5.56) .80   (1.23)
2 4.71  ( 3.91) 78.58 (76.96) 14.36 (16.09) 1.39   (1.74) .96   (1.30)
3 5.97   (4.72) 13.04 (11.79) 61.40 (61.79) 17.15 (18.87) 2.40   (2.83)
4 1.01   (0.67) 5.47   (4.33) 13.46 (12.33) 74.99 (77.00) 5.07   (5.67)
5 or more 0.80   (0.48) 2.66   (1.93) 2.31   (1.93) 8.75   (8.21) 85.48 (87.44)

The Pearson  chi-square statistic equals 26.35.  With d.f. equal to 19,  this corresponds to the p-value

0.121.  By studying the standardized residuals, (observed-expected)/ � ( )Var observed , it is seen that

the model has the best fit in the rural area where the response rate is highest. The model does not quite

manage to fit the data for the urban areas, especially predicting the number of respondents of house-

holds of size 3 among persons with family size 3. Here the model predicts 46 while the observed count

is 57, out of the 123 persons in the urban area with family size 3.

We interpret now some of the values in the household model. The probability that a household size

equals one, given that the family size is one, is 0.576. The estimates based on the traditional approach,

ignoring the nonresponse is 0.512. The response model adjusts the observed rate among the respon-

dents to a higher value. This seems reasonable since the rate of nonrespondents is higher for small

households. The estimated probability of household size five or more, given family size of five or

more is 0.855 which differs little from the observed rate among the respondents, 0.874. This indicates

that, given family size five or more, the household size distributions are about the same among re-

spondents and nonrespondents.

Table 3 displays the estimates for the model (3.1) together with the response model RM2 in (3.4). That

means that the difference is that the estimates in table 3 are not restricted by a linear logit in household

size for the response model.
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Table 3. 1992 CES. Parameter estimates for the free model py x, 1
in (3.1), in percentages,

combined with the response model RM2(y,x2) in (3.4). In parentheses are the
estimates based on the free model py x, 1

in (3.1) for respondents only, i.e., ignoring

the response mechanism.

Household size
Family size, x1 1 2 3 4 5 or more
1 60.01 (51.23) 26.75 (29.63) 8.35 (12.35) 4.09   (5.56) .80   (1.23)
2 5.27   (3.91) 79.80 (76.98) 12.48 (16.09) 1.47   (1.74) .98   (1.30)
3 7.53   (4.72) 14.45 (11.79) 56.67 (61.79) 18.85 (18.87) 2.50   (2.83)
4 1.06   (0.67) 5.31  ( 4.33) 11.38 (12.33) 77.20 (77.00) 5.05   (5.67)
5 or more .84   (0.48) 2.60  ( 1.93) 1.96  ( 1.93) 9.05   (8.21) 85.55 (87.44)

The Pearson chi-square statistic is 21.77, which with d.f. equal to 16 gives a p-value of 0.151. This p-

value indicates that coding the household size as a categorial variable, as in RM2, improves the fit

compared to using it as an ordinal variable. Consequently, the data indicate that the free model in (3.1)

combined with RM2 is the best of the models we have considered so far.  By studying the

standardized residuals it is seen that the main reason for the better fit is that the model in table 3 does a

better job of predicting the observed counts for the urban area.

The differences between the estimates outside and within the parentheses indicate the effect of the

response mechanism on the estimates. As in the previous model, the estimates for the rates of one-

person households display the largest differences. This reflects that one-person households have the

lowest response probability.

Comparing the estimates in table 2 and 3, we find that the estimated household size model is only

slightly altered when using response model RM2 in the place of model RM1. Hence, the estimates

give the impression that these two different response models do not give very different estimates for

the household size distribution. However, as we shall see in section 5, the estimates of  the household

size totals are somewhat differently distributed over the five sizes for the two response models.

3.4. Estimated probabilities of response

The model choice may influence the estimates for response. To illuminate this, table 4 displays the

response probabilities for the models we have considered so far.
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Table 4. Estimated probability of response in percentages, for the models  (3.1)& RM1(y,x2),
(3.1)& RM2(y,x2), CLM(x1)&RM1(y,x2) and CLM(x1,x1

2)& RM1(y,x2)

Household size

Place of residence 1 2 3 4 5 or
more

Model py x, 1
 in   (3.1) combined with RM1(y,x2)

Rural 52.29 61.11 69.26 76.36 82.25
Urban 43.58 52.55 61.36 69.49 76.55

Model py x, 1
 in   (3.1) combined with RM2(y,x2)

Rural 47.77 60.90 79.05 73.26 81.52
Urban 38.92 52.04 72.44 65.62 75.46

The CLM(x1) model combined with RM1(y,x2)
Rural 52.86 61.33 69.16 76.03 81.77
Urban 44.19 52.83 61.30 69.13 76.00

The CLM(x1,x1
2) model combined with RM1(y,x2)

Rural 53.10 61.42 69.13 75.90 81.58
Urban 44.39 52.89 61.22 68.95 75.74

For all the models in table 4 the probability of response is higher in rural than in urban areas, and one-

person households have the lowest response probability. We also see that the response probabilities

based on RM1, but on different models for the household distribution, are almost the same. However,

replacing RM1 with RM2 influences the estimates. For example, the estimated response probability

for household size one in rural areas decreases from 0.523 to 0.478 . The largest discrepancy is found

in the probability of response for household size 3. This is possible because RM2 let the response

probability vary freely as a function of household size, while RM1 assumes a linear logit in household

size. The "free" model RM2 estimates, surprisingly maybe, that P(R=1| y = 3) > P(R=1| y = 4).

However, we see from table 2 and 3 that more of families with sizes 1,2 and 3 belong to household

size 3 using model RM1 than model RM2. Furthermore,  these categories have low response

probability, and hence we get lower response probability for household size 3. For household size 4 it

is the other way around. We recall from earlier discussions that model (3.1) with RM1 has trouble

estimating the number of households of size 3. These considerations indicate that the estimates based

on RM2 is more reliable, and that the linear logit in RM1 is too restrictive.

We also  present estimated response probabilities based on an imputation method, investigated in a

later section. The model, defined by (4.10),  implicitly assumes that the response probability for

persons with the same household size  within rural/urban area, respectively,  is identical for different

family sizes. Moreover, the model for household size depends on the place of residence and the family
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size, but with no restriction on the link function. This model is saturated, and will from (4.11) give

perfect fit. We note that RM1(y,x2) and RM2(y,x2) both satisfy (4.10b), but are more restrictive. Model

(4.10) allows more freedom, of course, than model (3.1) with RM1(y,x2) or RM2(y,x2). The estimated

response probabilities based on model (4.10) are displayed in table 5.

Table 5. Estimated probability of response based on the saturated  model (4.10) in percentages

Household size
Place of residence 1 2 3 4 5 or more
Rural 50.79 62.37 76.90 70.57 83.07
Urban 35.17 50.85 74.79 70.68 72.89

We see the same tendency as for RM2 with (3.1) in table 4; the probability of response is higher for

household size 3 than for households of size 4. It is seen from table 4 that RM2 & (3.1) acts as a

smoother of  the estimates in table 5, because of the added assumption of parallel logits of the

response probabilities for urban and rural areas. Since the estimates in table 5 are based on a saturated

model, this reinforces the previous conclusion that estimates based on RM2 are more reliable than the

ones based on RM1, and that the linear logit in RM1 is too restrictive.

4. Estimators for household size totals
In this section we present the estimators for household size totals for the population consisting of the

people less than 80 years by 1.1.93. The estimators fall into two groups. One group of estimators is

based directly on the maximum likelihood parameter estimators while the other group is imputation-

based. For comparison we also include the standard poststratification estimator. For the free

population model (3.1), some of these estimators turn out to be identical.

4.1. Maximum likelihood regression estimation and poststratification

Section 3 evaluated some models for both household size and response probability. For the household

size we decided to use the free model py x, 1
 in (3.1), where x1 is the family size. For the response

probability we use both logistic models, RM1 and RM2, with place of living and household size as

auxiliary variables. Recall that household size is coded as an ordinal variable in RM1, and as a

categorical variable in RM2. The parameters in the models are estimated by maximizing the

likelihood, as described in Section 3.2.

The data are assumed to be of the form presented in table 1, given registered family size (also for

rural/urban areas separately).
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Table 6. Family and household sizes with nonresponse. Number of persons

Household size

Family size 1 2 . . . . . . ≥  J Total Nonresponse
1 n11 n12 . . . . . . n1J m1 m1u

2 n21 n22 . . . . . . n2J m2 m2u

: : : . . . . . . : : :
≥ K nK1 nK2 . . . . . . nKJ mK mKu

Total n1 n2 . . . . . . nJ nr nu

Here, nky is the number of respondents belonging to a family of size x2 = k and household of size y.

Furthermore, mk (mK) is the number of persons in the response sample belonging to families of size k

(≥ K), m nk kyy
J= ∑ =1 , and ny (nJ) is the number of respondents belonging to households of size y(≥ J),

n ny kyk
K= ∑ =1 . In our application we choose K = 5. The total size of the response sample is denoted

by nr . The total number of  nonrespondents is nu , and mku is the number of missing observations for

persons with family size k. The total sample size n is given by  n = nr + nu  .  We shall estimate  H1, . .

. , HJ  and H, where Hy  = Ny /y and  N I Y yy ii
N= =∑ = ( )1 . Hence,

E N P Y yy i ii
N( ) ( | )= =∑ = x1 .

A general model-based estimator for Hy  can be obtained by estimating E(Hy), replacing P(Yi=y | xi) by

an estimate �( | )P Y yi i= x obtained by estimating the unknown parameters in the population model.

This is what is usually called  the regression estimator ,

� �( | ),H
y

P Y yy reg i
N

i i= ∑ ==
1

1 x .

Since the household size Y is assumed to depend only on the family size x1, the regression estimator

takes the form

(4.1) � �( | ),H
y

M P Y y x ky reg kk
K= ∑ = ==

1
1 1 ,
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where Mk (MK) denotes the number of persons in the population registered with family size k (≥ K).

The Mk’s are known auxiliary information from the Norwegian Family Register.

An alternative estimator to (4.1) can be obtained by utilizing that a part of  Ny is observed,

N n I Y yy y i
i sr

= + =∑
∉

( ),  where sr is the response sample. There is no need to estimate ny   leading to

what is sometimes called the prediction estimator,

(4.2) � �( | ),H
y

n P Y yy pred y
i s

i i
r

= + ∑ =










∉

1
x .

The prediction estimator gives practically the same results as the regression estimator for the survey

we consider. To the nearest 100, the estimates for this survey are identical. This will typically happen

when the sample is a small proportion of the population, as seen from the relationship

� � �( | ), ,H H
y

n m P Y y x ky pred y reg y k
k

K
= + − = =∑









=

1
1

1
.

A second alternative approach to (4.1) is poststratification. See, for example Holt and Smith (1979)

and Särndal, Swensson and Wretham (1992, ch. 7.6). We shall consider the poststratified estimator

�
,Hy post , using family size as the stratifying variable,

(4.3) �
,H

y
M

n

my post k
K

k
ky

k
= ∑ ⋅=

1
1

This estimator corresponds to (4.1) using the model (3.1) for  Y, and assuming ignorable response

mechanism. In this case the data are only the y- and x1 -values in the response sample, and the

likelihood function is given by P Y y xi ii

nr ( | )=
=∏ 11 i . The maximum likelihood estimate

�( | )P Y y x= 1 is simply the observed rate among the respondents with household size y given family

size x1, �( | )P Y y x k= =1  = nky/mk .
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4.2. Estimation by imputation, based on the free model py x, 1

A common approach to correct for nonresponse is by imputation of the missing values in the sample.

We then assign imputed values for the nonrespondents, by some estimation method based on the

response sample. In this section we consider the three estimators in the previous section, based on the

completed sample obtained by filling in the missing values with model-based imputed values. It is

seen that the imputation-based regression-, prediction-, and poststratified estimators are all identically

the same, when using the free model py x, 1
. Moreover, it turns out that this common imputation-based

estimator equals the maximum likelihood regression estimator given by (4.1) for this population

model, thereby showing us which imputed values the regression estimator implicitly are using.

For imputation, we shall use the estimated distribution for Y given family size and place of residence

for the nonrespondents, �( | , , )P Y y x x r= =1 2 0  for x1 = 1,...,5 and x2 = 0,1. We then assign, for a given

family size x1 and place of residence x2, the nonrespondents to the values 1, ..., 5 in proportions given

by �( | , , )P Y y x x r= =1 2 0 for y = 1, ..., 5. Let nx y1
0* ( )  ( nx y1

1* ( ) ) be the number of imputed values with

family size x1  and household size y, for rural (urban) areas and let mx u1
0( )  ( mx u1

1( ) )  be the number

of  missing observations for persons in rural (urban) areas with family size x1. Then

(4.4) n xx y1 2
* ( ) = m xx u1 2( ) ⋅ �( | , , )P Y y x x r= =1 2 0 , x2 = 0,1,

and            nx y1
*  = nx y1

0* ( ) +  nx y1
1* ( )

is the total number of imputed values with family size x1 and household size y.

The imputed poststratified estimator (estimator (4.3) computed for the completed sample) becomes

(4.5) �
*

,H
y

M
n n

m my post
I

k
ky ky

k ku
k
K=

+

+
∑ =

1
1 .

From (4.1) and (4.2) , the imputation-based regression- and prediction estimators  are given by

(4.6) � � ( | ).,H
y

M P Y y x ky reg
I

k
I

k
K= ∑ = ==

1
1 1

and

(4.7) ( )� * ( ) � ( | ),H
y

n n M m m P Y y x ky pred
I

y y k k ku
I

k
K

i= + + − −∑ = ==
1

1 1 ,
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where n ny kyk* *= ∑ . The estimated probabilities �P I are obtained from the completed sample, using

the model (3.1), i.e., � ( | )P Y y xI = 1  is given by the rate of household size y for family size x1 in the

completed sample. Hence, both �
,Hy reg

I  and �
,Hy pred

I  correspond to the poststratified estimator (4.5).

With population model (3.1), the imputation estimators (4.6)  and (4.7) will always be identical to the

imputed poststratified estimator. Furthermore, the following general result holds, showing that with

population model (3.1), the imputation-based poststratified estimator (4.5) is identical to the maximum

likelihood regression estimator  (4.1).

Theorem. Assume model (3.1) for Y. I.e., P(Y=y| x1 , x2) = py x, 1
 is independent of x2 , but otherwise

the py x, 1
’s are completely unknown with the only restriction py xy , ,

1
1∑ = for all values of x1 . The

response mechanism is arbitrarily parametrized, i.e., no assumption is made about  P(R=1|Y=y,x1 ,x2).

Then the maximum likelihood estimates for py x, 1
are given by, for x1 = k = 1,...,K,

�
*

,p
n n

m my k
ky ky

k ku
=

+
+

 .

Proof. See Appendix B.

4.3. Imputation-based poststratification with a saturated model

We know proceed to an intuitive metod of imputation that was used to estimate response probabilites

for a modified Horvitz-Thompson estimator in the official statistics from the 1992 CES, described in

(Belsby, 1995). As we shall see in section 5, the Horvitz-Thompson estimator often fail to correct for

biased samples, and we will use this imputation method for the poststratified estimator (4.5).

The imputation method consists of distributing, within rural/urban area, the mku(x2) nonresponse units

over the household sizes 1, ...,5 in such a way that, given household size,  the rate of nonresponse is

the same for all family sizes. It implicitly assumes that the response probability for persons with the

same household size, within rural/urban areas respectively,  is identical for different family sizes.

Denote, for x2 = h,  the number of nonresponse persons with family size x1 = k and household size y

obtained in this manner by zky(h). The corresponding number among the respondents is nky(h). The

values of zky(h) are determined by the equations
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(4.8)
z h

z h n h

z h

z h n h
ky

ky ky

iy

iy iy

( )

( ) ( )

( )

( ) ( )+
=

+
 ,      h = 0,1.

When nky(h) = 0, we let zky(h) = 0 . The equation (4.8) is solved under the conditions

(4.9) z h m hky ku
y

( ) ( )=∑  ; k = 1, ..., 5 and h = 0,1.

Solving (4.8) and (4.9) requires, for each value of h, one row (nk1(h),nk2(h), . . .,nk5(h)) of nonzeros,

which holds for our case. The imputed values zky(h) determined by (4.8) and (4.9) correspond to the

imputation method described by (4.4) for the following model:

(4.10a) P(Y=y|x1, x2) = py x x, ,1 2
 with no restrictions

(4.10b) P(R=1|Y=y, x1 , x2) = qy x, 2
, independent of x1

This can be seen as follows:

For the ten multinomial trials determined by the different (x1, x2)- values, we have 50 unknown cell

probabilities πyk,h = P(Y=y,R=1| x1=k, x2=h). With no restrictions on cell probabilities, the maximum

likelihood estimates (mle) are given by the observed relative frequencies,

�
( )

( ) ( ),πyk h
ky

k ku

n h

m h m h
=

+
 .

This also holds when nky (h) = 0. Now, it can be shown that there is a one-to-one correspondence

between π = (π1, π2) and (p0,q0,p1,q0), where  πh = (πyk,h : y=1,...,5 ; k= 1,...,5), ph= (pyk,h: y=1,...,5 ; k=

1,...,5) and qh = (q1,h , . . ., q5,h). Since πyk,h = py,k,h⋅qyh , the mle of pyk,h and qy,h must satisfy

(4.11) � �
( )

( ) ( ), ,p q
n h

m h m hyk h y h
ky

k ku
⋅ =

+
,

and are uniquely determined by � ,πyk h .

Consider zky(h), given by (4.8)&(4.9). Let zy(h) = z hkyk ( )∑  and ny (h) = n hkyk ( )∑ . From (4.8),
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(4.12)
z h

z h n h

z h

z h n h
j

j j

kj

kj kj

( )

( ) ( )

( )

( ) ( )+
=

+
  ,  if nkj(h )> 0 .

From (4.11) and (4.12) we have that the following intuitive estimates also are mle.

(4.13) �
( )

( ) ( ),q
n x

n x z xy x
y

y y
2

2

2 2
=

+

and

(4.14) �
( ) ( )

( ) ( ), ,p
n x z x

m x m xy x x
x y x y

x x u
1 2

1 1

1 1

2 2

2 2
=

+

+
    (also when n x z xx y x y1 12 2( ) ( )= = 0).

We could also have shown (4.13) and (4.14) by maximizing the loglikelihood directly. Next, we show

that the imputed values (4.4) for the model (4.10) equal z xx y1 2( ) . From (4.4), we have  n xx y1 2
* ( ) =

m xx u1 2( ) ⋅ �( | , , )P Y y x x r= =1 2 0 . Under model (4.10) and estimates (4.13) and (4.14), we find that

�( | , , )
�( | , ) �( , | , )

�( | , )
P Y y x k x h R

P Y y x k x h P Y y R x k x h

P R x k x h
= = = = =

= = = − = = = =
= = =1 2

1 2 1 2

1 2
0

1

0

=   
� �

�

, ,

,

pyk h yk h

yk hy

−

− ∑

π
π1

  = 
n h z h n h

m h

z h

m h
ky ky ky

ku

ky

ku

( ) ( ) ( )

( )

( )

( )

+ −
=   ,

and it follows that nky*(h) = zky(h). If nky(h) = 0, then � �, , ,py k h yk h= =π 0 , and nky*(h) = 0. We note that

model (4.10) is saturated and will, from (4.11),  give perfect fit.

5. Estimated number of  households of different sizes  for the
1992 Norwegian Consumer Expenditure Survey

In this section we consider, for CES 1992, the estimation of the number of households of size 1,...5,

i.e., H1, . . ., H5 and the total number of households, H for the population, based on the estimators

considered in Section 4. For comparison, and to illustrate the effects of nonreponse modeling and

poststratification, we also present estimates based on the regular expansion estimator, given by
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(5.1) �
,H

y
N

n

ny e
y

r
= ⋅1

,

and the imputation-based expansion estimator given by

(5.2) �
*

,H
y

N
n n

ny e
I y y= ⋅

+1
.

Recall that ny  is the number of respondents belonging to households of size y, nr  is the total number of

respondents, and ny* = nx yx 11
∗∑ . The estimator (5.1) does not seek to correct for nonresponse nor use

the family population distribution as a post-stratifying tool to improve the estimation, while estimator

(5.2) tries to take the response mechansim into account, but cannot correct for biased samples.

To compute the estimates we need the number of families of different sizes in the population, i.e.,  Mk,

at the time of the 1992 survey. The actual number at the time of the survey is not recorded. As an

approximation we use the numbers at 1.1.93. These are given in table 7.

Table 7. Families and persons with age  less than 80 years in Norway at 1.1.93.

Number of persons in family Families Persons
1 person 793 869 793 869
2 persons 408 440 816 880
3 persons 261 527 784 581
4 persons 266 504 1 066 016
5 or more persons 127 653 670 528

Total 1 857 993 4 131 874

Note that the average family size for families with 5 or more persons is 670528/127653 = 5.25. We

use 5.25 as an estimate of the average household size for households of size 5 or more, and  divide by

5.25 instead of 5 in all estimates of H5.

5.1. Maximum likelihood regression estimation and poststratification

We give the regression estimates from (4.1) using the free model py x, 1
 in (3.1) in combination with

the response models RM1(y,x2) and RM2(y,x2). The estimated household distributions are presented in

table 8 for the different models, using tables 2 and 3. To illustrate the effect of nonresponse modeling

versus poststratification we also present the poststratified estimate given by (4.3), using family size as

the stratifyer and the the simple expansion estimate, given by (5.1).
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Table 8. Estimated household totals for persons aged less than 80 years in Norway at 1.1.93 in
units of 100

Correction for nonresponse
and family size

Correction for
family size

No correction for
nonresponse nor

family size
Household
size, y

Regression
estimator - model

(3.1) & RM1(y,x2)
%

Regression
estimator - model

(3.1) & RM2(y,x2)
%

Post-stratified
estimator

%

Regular expansion
estimator

%
1 558 800    32 595 400    34 486 000    29 390 500     24
2 520 200    30 525 800    30 507 800    30 496 500     31
3 278 900    16 249 100    14 286 200    17 283 900     18
4 258 900    15 269 000    15 270 600    16 279 900     18
≥ 5 125 800      7 126 000      7 131 300      8 148 000       9

Total 1 742 600  100 1 765 300  100 1 681 900  100 1 598 800   100

The expansion estimates indicate serious bias due to nonresponse, especially the estimates for H1 and

H,  with poststratification correcting for some of the bias ( probably about 50 per cent for the estimates

of H1 and H ). Poststratification corrects for the bias caused by the discrepancy between the family size

distributions in the response sample and the population. From table 1 and table 7 we see that these

family size distributions are given by (in percentages), for k = 1, . . . ,5:

response sample  : 14.6 - 20.7 - 19.1 - 27.0 - 18.6

population:           19.2 - 19.8 - 19.0 - 25.8 - 16.2

Since the number of one-person families is much too low in the response sample, so will the expansion

estimate of  H1  be. Poststratification corrects for the family size bias in the response sample, but does

implicitly assume that nonrespondents and respondents have the same household size distribution, for

a fixed family size. This is most likely not the case. It is reasonable to assume, as in our response

models, that response rates will vary with the actual household sizes rather than the registered the

family sizes. Typically, estimates of the number of one-person households will be biased when the

nonrespondents are ignored, as seen in The Post Enumeration Survey for the 1990 Norwegian

Population and Housing Census, PES 1990. Here it was estimated to be 626 000, while the Census

estimate was about a 100 000 less, see (Schjalm, 1996). In the Census 1990, poststratification

primarily after family size was used  and gave estimates similar to the poststratified estimates in table

8.

The two models  that take the response mechanism into account  give higher total number of

households. They also give considerable higher numbers of one-person-households. This seems
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sensible since we expect the one-person households to have the highest nonresponse rate, and thus

these estimates are mostly influenced by taking the response mechanism into account.

For robustness considerations we also present the estimates from model CLM(x1) and RM1(y,x2),

which we know fits the data poorly. They are, in 100’s:  591 800, 501 000, 265 200, 267 300, 128 200

and 1 753 500 for H1, . . . , H5 and H, respectively. Compared to table 8, this seems to indicate that a

reasonable model for response plays a more important role than a good  population model. It is also

evident that nonresponse modeling makes a difference, as seen when compared  to poststratification

and simple expansion.

5.2. Imputation and estimation based on the saturated model

From Section 4.2 we have that the imputation-based estimators based on the regression-, prediction-

and poststratified estimator are identically equal to the maximum likelihood regression estimator. The

completed sample, including the imputed values, for the two models are given in Appendix C.

We shall consider the poststratified estimator (4.5) based on the the imputation method (4.4) for the

model (4.10), given by the equations (4.8) and (4.9), i.e.,

P(Y=y|x1, x2) = py x x, ,1 2
 with no restrictions

P(R=1|Y=y, x1 , x2) = qy x, 2
, independent of x1 ,

i.e., within rural/urban area and given household size, the rate of nonresponse is the same for all

family sizes. This method was used to estimate response probabilities and employed in the official

statistics from the 1992 CES with the modified Horvitz-Thompson estimator. Model (4.10) is saturated

and will, from (4.11),  give perfect fit. The completed sample based on the equations (4.8) and (4.9) is

given in Appendix D. Table 9 presents the table of (nky + nky*), necessary to compute the poststratified

estimates given by (4.5).
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Table 9. The total numbers of family and household sizes for imputed complete sample.
Based on model (4.10)

Household size

Family size 1 2 3 4 ≥ 5 Total
1 187.9 85.7 26.3 12.7 2.4 315
2 23.0 309.2 48.6 5.7 3.6 390
3 23.2 43.0 172.4 56.7 7.7 303
4 3.9 21.9 48.7 327.2 21.3 423
≥5 2.0 6.8 5.2 24.1 229.0 267

Total 240.0 466.6 301.1 426.3 264.0 1698

The imputation-based poststratified estimates (4.5) are given in table 10. To illustrate the effect of

poststratification to correct for possible biases in the sample, we include the imputation-based

expansion estimates (5.2) using the completed total number of households from the last row in table 9.

Table 10. Imputation-based  poststratified estimates and expansion estimates of household totals
for persons aged less than 80 years in Norway at 1.1.93; model (4.10), in units of 100

Household size
Post-stratified

estimator Per cent
Expansion
 estimator Per cent

1 596 600 34 583 900  33
2 523 600 30 567 700 32
3 250 000 14 244 300 14
4 268 900 15 259 300 15
≥ 5 126 200 7 122 400 7

Total 1765 300 100 1 777 600 101

We note that model (3.1) and RM2(y,x2) gives practically the same poststratified estimates as model

(4.10). In units of 1000 households, we have 597, 524, 250, 269, 126 and 1 765 for model (4.10) and

595, 526, 249, 269, 126 and 1 765 for model (3.1) and RM2(y,x2). Because of the freedom of model

(4.10), with perfect fit, it seems that model (3.1) & RM2(y,x2) works well for estimating the number of

households of different sizes.

Comparing the poststratified- and expansion estimates, one feature stands out. The expansion estimate

of the number of two-persons households, 567 700, is clearly too high, as seen by comparing the

family size distributions in the total sample and the population ( in percentages), for k = 1, ..., 5 :

population: 19.2 - 19.8 - 19.0 - 25.8 - 16.2

sample :      18.6 - 23.0 - 17.8 - 24.9 - 15.7.
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The sample proportion of two-persons families is much too high, and even though we have corrected

for nonresponse bias, the expansion estimator cannot correct for a biased sample. This bias will

necessarily lead to biased estimates of H2. We need poststratification to correct for a biased sample.

5.3. Comparison with the quality survey for the 1990 Census and a projection
study

The quality survey for the Census 1990, PES 1990, contains 8280 respondents and uses the same

household definition as CES. It had a response rate of 95 per cent. The Hy -estimates uses

poststratification with respect to household size in the Census. However, no attempt were made to

correct for possible nonresponse bias with respect to actual household size. PES deals with the whole

population. Table 11 presents the estimates for the 0-79 age group with the same poststratification

method as in PES.

Table 11 also presents estimates based on the Household Projections study by Keilman and

Brunborg(1995). This study simulates household structure for the period 1990 to 2020. The data

sources are 28,384 individuals from the 1990 Population and Housing Census and 1988 Family and

Occupation Survey. Keilman and Brunborg project for the whole population in 1992. We adjust their

estimates to the 0-79 age group.

Table 11. Estimated household size totals for persons aged less than 80 years in Norway at
1.1.93, PES 1990 and projections  in units of 100

Household size PES 1990 Per cent Projections Per cent
  1   626 000 35   668 300 37
  2   494 200 28   549 000 30
  3   291 500 16   211 900 12
  4   250 000 14   221 500 12
≥ 5   115 300 6     97 500 5
Unknown     78 500 4

 Total 1 777 000 99 1 826 700 100

As seen in Section 5.1, it seems that estimates based on modeling of the reponse mechanism leads to

less biased estimates than mere poststratification or simple expansion, especially of H1 and H. This is

further supported by the PES 1990 estimates which are based on a sample with only 5 per cent

nonresponse.
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5.4. Comparisons with estimates in official statistics

The imputation-based expansion estimates in the second column of table 10 are identical to the

modified Horvitz-Thompson estimates with � ,qy x2
 = ny(x2)/[ny(x2) + ny*(x2)] (from (4.13)) as the

estimated response probabilities, used in the official statistics from the 1992 CES. This follows from

the fact that the modified Horvitz-Thompson estimator of Ny is given by
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So this modified Horvitz-Thompson estimator suffers from the same negative feature as the imputation

based expansion estimator (5.2); it cannot correct for the bias in an unrepresentative sample. For a

general description of the modified Horvitz-Thompson method see, e.g., (Särndal et al, 1992, ch.15).

Since 1993, an alternative, computationally simpler, modified Horvitz-Thompson estimator of type

(5.3) has been in use in the production of official statistics from the Norwegian CES, see (Belsby

1995). Here, the probability of response is estimated using a logistic model similar to RM2(y,x2),

except that when estimating the parameters in the response model, the family size is used in the

nonresponse group in place of household size, replacing (3.6). Of course, using (3.6) is possible only

when a population model is considered, which CES has not done. The estimated response probabilities

are given in table 12, with the estimates based on RM2(y,x2) & (3.1) from table 4.
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Table 12. Estimated probability of response based on the method used in CES since 1993 in
percentages

Household size

Place of residence 1 2 3 4 5 or more
CES-method

Rural 44.53 66.24 74.55 73.54 80.07
Urban 36.01 57.90 67.25 66.09 73.80

Model py x, 1
 in   (3.1) combined with RM2(y,x2)

Rural  47.77 60.90  79.05  73.26  81.52
Urban  38.92  52.04  72.44 65.62  75.46

Compared to the estimated response probabilities based on model RM2(y,x2) with (3.1), we see that

replacing household size with family size in the nonresponse group is not a satisfactory

approximation. For this particular survey, the CES approach overestimates the probability of response

for household of size 2 which in a representative sample would lead to underestimating of H2. The

estimated response probabilities will most likely be biased when we are using family size in place of

household size in the nonresponse group when estimating the parameters in the response model. This

bias is an additional problem to the previously mentioned one, that the modified Horvitz-Thompson

estimates will be similar to the imputation-based expansion estimates and cannot correct for biased

samples ( as has been a problem in CES  since 1993). In the 1992 CES, however, the sample is biased

with a too high proportion of families of size 2, and  the H2-estimate will be of the right magnitude, by

accident. The Hy - estimates in the 1992 CES  with this current "official" estimator  are 622 900, 518

500, 259 900, 258 500, 124 600 and 1 784 400 for H1, ..., H5  and H respectively.

6. Conclusions
We have investigated modeling and methodological issues for estimating the total number of

households of different sizes in Norway, based on the Norwegian Consumer Expenditure Survey (CES

). The main issue is how to correct for nonresponse bias. The existing estimation method in CES is a

modified Horvitz-Thompson estimator that includes a correction for nonresponse by estimating

response probabilities.  We have considered basically two model-based approaches, a regression

estimator and imputation-based poststratification after registered family size. With a population model

that corresponds to a group model after family size only, the regression estimator and imputation-

based poststratified estimator are identical. This family group model for household size and a logistic
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link for the response probability using household size as a categorical variable seems to work well for

our estimation problem.

In analyzing the 1992 CES, we find serious bias due to nonresponse, especially the estimates for H1

and H,  with pure poststratification (without imputation) correcting for some of the bias (probably

about 50 per cent for the estimates of H1 and H). Poststratification does not, however,  take into

account possible nonresponse bias dependent on household size. Our response models assume that the

response rates will vary with the actual household sizes rather than the registered the family sizes, and

it is quite evident that such nonresponse modeling makes a difference, leading to less biased estimates

than mere poststratification or simple expansion, especially of H1 and H.

The modified Horvitz-Thompson estimates used in the official statistics from CES corresponds to

imputation-based expansion estimates. Hence, they cannot correct for biased samples. The study in

this paper shows that, in addition to a nonignorable response model it is also necessary to poststratify

according to family size, i.e., using a population model given family size. Hence poststratification,

response modeling and imputation are key ingredients for a satisfactory approach.

Our final conclusion is that  Horvitz-Thompson-estimation should be replaced by poststratified

imputation-based estimation with an response model like RM2 (with population  model (3.1)), or a

total model like (4.10). Moreover, in any estimation problem of totals in survey sampling, one must be

aware of the fact that a Horvitz-Thompson estimator cannot correct for biased samples, even when

modified with good response estimates. Poststratification should always be considered as well as

imputation based on nonignorable response model.
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Appendix A
The data for rural and urban areas separately are given in table A1.

Table A1. Family and household sizes for the 1992 Norwegian Consumer Expenditure
Survey,split into rural and urban areas. The upper entry is for the urban group

Household size

Family size 1 2 3 4 ≥ 5
Total

response
Non-

response
Total

1 urban
   rural

28
55

24
24

7
13

2
7

0
2

61
101

78
75

139
176

2 urban
   rural

6
3

70
107

12
25

3
1

0
3

91
139

84
76

175
215

3 urban
   rural

4
6

8
17

57
74

11
29

3
3

83
129

40
51

123
180

4 urban
   rural

0
2

3
10

15
22

80
151

5
12

103
197

43
80

146
277

≥ 5 urban
   rural

0
1

1
3

0
4

6
11

66
115

73
134

28
32

101
166

Total urban
Total rural

38
67

106
161

91
138

102
199

74
135

411
700

273
314

684
1014
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Appendix  B

Theorem. Assume model (3.1) for Y. I.e., P(Y=yx1=k, x2=h) = pyk   is independent of h, but otherwise

the pyk’s are completely unknown with the only restriction being that pyky∑ =1, for all k . The

response mechanism is arbitrarily parametrized, i.e., no assumption is made about  P(R=1|Y=y, x1=k ,

x2=h). Then the maximum likelihood estimates for pyk  are given by
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Proof.    Let qyk,h = P(R=1|Y=y, x1=k , x2=h).  The log likelihood is given by
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It follows from (A1) that �pyk  satisfies the following relation:
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The imputed values are given by , from (4.4),
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Appendix C

Table A2. The completed sample including the imputed values, split into two groups, rural and
urban. The upper entry is for the urban group and the lower entry is for the rural
group. Based on model (3.1) and RM1(y,x2)

Household size

Family size 1 2 3 4 ≥ 5 Total
1 urban
   rural

77.8
103.6

44.1
43.1

12.9
18.4

3.9
8.7

0.3
2.3

139
176

2 urban
   rural

10.8
7.5

137.9
168.6

22.1
33.9

3.8
1.7

0.4
3.3

175
215

3 urban
   rural

7.5
10.7

14.3
25.3

81.3
104.8

16.4
35.6

3.6
3.7

123
180

4 urban
   rural

0.8
3.5

6.4
16.7

21.9
35.1

110.3
206.9

6.6
14.8

146
277

≥5 urban
   rural

0.5
1.6

2.4
4.7

1.0
5.2

9.0
14.4

88.2
140.1

101
166

Total /urban
  rural

97.4
126.9

205.1
258.4

139.2
197.4

143.4
267.3

99.1
164.2

684
1014

Table A3. The completed sample including the imputed values, split into two groups, rural and
urban. The upper entry is for the urban group and the lower entry is for the rural
group. Based on model (3.1) and RM2 (y,x2)

Household size

Family size 1 2 3 4 ≥ 5 Total
1 urban
   rural

81.6
107.5

42.7
41.5

10.4
15.9

4.0
8.8

0.3
2.3

139
176

2 urban
   rural

11.9
8.6

140.4
170.9

18.3
30.3

3.9
1.8

0.5
3.4

175
215

3 urban
   rural

9.4
13.4

16.1
27.7

75.2
96.5

18.6
38.5

3.7
3.9

123
180

4 urban
   rural

0.8
3.7

6.2
16.2

18.9
29.2

113.5
213.1

6.6
14.8

146
277

≥5 urban
   rural

0.5
1.7

2.3
4.6

0.6
4.6

9.3
14.9

88.3
140.2

101
166

Total /urban
  rural

104.2
134.9

207.7
260.9

123.4
176.5

149.3
277.1

99.4
164.6

684
1014

Appendix D
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Table A4. The completed sample including the imputed values, split into two groups, rural and
urban. The upper entry is for the urban group and the lower entry is for the rural
group. Based on model (4.10), i.e imputations determined by (4.8) and (4.9)

Household size

Family size 1 2 3 4 ≥ 5 Total
1 urban
   rural

79.6
108.3

47.2
38.5

9.4
16.9

2.8
9.9

0.0
2.4

139
176

2 urban
   rural

17.1
5.9

137.7
171.6

16.0
32.5

4.2
1.4

0.0
3.6

175
215

3 urban
   rural

11.4
11.8

15.7
27.3

76.2
96.2

15.6
41.1

4.1
3.6

123
180

4 urban
   rural

0.0
3.9

5.9
16.0

20.0
28.6

113.2
214.0

6.9
14.5

146
277

≥5 urban
   rural

0.0
2.0

2.0
4.8

0.0
5.2

8.5
15.6

90.5
138.4

101
166

Total /urban
  rural

108.1
131.9

208.5
258.2

121.6
179.4

144.3
282.0

101.5
162.5

684
1014


