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Sammendrag 

Modellering av arbeidstilbud ved å ta utgangspunkt i den konvensjonelle lærebok-tilnærmingen er 
komplisert i tilfellet med ikke-convekse budsjett mengder fordi tilbudet ikke lengre avhenger kun av 
marginale kriterier (første-ordens betingelser). I denne artikkelen viser vi at den konvensjonelle 
kontinuerlige arbeidstilbudsmodellen (inkludert hjørneløsning for ikke-arbeid-alternativet) med ikke-
konvekse budsjettmenger i kan estimeres ved kun å benytte første-ordens betingelser så fremt 
budsjettkurven er kontinuerlig deriverbar og nyttefunksjonen tilhører en bestemt klasse. Deretter 
diskuterer vi hvordan modellen kan spesifiseres økonometrisk. Endelig drøfter vi noen aspekter ved 
anvendelse av modellen til å simulere kontrafaktiske reformer. 
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1. Introduction 
The traditional models of labor supply are based on a version of the theory of consumer behavior with 

two goods, namely consumption (disposable income) and leisure. Whereas this theory seems straightly 

forward to apply empirically in the context of consumer demand, it is much less so when it comes to 

analyses of labor supply. There are several reasons for this. One reason is that due to the economic 

budget constraint the budget set will be kinked and non-convex and accordingly the usual marginal 

calculus does not apply. The so-called Hausman approach, initiated by Burtless and Hausman (1978), 

Hausman (1979) and Hausman (1985a, b), enables the researcher to account for kinks and non-

convexity of the budget constraint. Unfortunately, the Hausman approach has proved to be very hard 

to apply in practice, see for example Bloemen and Kapteyn (2008).1 A major reason for the difficulty 

inherent with empirical applications of the Hausman approach is that the usual first order conditions 

are no longer sufficient for determining optimal hours of work. In general, with non-convex budget 

sets, one needs global criteria for determining optimal hours of work. 

           The purpose of this paper is to demonstrate that with the traditional (continuous) labor supply 

modelling approach (allowing for non-participation) it suffice to use first order conditions to determine 

labor supply provided the tax function is smooth and the marginal tax rate at zero hours equals zero and 

the utility function belongs to a particular class. Subsequently, we discuss a possible econometric 

specification and how one can estimate the model without solving explicitly for the labor supply 

function.  

            Recently, the so-called discrete choice labor supply models have become popular, see van 

Soest (1995). The discrete choice models can readily handle any nonlinear budget constraints and 

rather general utility specifications. The discrete choice labor supply models can approximate a 

continuous model by increasing the number of feasible discrete hours of work. The essential 

difference between traditional continuous and discrete labor supply models is the stochastic 

specification of the stochastic terms that enter the utility function. Still, we believe it is of interest to 

discuss the conventional approach as an alternative for modeling labor supply. It is an empirical 

question whether or not a model based on continuous choice (with restricted specification on the 

stochastic terms) is better than a discrete choice model based on the discrete choice framework, à la 

van Soest (1995).2  

                                                      
1 See also Heim (2009) who demonstrate how a simulation procedure can be applied to estimate labor supply 
models with kinks provided the budget set is convex. 
2 A weakness with both the traditional discrete and continuous choice models is their inability to handle 
restrictions on hours of work. Dagsvik et al. (1988) proposed a model based on the notion of latent job choice, 
which was further developed by Dagsvik and Strøm (2006) and Dagsvik and Jia (2016), which can accommodate 
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         In the next section the model is analyzed in the case where the budget set is non-convex. In 

Section 3 we specify how the model can be estimated. Section 4 discusses how the model can be used 

to carry out different simulations of counterfactual reforms.  

2. The model   
In this section we discuss our particular approach based on a marginal criterion approach. Let 

( , )U C h  denote the agent’s utility in consumption C (disposable income) and annual hours of work, 

where 0 h M≤ ≤ and M is the maximum hours of work the agent can work. Let T denote the tax 

function and let  

(2.1)  ( ) ( , )C h Wh I T Wh I= + −  
where W is the agent’s wage rate and I his non-labor income. 

 

         Assumption 1 
          The utility function has the structure  

 (2.2)  1 2 1 2( , ) ( ) ( ) ( ) ( )U C h V C V h r V C V hκ κ= + +  
where κ is a positive random variable, r is a constant, 1( )V C  is a continuously differentiable, strictly 

increasing and concave function of C and 2 ( )V h  a continuously differentiable, strictly decreasing and 

concave function of h. 

 

         Note that the assumption that 0κ >  represents no restriction because it is the sign of 2 ( )V hκ  

that matters in the model. Unfortunately, Assumption 1 is, however, not sufficient to ensure quasi-

concavity of the utility function. We have the following result. 

 

          Proposition 1 

          Under Assumption 1 a necessary and sufficient condition for the utility function to be strictly 

increasing in C and strictly decreasing in h is that      

 (2.3)      21 ( ) 0r V hκ+ >  and 11 ( ) 0.rV C+ >  
If (2.3) holds the utility function in (2.2) is quasi-concave when  

(2.4) 
2 2

1 2 2 1
2 2 2

1 2 2 2 1 1 1 2

( ( )) ( ) ( ( )) ( )

2( ( ) ( )) ( ) ( )( ( )) ( ) ( )( ( ))

V C V h V h V hr
V C V h V h V h V C V C V C V h

κκ
′ ′′ ′ ′′+

≥
′ ′ ′′ ′ ′′ ′− −

.  

                                                                                                                                                                      
restrictions on hours of work and job opportunities. The framework of Dagsvik and Strøm (2006) is therefore 
suitable to apply when choices are constrained.  
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       The proof of Proposition 1 is given in the Appendix. Note that the right hand side of (2.4) is 

always negative. Thus, the next result follows. 

 

          Corollary 1 

          If (2.3) holds the utility in (2.2) is always quasi-concave when 0.r ≥   

 

          Assumption 1 is fairly general and is always satisfied by utility functions that are separable in 

consumption and hours of work provided they are increasing and concave in consumption and 

decreasing and concave in hours. It is however, not satisfied by the utility function typically applied in 

the Hausman approach, which yields a linear labor supply function. It is not satisfied by the general 

quadratic utility function either (Heim, 2009) apart from the case where utility is separable in hours 

and consumption. 

          An interesting special case of utility functions within the class defined by (2.2) is obtained when 

1( )V C  and 2 ( )V h  are given by the Box-Cox functions 

 (2.5)  
1

1
1

1( ) CV C
α

α
−

=      and     
2

2
2

( ) 1( M hV h ) .
α

α
− −

=
 

A justification of the utility structure given by (2.2) and (2.5) based on particular invariance properties 

has been given by Dagsvik and Røine Hoff (2011). When (2.5) holds the condition in (2.4) reduces to  

  
1 2

1 2

1 2

1 1 2 2

(1 ) (1 )( )
(1 ) ( ) (1 )( ( ) 2

C M hr .
C V C M h ) V h

α α

α α

κ α ακ
κ α α

− −

− −

− + − −
≥ −

− + − − +  
           Let m be the number of tax segments and let jh denote the hours of work that corresponds to 

the j-th kink point of the budget curve ( , ),xW I T xW I+ −  [0, ].x M∈  For 1[ , ]j jh h h−∈  let 

                          1 2 1 2 1( ) { [ , ] : ( )(1 ( ( ))) ( )(1 ( ( )))}j j jB h x h h V x rV C x V h rV C h−= ∈ + ≥ +  
and  

  1 2 1 2 1( ) { [ , ] : ( )(1 ( ( ))) ( )(1 ( ( )))}j j jB h x h h V x rV C x V h rV C h−= ∈ + < +  

for 0j >  and 0 0,h =  and define  

(2.6)  1

2 1 1 2

( ( )) ( )( ) log ,
( )(1 ( ( ))) ( ) ( ( )) ( )

V C h C hg h
V h rV C h rC h V C h V h

′ ′ −
=  ′ ′ ′+ +   

(2.7a)  1 1
1 ( )

2 1 2 1

( ( )) ( ( ))( ) min log
( )(1 ( ( ))) ( )(1 ( ( )))j

j x B h

V C h V C xh
V x rV C x V h rV C h

ψ
∈

 −
=  + − +   

and 
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(2.7b)   1 1
2 ( )

2 1 2 1

( ( )) ( ( ))( ) max log .
( )(1 ( ( ))) ( )(1 ( ( )))j

j x B h

V C h V C xh
V x rV C x V h rV C h

ψ
∈

 −
=  + − +   

Note that when h is positive ( )g h  depends on W through the wage rate which enters in (2.1).3  

         In the case with non-convex budget sets there may be multiple tangencies between the marginal 

rate of substitution and the budget curve.  

 
         Assumption 2 

         The tax function is piecewise linear and the marginal tax rate is equal to zero at zero hours of 

work. 

 

         The property that the marginal tax rate is zero for hours of work equal to zero is a feature that is 

shared with practically all tax systems. In the following let h  denote the chosen hours of work. We 

have: 

 

         Theorem 1 

         Assume that Assumptions 1 and 2 hold. Then hours of work 1( , )j jh h h−∈  if log ( )g hκ =   and    

   2 1max ( ) ( ) min ( ).k j k k j kh g h hψ ψ≠ ≠≤ ≤     

Hours of work is located at kink point , 0,jh j >  if   

                   2 1{ 1, , 1}{ 1, , 1}
max( ( ), max ( )) log min( ( ), min ( )).j k j j k jk j j jk j j j

g h h g h hψ κ ψ
∉ − +∉ − +

− < < +   

Hours of works equals zero if  log (0).gκ ≤    

 

Proof:  

The first order condition implies that optimal hours of work subject to the budget constrain (2.1) is 

given by 

   2

1

( ( ) )( )
( ( ) )

U C h ,hC h
U C h ,h
′

′ ≤ −
′

 


 
  

where equality holds when h  is positive and different from the kink points. Hence, in the case of 

interior solution  1( , )j jh h h−∈  we must have that 

                                                      
3 Note that the denominator in the expression on the right hand side of (2.6) is decreasing in h (unless for 
extreme tax systems). Hence, if the denominator is negative for interior solutions to occur (which it must to 
allow for interior solutions) it will therefore be negative for h = 0. 
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         2

1

( ( ) )( ) =
( ( ) )

U C h ,hC h .
U C h ,h
′

′ −
′

 


 
 

It follows readily that under Assumption 1 the first order conditions above yield ( ) log .g h κ=  In order 

for hours of work to be the optimal choice within 1( , )j jh h− it must be the case that 

( ( ), ) ( ( ), )U C h h U C h h≥   for all 1[ , ].j jh h h−∉  Under Assumption 1 the inequality above becomes:    

              1 2 1 2 1 2 1 2( ( )) ( ) ( ( )) ( ) ( ( )) ( ) ( ( )) ( )V C h V h r V C h V h V C h V h r V C h V hκ κ κ κ+ + ≥ + +      

for 1[0, ] \ [ , ].j jh M h h−∈  By (2.7 a,b) the latter inequality is equivalent to  

(2.8)       2 1max ( ) log min ( ).k j k k j kh hψ κ ψ≠ ≠≤ ≤ 
 

Since ( ) logg h κ=  in the case of positive h different from the kink points we obtain from (2.8) that     

              2 1max ( ) ( ) min ( )k j k k j kh g h hψ ψ≠ ≠≤ ≤    

which proves the first part of the theorem.  

           Consider the case where h  is located at the kink point .jh  For this to happen it must be the 

case that 

       2

1

( ( ) )
( +) < ( )

( ( ) )
j j

j j
j j

U C h ,h
C h C h

U C h ,h
′

′ ′− < −
′

 
which is equivalent to4 

 (2.9)        ( ) log ( ).j jg h g hκ− < < +  
In addition, one must have that  

 1 2 1 2 1 2 1 2( ( )) ( ) ( ( )) ( ) ( ( )) ( ) ( ( )) ( )j j j jV C h V h r V C h V h V C h V h r V C h V hκ κ κ κ+ + ≥ + +  
for 2 1[0, ] \ [ , ].j jh M h h− +∈  The latter inequality is equivalent to 

(2.10)   2 1{ 1, , 1}{ 1, , 1}
max ( ) log min ( ).k j k jk j j jk j j j

h hψ κ ψ
∉ − +∉ − +

< <
 

If we combine (2.9) and (2.10) we obtain the second part of the theorem. 

         Consider finally the case where the optimal decision is not to work. By Assumption 2 the tax 

function is such that the marginal tax rate at zero hours is zero and thus the marginal rate of 

substitution at zero hours of work is greater than the marginal rate of substitution at any tax segment. 

It follows that if (0) logg κ≥  the optimal decision is not to work. Hence, the result of the theorem 

follows. 

           Q.E.D. 
                                                      
4 As usual, the notation h +  means lim ( ) ( ).

jh h jf h f h→ = +  The definition of jh −  is similar.  
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         We next consider choice probabilities. Let ( )f x  and ( )F x be the conditional p.d.f. and 

conditional c.d.f. of logκ given the wage rate. Also let 1{ }A  denote the indicator function that is equal 

to 1 if the event A occurs and zero otherwise. 

 

         Theorem 2 

         Suppose that Assumptions 1 and 2 hold. Then the conditional probability density of hours of 

work, given the wage rate, is equal to 

   ( ) ( ( )) | ( ) |h f g h g hλ ′=  

for 0,h >  provided h is not a kink point. The conditional probability of h  being located at kink point 

,jh given the wage rate is equal to 

     ( ) ( )1 2{ 1, , 1} { 1, , 1}
( ) min( ( ), min ( )) max( ( ), max ( )) .j j k j j k jk j j j k j j j

P h h F g h h F g h hψ ψ
∉ − + ∉ − +

= = + − −   

The conditional probability of 0,h =  given the wage rate, is equal to  

   ( 0) ( (0)).P h F g= =  

 

Proof: Consider first the case where 1( , ), 0.j jh h h j−∈ >  Note that the function ( ),g h  as a function of 

h, is invertible in 1( , ).j jh h−  To determine which of the segments is the one that corresponds to the 

observed hours of work, we apply Theorem 1. From Theorem 1 it follows, with a small Δh  and 

1, ( , ),j jh h h h h−+ ∆ ∈  that 

       2 1( ( , )) ( ( )) | ( ) |1{max ( ) ( ) min ( )} ( ).k j k k j kP h h h h f g h g h h g h h h o hψ ψ≠ ≠′∈ + ∆ = ≤ ≤ ∆ + ∆
 

Note next that 2 11{max ( ) ( ) min ( )}k j k k j kh g h hψ ψ≠ ≠≤ ≤  is equal to 1 or 0 because ( )g h  and 

( ), 1,2, 1,2,..., ,kr h k r mψ = =  are deterministic functions. If 2 11{max ( ) ( ) min ( )} 0k j k k j kh g h hψ ψ≠ ≠≤ ≤ =  

then h cannot be the optimal choice and therefore we conclude that 

2 11{max ( ) ( ) min ( )} 1k j k k j kh g h hψ ψ≠ ≠≤ ≤ =  in which case this factor does not play any role in the 

choice probability above. Hence we obtain that 

  ( ( , )) ( ( )) | ( ) | ( ).P h h h h f g h g h h o h′∈ + ∆ = ∆ + ∆
 

Thus, it follows that the corresponding p.d.f.  is given by ( ( )) | ( ) | .f g h g h′  

          Consider next the probability that the h  is located at kink point , 0.jh j >  From Theorem 1 

it follows that  
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            ( )2 1{ 1, , 1}{ 1, , 1}
( ) max( ( ), max ( )) log min( ( ), min ( ))j j k j j k jk j j jk j j j

P h h P g h h g h hψ κ ψ
∉ − +∉ − +

= = − < < +   

                            ( ) ( )1 2{ 1, , 1} { 1, , 1}
min( ( ), min ( )) max( ( ), max ( )) .j k j j k jk j j j k j j j

F g h h F g h hψ ψ
∉ − + ∉ − +

= + − −
 

           Consider finally the case where 0.h =  Then from Theorem 1 it follows that 

 ( 0) ( (0) log ) ( (0)).P h P g F gκ= = ≥ =
 

Hence, the proof is complete. 

                    Q.E.D. 

        Theorem 2 implies that in the presence of kinks in the budget curve the likelihood function 

becomes non-differentiable. However, if only observations on participation versus non-participation 

are used then the corresponding likelihood function becomes differentiable. This is an implication of 

the next corollary.  

 
        Corollary 2 
         Under Assumptions 1 and 2 the conditional probabilities of working and not working given the 

wage rate equal 

 ( 0) 1 ( (0))P h F g> = −    and    ( 0) ( (0)).P h F g= =  

 

         In principle one could apply the result of Theorem 2 to develop a full information maximum 

likelihood procedure. Unfortunately, there are several problems with such an endeavor. First, if 

observations on kink points are present the likelihood function will be non-differentiable on some 

subset of the parameter space. Although this problem might be overcome by recent developments in 

statistical theory (Drton, 2009), a more serious problem is perhaps the fact that the computation of the 

likelihood function involves the minimization and maximization of functions over a continuous 

interval. 

         The next result is an immediate implication of Theorem 2. 

 

           Corollary 3 

           Suppose that the tax function is continuously differentiable and that Assumptions 1 and 2 hold. 

Then the conditional probability density of hours of work, given the wage rate, is equal to 

   ( ) ( ( )) | ( ) |h f g h g hλ ′=  

for 0,h >  provided h is not a kink point. The conditional probability of 0h =  given the wage rate is 

equal to  
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        ( 0) ( (0)).P h F g= =  

 

         Corollary 3 implies that the problem with multiple tangencies can easily be dealt with in the case 

with continuously differentiable budget curves.5 This is due to the particular structure of the utility 

function asserted in Assumption 1. In empirical analyses one must extend the result of Theorem 2 to 

account for the fact that the wage rate is unobserved for those who do not work. In addition κ may be 

correlated with W due to the fact that individuals which are attractive on the labor market, and may 

therefore be offered high wage rates, may also have strong preferences for supplying labor. We shall 

discuss these aspects further in the next section. 

          Note that the result obtained in Theorems 1 and 2 do not depend critically on κ being the only 

source of randomness. Suppose for example that ( ) ( , )g h g h µ= and ( ) ( , )k kh hψ ψ µ=  where µ  is a 

random vector that we for simplicity assume is independent of .κ  Then, conditional on µ  the p.d.f. of 

the optimal hours of work in case of an interior solution different from the kink points will, according 

to Theorem 2 be equal to 1( ( , )) | ( , ) |f g h g hµ µ′  where 1( , )g h µ′  denotes the derivative with respect to h. 

Thus, the corresponding unconditional density will be 1( ( ( , )) | ( , ) |)E f g h g hµ µ′  where the expectation 

is taken with respect to .µ  Similarly, it follows from Theorem 2 that the probability of not working in 

this case becomes equal to ( ( (0, ))).E F g µ  
           It should be noted that once the model has been estimated one can use the utility function 

directly when assessing the effect of counterfactual policies such as tax reforms, for example. This 

means that one does not need to employ the rather cumbersome first order conditions to predict the 

effect of counterfactual reforms. Moreover, the explicit form of the utility function allows for 

calculation of welfare in terms of compensating variations.  

3. Econometric specification and maximum likelihood estimation 
with generalized Box-Cox utility function 

In this section we consider econometric specification and maximum likelihood estimation when the 

budget curve is assumed to be continuously differentiable and the utility function is given by  

                 1 2( , ) ( ) ( )U C h V C C V hκ= − +  

                                                      
5 Saez (2010) has analyzed bunching of taxpayers at kink points of the US income tax schedule. He has found 
clear evidence of bunching only around the first kink point for the self-employed but no bunching for wage 
earners. Saez suggests that tax evasion may be the reason for the bunching at the first kink point for the self-
employed.  
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where 1( )V C  and 2 ( )V h  are given in (2.5) and 

 (3.1)                 2 2exp( ),X bκ ε= +  
where C  is subsistence consumption, 2ε  is a random error term and 2X  is a vector of individual 

characteristics that are assumed to affect the preference for leisure. In addition, we extend the analysis 

above by allowing for endogenous wage rates. Note that the utility function specified above belongs to 

the class given in (2.2) with 0.r =  The general case with 0r ≠  can be treated in a similar way.  

         In order to estimate the model we need to introduce a wage equation. We assume that the wage 

rate is given by the wage equation 

 (3.2)                                 1 1logW=X γ+ε , 

where 1X  is a vector of individual characteristics and γ  is an unknown parameter vector and 1ε  is an 

error term. We assume further that 1 2( , )ε ε  are bivariate normally distributed error terms with zero 

mean. Because of this assumption we can write: 

 (3.3)                                  2 1 3ε θε ε= +  
where 3ε  is a zero mean normal random variable that is independent of 1,ε and θ  is a constant. The 

covariance between the error term in the wage equation and the taste shifter is then given by 

1 2 1( ) 2Cov ε ,ε = σθ , where 2
1 1Var .σ ε=  We shall use (3.3) in order to apply a version of the control 

function approach (see Wooldridge, 2010). From (2.6) it follows that   

(3.4) 1 2 1( ) ( 1) log( ( ) ) (1 ) log( ) log(1 ( , )) log .g h C h C M h T Wh I Wα α ′= − − + − − + − +   
 

From Theorem 1 and (3.1) it follows that  

 (3.5)  2 2( ) .g h X bε = −   

Let 1 2( , )X X X=  and  

    2( , , , ) ( ) logh W I X g h W X bξ = − −    

  1 2 1 2( 1) log( ( ) ) (1 ) log( ) log(1 ( , )) .C h C M h T Wh I X bα α ′= − − + − − + − −  
 

From (3.3) and (3.2) we obtain that 

 (3.6)  3 2 1 1( ) (log ) ( , , , ) (1 ) logg h X b W X h W I X W Xε θ γ ξ θ θ γ= − − − = + − + 
 

It follows from (3.3) that the error term 3ε  is independent of W. Thus, econometrically, W appears in 

relation (3.6) as if it were exogenous. Similarly to Theorem 1 it follows from (3.6) that the p.d.f. of h  

is given by  

 (3.7) 1
1

3 3

( , , , ) (1 ) log1( | , , ) | ( , , , ) |h W I X W Xh W X I h W I Xξ θ θ γλ ϕ ξ
σ σ

 + − + ′=  
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for 0h >  where ϕ  is the standard normal p.d.f. and6 

                      1 1 2 1
1 1

1

( 1) (1 ( , )) 1 ( , )( ) ( , , , )
( ) 1 ( , )

W T Wh I WT Wh Ig h h W I X +
M hC h C T Wh I

α αξ
′ ′′− − −′ ′= = −

−− ′−
. 

Moreover, if 2 2(0)g X bε < −  the optimal decision is not to work. Using (3.2) and (3.3) the last 

inequality is equivalent to  

 (3.8)  3 1 1( 1) (0,0, , )I X Xε θ ε ξ γ+ − < +  
Hence, (3.8) implies that  

 (3.9)  1
2 2 2
3 1

(0,0, , )( 0 | , )
(1 )
I X XP h I X ξ γ

σ θ σ

 + = = Φ
 + − 



 
where Φ  is the standard normal c.d.f. We note that in this case the marginal tax rate at zero hours of 

work is equal to zero, which is one of the requirements in Assumption 2. Let 1S  be the subsample of 

those who work and 0S  the subsample of those who do not work. From (3.7) and (3.9) it follows 

immediately that the log likelihood function for those individuals who work is given by 

(3.10)  
1

1 1
1 1

3 3 1 1

( ) (1 )log log1 1( ) |i i i i i i i i
i i i i

i S

h ,W ,I ,X W X W XL | h ,W ,I ,Xξ θ θ γ γ
ϕ ξ ϕ

σ σ σ σ∈

    + − + −′=         
∏


  

where the subscript i indexes the individuals. The likelihood function for those who do not work is 

given by 

(3.11)  
0

1
0 2 2 2

3 1

0 0
(1 )

i i i

i S

( , ,I ,X ) XL ξ γ

σ θ σ∈

 + = Φ
 + − 

∏ . 

The total likelihood is thus the product of the likelihood functions in (3.10) and (3.11). We note that 

the likelihood functions in (3.10) and (3.11) are much simpler than the corresponding likelihood 

function that is implied by the Hausman approach (Bloemen and Kapteyn, 2008, and Heim, 2009). 

4. Counterfactual reforms and labor supply responses  
In this section we discuss how the model above can be applied for the purpose of simulating the effect 

of hypothetical interventions such as changes in the wage rate, non-labor income or tax rules. We be-

lieve there are two ways in which the model can be used.  

                                                      
6 Note that the two first parts on the right hand side in the above equation is in fact the Slutsky elasticity.  
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         The first type of simulation, and perhaps the most interesting one, is to use the model as a pure 

labor supply model. Recall that the role of the wage equation is analogous to an instrument variable 

relation which is only supposed to represent the distribution of the wage rates in the actual labor 

market which the individuals (in the sample) are facing, as well as the correlation between the error 

terms in the wage equation and the utility representation. Once the model has been estimated the wage 

equation no longer has any role to play in this case where the purpose is to simulate labor supply 

responses given a hypothetical intervention. However, since the utility function contains a stochastic 

part, representing unobserved heterogeneity in preferences, it is only possible to simulate labor supply 

responses in a distributional sense. Since the utility function has been estimated there is no need to use 

the marginal calculus of Theorem 2 to simulate counterfactual responses. The following simulation 

procedure is easy to apply: For individual i draw independent normal taste shifter 2ε  with standard 

deviation 2.σ  Second, individual characteristics, wage rates, non-labor incomes and the tax system 

must be selected for each individual in the population. Then, for each individual the estimated utility 

function is maximized numerically, given the simulated random error term. This is done by first 

approximating the continuous set of possible hours of work [0, ]M  by an associated finite set with a 

large number of points and subsequently determining labor supply as the value of hours of work that 

maximizes utility on the associated finite set of hours. However, if one is only interested in simulating 

labor market participation this can be done using a simple formula as we shall describe below. 

          A second way of conducting simulations from hypothetical intervention aims at simulating 

realized labor supply in the labor market. This approach rests on the assumption that, the structure of 

the wage equation holds, apart from the intercept, also in the new labor market equilibrium (including 

the joint distribution of 1 2( , )ε ε  after a change in the intercept of the wage equation, non-labor income 

or tax system has occurred. Recall, however, that the wage equation is not a fully structural equation 

because it is silent about how the wage rates respond to the policy of labor market unions, macro-

economic variables such as import and export prices, interest rates, firm productivity and tax changes 

in rates. In principle one could use panel data or repeated cross-section data to test whether or not the 

parameters of the wage equation are constant over time. Furthermore, similarly to Heckman and 

Sedlaceck (1985), one could use macro time series data to estimate a structural specification of the 

intercept in the wage equation.  

        To illustrate the difference between the simulations of different counterfactual settings we shall 

consider simulation of labor market participation. Consider first the case where one wishes to predict 

parcitipation for a a population of women with characteristics 2X  facing wage rate W. Note first that 

when 1 3,σ σ  and θ  have been estimated one can compute 2σ  by using the relation 2 2 2 2
2 1 3 .σ θ σ σ= +  
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The latter equation follows from (3.3). From (3.4) and the condition 2 2(0)g X bε < −  it follows that 

the participation probability is given by 

1 2 2
2 2

2

( 1) log( (0) ) + (1 ) log log( (0) ) .C C M W X bP g X b α αε
σ

 − − − + −
< − = Φ 

 
  

The expression above predicts the fraction of women who wish to work given that they all have the 

same observable preference characteristics 2X  and given that the (hypothetical) wage rate is equal to 

W.  

         Next, consider the setting where one wishes to predict pure participation for a population of 

women with characertistics 1 2( , )X X  where the women face different wage rates, as predicted by a 

wage equation which includes an error term that is normally distributed with hypothetical coefficient 

vector γ  associated with 1X  and variance 2
1σ  of the hypothetical error term. In this case it follows 

that the participation probability is given by 

      1 2 1 2
2 2
2 1

( 1) log( (0) ) + (1 ) log .C C M X X bα α γ

σ σ

 − − − + − Φ
 + 




 

The expression above is the fraction of women with characteristics 1 2( , )X X  who would like to work 

given the distribution of wage rates described by the hypothetical wage equation. Note that here, the 

parameters γ  and 1σ  are not necessarily equal to the corresponding estimates obtained in empirical 

analyses. For example, it may be of interest to let 1 0σ =  which means that the hypothetical wage rate 

for each woman is assigned without error. 

          Consider finally the case where one wishes to predict realized labor supply in a labor market 

that is similar to the one from which the data have been obtained. As mentioned above, in this scenario 

the maintained assumptions about the wage rates are as in the empirical situation. Note first that

1 2/ρ θσ σ=  implying that 2 2 2 2 2
3 1 2 1 1 2(1 ) 2 .σ θ σ σ σ ρσ σ+ − = + −  From (3.9) the fraction of women 

with characteristics 1 2( , )X X  who will realize participation equals 

          1 2 1 2
2 2
2 1 1 2

( 1) log( (0) ) + (1 ) log .
2

C C M X X bα α γ

σ σ ρσ σ

 − − − + − Φ
 + − 

                   

In the latter case we have taken into account that the error term in the utility function and the wage 

rates are correlated (ceteris paribus) because individuals with high unobserved abilities and human 

capital are attractive on the labor market and consequently will receive high wage offers. Suppose for 

example that γ γ=  and 1 1.σ σ=  Then, if 

         1 2 1 2( 1) log( (0) ) + (1 ) log 0C C M X X bα α γ− − − + − >  



16 

the fraction of women that will realize participation is actually higher than the fraction of women who 

wishes to participate, despite the assumption that the distribution of wage rates in the two cases are 

equal. At first glance this may seem counterintuitive. The reaon is that the wage rates in the pure sup-

ply situation are assigned with errors which are uncorrelated with the error term in the reservation 

wage rate. In contrast, in the actual labor market 

        2 1 2 1 2(log | ) log ( | ) log /E W E W E E Wε ε ε ρσ σ= + = +   

which shows that when controlling for unobserved abilities the average offered wage rate (under the 

same conditions as in the labor labor market that generated the data) is systematically higher than 

the average hypothetical wage rate in the pure labor supply scenario. 

5. Conclusion 
The conventional neoclassical labor supply model in the presence of tax systems that generate non-

convex budget sets has proved difficult to estimate. In this paper we have demonstrated that it is 

possible, under rather general conditions, to estimate labor supply models using conventional 

techniques without applying the Hausman (or Heim) methodology. Our methodology does not require 

a closed form solution for the labor supply function.  

         Finally, we have discussed the application of the model to predict labor supply in different 

counterfactual scenarios.  
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Appendix 
Proof of Proposition 1: 

Let ( , )U C h  be the function given in Assumption 1, that is, 

(A.1)  1 2 1 2( , ) ( ) ( ) ( ) ( ).U C h V C V h r V C V hκ κ= + +   

A necessary and sufficient condition for quasi-concavity of ( , )U C h  is that 

(A.2)  
1 2

1 11 12

2 21 22

0 ( )
( ) ( ) ( ) 0

( ) ( )

( )

( )

U C,h
D det U C,h U C,h U C,h .

U U C,h U C,h

U C,h

C,h

′ 
 ′ ′ ′≡ ≥ 
 ′ ′ ′ 

′

 
From (A.1) we obtain that  

 1 1 2( , ) ( )(1 ( )),U C h V C r V hκ′′ = +   2 2 1( , ) ( )(1 ( ))U C h V h rV Cκ′ ′= + , 

       11 1 2( , ) ( )(1 ( )),U C h V C r V hκ′′′ = +  22 2 1( , ) ( )(1 ( ))U C h V h rV Cκ ′′′ = +   

and  

12 1 2( , ) ( ) ( ).U C h r V C V hκ ′ ′′ =   

Hence, it follows that 

(A.3) 2 2
2 1 1 2 1 2 2(1 ( ))(1 ( ))[2( ( ) ( )) ( ( )) ( )(1 ( ))D r V h rV C V C V h r V C V h r V hκ κ κ κ′ ′ ′ ′′= + + − +   

    2
2 1 1( ( )) ( )(1 ( ))]V h V C rV Cκ ′ ′′− + . 

In order for utility to be strictly increasing in C and strictly decreasing in h is must be the case that  

(A.4)  21 ( ) 0r V hκ+ >  and 11 ( ) 0.rV C+ >  

Since 0κ >  it follows from (A.3) that when (A.4) holds then utility is quasi-concave provided 

(A.5)      2 2 2
1 2 1 2 2 2 1 12( ( ) ( )) ( ( )) ( )(1 ( )) ( ( )) ( )(1 ( )) 0.V C V h r V C V h r V h V h V C rV Cκ κ κ′ ′ ′ ′′ ′ ′′− + − + ≥   

The inequality in (A.5) evidently holds when r is non-negative provided (A.4) holds. Moreover, (A.5) 

is equivalent to 

(A.6)         
2 2

1 2 2 1
2 2 2

1 2 2 2 1 1 1 2

( ( )) ( ) ( ( )) ( )

2( ( ) ( )) ( ) ( )( ( )) ( ) ( )( ( ))

V C V h V h V hr
V C V h V h V h V C V C V C V h

κκ
′ ′′ ′ ′′+

≥
′ ′ ′′ ′ ′′ ′− −

.  

Since (A.5) holds for non-negative r when (A.4) holds the right hand side of (A.6) must be non-

positive. 

                        Q.E.D. 
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