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1 Introduction

Access to matched data sets enables consideration of unobserved heterogeneity cor-

responding to different types of units in regression analyses. Often the main focus

is on one type of observational unit, while it is also necessary to account for unob-

served heterogeneity caused by another type of observational unit that is matched

to the main type. Wage modeling by means of matched employer-employee data

may be the best known example. Here, the individual is considered the main ob-

servational unit, and the firm to which the individual is matched has the role of a

secondary observational unit. The use of the two dimensional unobserved effects in

panel data models is not limited to labour market applications. Other examples are

bank-customers, student-teachers, and patients-general practitioners (see Ioannidou

and Ongena, 2010; Rockoff, 2004; Biørn and Godager, 2010).

An important choice to make in panel data analysis with two types of observa-

tional units is how to specify unobserved time-invariant effects related to the primary

and secondary type of units, i.e., whether they should be treated as fixed or ran-

dom. Abowd et al. (1999), whose paper contributes seminally to wage modeling us-

ing employer-employee data, represent both unobserved individual- and firm-specific

heterogeneity by fixed effects. Following Abowd et al. (1999), it is common in this

literature to assume that both the unobserved effects are fixed.1

There are few examples in the literature of models for matched observation units

where unobserved heterogeneity in both dimensions is represented by random ef-

fects. Notable exceptions are Woodcock (2008, 2015), who estimates a model with

1See for instance the two computer oriented articles by Cornelissen (2008), and Guimarães and
Portugal (2010).
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unobserved person, firm and match effects —all of which are assumed to be random —

using what is labeled a ‘hybrid mixed effect estimator’. Other contributions include

Abowd and Kramarz (1999), Abowd et al. (2008), Dostie (2011) and Sørensen and

Vejlin (2013). Dostie (2011), having access to data where each worker is observed in

only one firm, did not have the option to choose a specification with fixed individual

and firm effects, using instead a random effects specification. Thus, model specifica-

tions involving random individual and random firm effects are less data demanding

than models involving fixed individual and fixed firm effects.

There are, however, potential problems related to the estimation of random ef-

fects models. One is related to dimensionality, and therefore computer-memory

requirements. It is evident that matched registry data include several thousands

of observational units, which again are matched with thousands of another type of

observational units. Thus, when the model with two-way unobserved heterogeneity

is estimated, one may end up with having to invert very large matrices, which may

not be computationally feasible in terms of memory and reasonable computing time.

Another problem is that the (pure) random effects specification imposes orthogo-

nality between the unobserved time-invariant variable and the observed explanatory

variables, which may lead to biased estimates of the slope parameters of the model.

A fundamental problem related to fixed effects models is that the coeffi cients

corresponding to time-invariant individual specific explanatory variables are not

identified. Within the framework of two-way fixed effects, e.g. Abowd et al. (1999),

a two-step procedure is usually applied to identify the effects of such explanatory

variables: First estimate a fixed effects model using only individual time-varying

covariates. Then run an auxiliary regression of estimated fixed effects on individual-

specific variables and the individual means of time-varying variables. This is called
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the fixed effects vector decomposition (FEVD) estimator and is applied in many

empirical studies and advocated inter alia by Plümper and Troeger (2011). However,

Greene (2011) and Greene (2012, pp. 364—370) make clear that the FEVD estimator

is based on implicit exogeneity assumptions which are somewhat different from those

employed by Hausman and Taylor (1981) in their instrumental variable approach.

The implicit exogeneity assumption used in conjunction with the FEVD estimator

is that the time-invariant observed variables are uncorrelated with the unobserved

individual effects; only the time-varying variables are allowed to be correlated with

the unobserved individual specific effect.2

Our paper entails two distinctive features that makes it different from earlier

contributions using matched panel employer-employee data. The first is related to

computational aspects. We transform our econometric relation using a backward

orthogonal deviations operator, also known as the ‘Helmert transformation’, which

sweeps out the unobserved effects corresponding to N main observation units (e.g.,

individuals).3 Such a transformation does not distort the orthogonality property

of the (transformed) genuine error terms. We show that the dimension reduction

brought about by the Helmert transformation facilitates application of an itera-

tively feasible GLS (IFGLS) estimator. Hence, the transformation contributes to

a simplification of the maximization problem that needs to be solved for obtaining

parameter estimates. As far as we know, the Helmert transformation has not been

utilized before when analyzing matched employer-employee panel data.

2Breusch et al. (2011) have also questioned the transparency and gain of the fixed effects vector
decomposition. The articles by Breusch et al. (2011), Greene (2011) and Plümper and Troeger
(2011) formed part of the Symposium on Fixed-Effect Vector Decomposition.

3As mentioned by Watson (2006), the Helmert transformation originates from geodesy. Balestra
and Krishnakumar (2008) and Arellano and Bover (1995) comment on this transformation even
though they do not use the label ‘Helmert transformation’. Rather they refer to it as ‘the backward
and forward orthogonal deviations operator’. See also Keane and Runkle (1992) for the related
concept of forward filtering.
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The other distinctive feature is that we apply a control function approach to

account for correlation between the time-invariant unobserved effects of the primary

unit and the observed right-hand side variables. In our wage-equation application,

where most of the observed right hand side variables are individual-specific, the

Hausman-Taylor framework is not helpful. To remedy a potential endogeneity prob-

lem related to the main explanatory variable —education length —we use a control

function approach based on the assumption that the choice of education length fol-

lows an ordered probit model, with some of the explanatory variables excluded from

the wage equation. The control function captures the correlation between educa-

tional length and the unobserved individual-specific effect and enables us to relax

the orthogonality assumption of the classical random effects model. This approach

has previously not been applied in a setting with matched employer-employee panel

data. With respect to unobserved time-invariant firm effects we consider both a

fixed and a random effects specification.

The rest of the paper is organized as follows. In Section 2, we outline the general

modeling framework and introduce the Helmert transformation. This transforma-

tion enables dimensionality reduction and facilitates the application of an IFGLS

routine for estimation of the unknown parameters. We furthermore demonstrate

how to control for correlation between individual time-invariant explanatory vari-

ables and random effects using a control function approach. In Section 3 we illustrate

how the econometric framework can be applied in a wage equation setting. Section

4 provides some concluding remarks.
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2 The general model

Let i ∈ {1, ..., N} denote the main observation unit and j ∈ {1, ...,M} denote the

secondary unit. The unit, j, that is linked to i at t is conceptualized through a

link function: j = J(i, t). Adopting the notation of Abowd et al. (2008, p. 733)

for a general linked linear model, the starting point of our analysis is the following

regression equation:

yit = xitβ + ziγ + qJ(i,t),tρ+ µi + νJ(i,t) + ηit, (1)

where yit is the dependent variable. Then xit is a 1 × p vector of time-varying

covariates of the main unit, i, zi is a 1 × q vector of time-invariant covariates and

qJ(i,t),t is a 1×r vector of time-varying covariates of the secondary unit linked to i at

t, i.e. J(i, t). In matched employer—employee data, J(i, t) will typically denote the

firm where individual i is employed in period t.4 For simplicity, we will henceforth

refer to the main unit as an "individual" and the secondary unit as a "firm".

There are three types of unobserved components in (1): (i) The individual effect,

µi, (ii) the firm effect, νJ(i,t) (corresponding to the firm matched to i at t) and (iii)

ηit —the genuine error term. The unobserved component attached to the individual,

µi, is involved irrespective of the firm where the individual is working and covers

inter alia intelligence of the inividual. The unobserved component attached to a

given firm, j, equals νj and is shared by all the individual working in a specific firm.

4The adopted standard in the matched employer-employee data literature measures sorting as
the extent to which high wage workers are found in high wage firms, conditional on observable
characteristics. That means that sorting in these analyses is taken as given and not modelled
explicitly. More recent empirical literature, often based on the theoretical models by Shimer and
Smith (2000) or Shimer (2005), has started to develop matching models in which the sorting of
workers into firms is modeled more explicitly (see for instance Postel-Vinay and Robin, 2002; Lopes
de Melo, 2009; Le Maire and Scheuer, 2013; Abowd et al., 2014; and Bagger and Lentz, 2014). Our
focus in this paper, however, is more on the econometric methodology, so we follow the adopted
standard and assume the employer-employee matching is outside the model.
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Note the important distinction between νj and νJ(i,t): νj is the effect corresponding

to a given firm, whereas νJ(i,t) is the effect corresponding to the firm matched to i

at t. Thus, whereas the underlying firm-effect νj is time-invariant, νJ(i,t) will change

when the match of individual i changes.5 ,6

We consider different types of specifications for µi and νj. First, νj is allowed to

be either a random or a fixed effect. Second, µi is allowed to be either a standard

random effect, or a random effect correlated with zi. Of course, if the unobserved

individual effect, µi, is correlated with zi, treating it as a standard random effect

yields biased estimates of γ. We therefore propose an IV/control function approach

in Section 2.4.

The starting point of our analysis is the following standard assumptions: For all

i and t: E(ηit) = 0, E(ηitηis) = 0 for t 6= s, and E(η2it) = σηη. Let ν = (ν1, ...,νM)′

denote the vector of all theM firm effects and Git the 1×M design matrix indicating

which firm is matched to individual i at t:

Gitν = νJ(i,t).

That is

Git =
[

0 · · · 0 1 0 · · · 0
]

︸ ︷︷ ︸
position J(i,t)

. (2)

Then we can re-write equation (1) as;

yit = xitβ + ziγ + qJ(i,t),tρ+ µi +Gitν + ηit. (3)

5To make this clearer, assume individual i works in two different firms: j = 2 in years t =
1,...,4, and firm j = 7 in years t = 5,...,9. As J(i, t) denotes the firm matched with individual i at
time t, J(i, t) = 2 in years t = 1,...,4, and J(i, t) =7 in years t = 5,...,9. Furthermore, vJ(i,t) = v2
for t = 1,...,4, and vJ(i,t) = v7 for t = 5,...,9, and qJ(i,t)t is the vector of time-varying covariates
collected for the relevant firm j in year t.

6As mentioned earlier, Woodcock (2008, 2015) also includes unobserved match effects, picking
up the value of match quality. He finds that the conclusions are rather different when using models
including match effects with models without this type of effect. We return to this in Section 3.
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To reduce the number of latent variables in the model, we apply the Helmert

transformation (see Lütkepohl, 1996, p. 249). Formally, the Helmert transformation

of any 1×m row vector Hit, t = 1, ..., Ti, is given by
−→
H i,1, ...,

−→
H i,Ti , where

−→
H i,t =

√
t/(t+ 1)

(
Hi,t+1 − (1/t)

t∑
s=1

H is

)
, t = 1, ..., Ti − 1,

with the last observation on unit i being at t = Ti,7 and

−→
H i,Ti = H i ≡ (1/Ti)

Ti∑
s=1

His.

For example, for the firm-variables, qJ(i,t),t, the Helmert transformation is:

−→q i,t =
√
t/(t+ 1)

(
qJ(i,t+1),t+1 − (1/t)

t∑
s=1

qJ(i,s),s

)
, t = 1, ..., Ti − 1

−→q i,Ti = qi ≡ (1/Ti)

Ti∑
s=1

qJ(i,s),s.

Applying the Helmert transformation to each term in (3), it is easy to check that

the Helmert-transformed error terms, −→η i,t (corresponding to
−→y i,t) are uncorrelated

over t, given that ηit are uncorrelated and homoscedastic (i.e., have constant variance

over time). Moreover, V ar(−→η i,t) = σηη for t < Ti and V ar(
−→η i,Ti) = σηη/Ti.

2.1 Independent random individual and random firm effects

Assume now that the vector of the random firm effects,

ν = (ν1, ..., νM)′,

and the vector of individual effects,

µ = (µ1, ...., µN)′,

7For notational simplicity, we assume that all individuals enter the sample at t = 1. This
convention entails no loss of generality since t can be reinterpreted as the t’th observation of
individual i.
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are mutually independent and distributed as

ν ∼ IID(0, σννIM)

µ ∼ IID(0, σµµIN),

where Ip is the identity matrix of dimension p. Then we have the following relation:

Y = XB + u, (4)

where B = (β′, γ′, ρ′)′ and

u = Gν + e,

with

Y =


y1
...

yN
−→y


∑N
i=1 Ti×1

X =


x1 q1 z1
...

...

xN qN zN−→
X −→q 0


∑N
i=1 Ti×(p+r+q)

G =


G1
...

GN−→
G


∑N
i=1 Ti×M

e =


η̄1 + µ1
...

η̄N + µN
−→η


∑N
i=1 Ti×1.

(5)

The submatrices −→y , −→X ,−→q , −→G , −→η in (5) are defined as follows:

−→y =



−→y 1,1
...

−→y 1,T1−1
...
−→y N,1

...
−→y N,TN−1


−→
X=



−→x 1,1
...

−→x 1,T1−1
...
−→x N,1

...
−→x N,TN−1


−→q =



−→q 1,1
...

−→q 1,T1−1
...
−→q N,1
...

−→q N,TN−1


−→
G=



−→
G 1,1

...
−→
G 1,T1−1
...
−→
GN,1

...
−→
GN,TN−1


−→η =



−→η 1,1
...

−→η 1,T1−1
...
−→η N,1

...
−→η N,TN−1


.
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Define T =
∑N

i=1 Ti/N and λµ = σµµ/σηη. Then the covariance matrix of the error

term in (4) is:

V ar(u) = Σ,

where

Σ = σννGG
′ + σηηD, (6)

with

D =

[
Ω 0

0 I(T−1)N

]
(7)

and

Ω = diag(T−11 + λµ, ..., T
−1
N + λµ).

The GLS estimator of B, for a given weighting matrix W , is:

B̂ = (X ′WX)−1X ′WY . (8)

Moreover,

V ar(B̂) = (X ′WX)−1X ′WΣWX(X ′WX)−1. (9)

The optimal weighting matrix in (8) is therefore W = Σ−1.

In matched employer-employee panel data models, the unobserved individual and

firm effects are both often specified as fixed effects.8 Then identification is caused

by variation in the combination of individuals and firms over time. For instance

the identification of the fixed firm effects are driven only by the individuals moving

from one firm to another over time. In our approach, where none of the unobserved

effects are necessarily assumed to be fixed, identification is based on the longitudinal

and linked aspects of the data, in the combination with the parametric assumptions

8As emphasized by inter alia Hsiao (2003, p. 43), fixed and random effects have a common
point of departure. Whereas fixed effects are related to conditional inference, random effects are
related to unconditional inference.
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embedded in the mixed model (see also Dostie, 2011), i.e. that both each individual

and each firm are observed several years and that the individuals’characteristics

change over time.

IFGLS To denote Σ as function of θ = (σηη, λµ, σνν), we use the notation Σ(θ).

Let B(n) denote the GLS estimator obtained when using the weighting matrix W (n)

in (8). IFGLS consists in generating a sequence (W (n), B(n)), where the superscript

(n) denotes iteration number, as follows:

W (n+1) = Σ−1(θ(n)),

where

θ(n) = arg max
θ

L(θ, B(n))

and L(θ, B) is the log-likelihood function under the assumption of normality of ν

and e:

L(θ, B) = −1

2
ln |Σ(θ)| − 1

2
(Y −XB)′Σ(θ)−1(Y −XB). (10)

Convergence of the iterative algorithm to a stationary point on the likelihood func-

tion L(θ, B) follows from Oberhofer and Kmenta (1974), cf. also Breusch (1987).

If the model is misspecified, the IFGLS estimator of B is still consistent provided

E(yit|xit, zi) is correctly specified (see Gourieroux and Monfort, 1995, Ch. 8.4). An

estimator of the covariance matrix V ar(B̂) that is robust to both autocorrelation,

heteroscedasticity and non-normality can be calculated from the residuals, ê, of the

estimated model (using the general formula (9)).9 The computational aspects of the

IFGLS algorithm is considered below.

9Lack of normality implies that the p-values of different test statistics cannot be trusted. The
normality assumption of the error components may be tested, cf. for instance Blanchard and
Mátyás (1996) and Gilbert (2002), who address normality in the one-way panel data model.
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Computational issues To obtain the optimal weighting matrix W = Σ−1 in

(8) (for given θ), we first define λv = σvv/σηη. Then —using the matrix inversion

lemma (see Anderson and Moore, 1979, p. 138) —

Σ−1 = σ−1ηη
[
D−1 −D−1G(λ−1ν IM +G′D−1G)−1G′D−1

]
(11)

= σ−1ηη
[
D−1 −D−1GP

]
,

with

P = σ−1ηη V G
′D−1 (12)

and

V = σηη
(
λ−1ν IM +G′D−1G

)−1
. (13)

Note that G has dimension TN ×M and Σ dimension TN × TN , whereas D is a

diagonal matrix of order TN .

The main achievement of the Helmert-transformation is to reduce the problem of

inverting the NT ×NT covariance matrix Σ to a manageable problem of calculating

—in opposite order —(11)-(13). First, the matrix to be inverted to obtain V in (13)

consists of the M ×M matrix λ−1ν I +G′D−1G. This is a highly sparse matrix due

to the diagonality of D (a direct consequence of the Helmert transformation) and

the fact that G is a sparse matrix.10 Once V has been obtained, the calculation of

P in (12), and then Σ−1 in (11) are computationally straightforward, as seen from

these two equations.

To denote D,P and V (see Eqs. (7), (12) and (13)) as functions of θ, we use the

10The non-zero elements of G′D−1G only consist of terms g′iD
−1gj (i 6= j), where gi is the i’th

column of G. This corresponds to pairs of firms i and j with overlapping employees. In practice,
only a very small fraction of theM(M −1)/2 pairs satisfies this condition, and the number of non-
zero terms will be of order O(M) rather than O(M2). As a consequence, the number of operations
required to obtain V will typically be of order O(M2) rather than O(M3).
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notation D(θ), P (θ) and V (θ). Then the IFGLS algorithm works as follows: Let (n)

refer to iteration n and B(1) be given. For n = 1, 2, ...;

(i) Maximize L(θ, B(n)) with respect to θ using a quasi-Newton algorithm in com-

bination with Proposition 2 in Appendix A to obtain the maximizer, θ(n)

(ii) Calculate Σ(θ(n)) and then B(n+1) from (8), using W = Σ(θ(n))−1

(iii) Set n = n+ 1, and go to (i) unless |B(n+1)−B(n)| < c for some tolerance level

c > 0 and norm | · |. In that case, set B̂ = B(n+1).

The above algorithm gives IFGLS estimators of B = (β′, γ′, ρ′)′ together with esti-

mates of the variance parameters σνν , σµµ and σηη.

Another estimation method that is of relevance in our case is Restricted Max-

imum Likelihood (REML). By transforming the original data employing different

contrasts one may formulate a log-likelihood in the transformed variables which only

depends on second order parameters, that is in our case the variance of the random

individual component, the variance of the random firm component and the variance

of the genuine error term. The maximization of the log-likelihood in transformed

variables yields REML estimates of these parameters. The first order parameters

may be estimated by utilizing a GLS estimator.

A property of the Helmert-transformation is that it retains the distributional

properties of the genuine error terms in the original model specification. This is not

the case with REML. Besides IFGLS estimation utilizing the Helmert-transformation

seems to be a better tool when it comes to handling computational issues related to

large matrices.11

11Asymptotically, maximum likelihood estimation, in which one maximizes over all the unknown
parameters simultaneously and REML will give the same estimates, cf. for instance Demidenko
(2004, Ch. 3.6.3). It has been put forward that it may be advantageous to use REML rather than
ML when one is faced with small sample issues, cf. for instance Fitzmaurice et al. (2004, Ch. 4.5).
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2.2 Random individual effects and fixed firm effects

Assume now that only the individual effects are random, but that the firm effects

are fixed. The model with fixed firm effects is a limiting case of the random effects

model when λ−1ν approaches zero, which is equivalent to assuming a “diffuse”prior

for the random firm effects.12 When ν is a vector with fixed effects13 in (4), the GLS

estimator of ν, ν̂, must be found simultaneously with B̂. The GLS estimator is the

solution to: [
X ′WY

G′WY

]
=

[
X ′WX X ′WG

G′WX G′WG

][
B̂

ν̂

]
(14)

The optimal weighting matrix is now W = D−1, which is a diagonal matrix. This

is in contrast to W = Σ−1 in the model with both random individual and random

firm effects. IFGLS then reduces to the problem of minimizing the log-likelihood

function

L(θ, B̂, ν̂) = −TN
2

lnσηη−
1

2

N∑
i=1

ln(T−1i +λµ)− 1

2σηη
(Y−XB̂−Gν̂)′D(θ)−1(Y−XB̂−Gν̂)

with respect to θ. Thus the numerical complexity is confined to solving (14). This

is a sparse linear system of equations, for the reasons explained earlier.

2.3 Correlated individual effects (µi) and explanatory vari-

ables (zi)

In the above model specifications, the unobserved individual-specific effect µi is a

standard random effect (and hence uncorrelated with the explanatory variables xit

and zi). We now consider the case where the row vector zi can be partitioned as

zi = (χi, Si), where χi and Si are row vectors of exogenous and endogenous variables,

However, since we in our application have rather comprehensive data, small sample issues are not
a great concern.
12See Francke et al. (2010) for more details about the relation between the fixed and random

effects estimators.
13This can be interpreted as conditioning on the realized values of the unobserved firm effects.
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respectively, the latter being correlated with µi. Similarly, let γ
′ = (γ′κ, γ

′
s) such that

we can write our former equation (1) as

yit = xitβ + χiγκ + Siγs + qJ(i,t),tρ+ µi + νJ(i,t) + ηit. (15)

Two types of methods to deal with the endogeneity of Si are feasible within our setup:

First, the classic instrumental variables method, and second, a control function

approach in the case where Si only consists of a single binary or ordinal variable

(e.g. level of schooling). The latter approach is in the tradition of Heckman (1979)

and Garen (1984).

The IV approach First, consider the case where Si is a vector of observed

continuous variables determined by

Si = δUi + εi, (16)

where εi a random vector with zero mean, δ is a fixed, unknown coeffi cient matrix

and Ui is a column-vector of variables including some or all components of χi in

addition to at least as many instrumental variables as there are components of Si.

As usual, the instrumental variables are variables excluded from χi and uncorrelated

with the composite error term, µi + νJ(i,t) + ηit, of (15). In general, we can write

µi = πεi + ε̃i (17)

where

π = V ar(εi)
−1E(εiµi) (18)

and ε̃i is independent of εi. Thus, the individual effect µi is correlated with the error

term in (16), making Si endogenous. We can write
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E(µi|Si, Ui) = πκ(Si, Ui), (19)

with

κ(Si, Ui) = Si − δUi. (20)

Note that δ can be estimated directly from (16) and that we can re-express (15) as

yit = xitβ + χiγκ + Siγs + qJ(i,t),tρ +πκ(Si, Ui) + ε∗i + νJ(i,t) + ηit, (21)

where

ε∗i = µi − E(µi|Si, Ui)

= π (εi − κ(Si, Ui)) + ε̃i.

The term ε∗i has the property that E(ε∗i |Si, Ui) = 0 and hence is a genuine random

effect (uncorrelated with Si).

Equation (21), which is a version of (1) with random individual effects uncor-

related with the explanatory variables, may be estimated using the techniques de-

scribed above. It is a classic exercise to show that identification is achieved by

imposing at least as many exclusion restrictions (variables included in Ui but not in

χi) as the number of endogenous explanatory variables (the dimension of Si).

The control function approach Next, assume that Si is a (scalar) categor-

ical variable with K possible categories; Si ∈ {1, 2, ..., K}. We will consider an

ordered probit model for the endogenous explanatory variable Si. Thus Si is related

to a continuous latent variable S∗i through the relation

Si = s iff ζs−1 < S∗i < ζs , s = 1, ..., K, (22)
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where {ζs} are unknown threshold parameters, except for ζ0 = −∞ and ζK = ∞.

Furthermore, we assume that

S∗i = δUi + εi, (23)

where the vector (εi, µi) is assumed to have a bivariate normal distribution with

zero mean and a general covariance matrix, apart from the conventional identifying

restriction that εi has unit variance. Equation (17) is still valid, with the additional

assumption that ε̃i is normally distributed. We then have the following result, which

is analogous to (19)-(20) and similar to Heckman (1979):

Proposition 1 E(µi|Si = s, Ui) = πκ(s, Ui), where

κ(s, Ui) = −
(
φ(ζs − δUi)− φ(ζs−1 − δUi)

)
Φ(ζs − δUi)− Φ(ζs−1 − δUi)

, s = 1, ..., K, (24)

with φ(·) and Φ(·) denoting the density and cumulative distribution function, respec-

tively, of an N (0, 1) variable.

Proof

From (17) and the independence of εi and ε̃i it follows that

E(µi|Si = s, Ui) = E(πεi + ε̃i|Si = s, Ui) = E(πεi|Si = s, Ui)

= πE(εi|ζs−1 − δUi < εi ≤ ζs − δUi) = π

∫ ζs−δUi
ζs−1−δUi

ωφ(ω)dω

P (Si = s)

= πκ(s, Ui).

Equation (21) is still valid. Specifically, a conventional ordered probit analysis

based on (22)-(23) yields estimates of the parameters ζ1, ..., ζK−1 and the parameter

vector δ.
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3 Application: Wage equation estimation

We illustrate our modelling approach by estimating a wage equation, where we allow

for correlation between the level of schooling and the individual effect, µi. The

estimated equation is a version of (21) (see the previous section). The dependent

variable, yit, is given as the log of annual wage earnings for (full-time employee)

i employed in firm J(i, t) in year t. The endogenous explanatory variable level of

schooling, is denoted Si, with Si ∈ {1, 2, ..., 9}. Level 1 corresponds to 10 years of

schooling, which is the mandatory level in Norway, whereas the three last categories

comprise longer tertiary education. The exogenous time-invariant variables, χi, are

dummies for type of education and gender. The time-varying individual-specific

exogenous variables, xit, are powers of labour market experience (represented by

potential experience) up to the third order, labour market area dummies and year

dummies. Finally, the vector of time-varying firm-specific exogenous variables, qjt,

includes i) log of number of employees and ii) return on total assets.

The initial sample used in the application of our method includes 241,904 ob-

servations for 53,665 individuals. The sample covers the period 1995—2006 and is

collected for individuals and firms in the Norwegian machinery industry (NACE

29). In total, there are 2,593 firms in the initial sample. We include only individuals

whose annual earnings are between 50,000 and 3,500,000 NOK (fixed prices), that

is, we exclude the one per cent highest and lowest annual earnings.14 Potential expe-

rience is defined as age minus years of schooling minus seven years (school starting

age). For those individuals whose length of education changed over the sample pe-

riod, we retain only the observations with maximum length of education. The labour

market area dummies are constructed utilizing information on characteristics such

141 Euro ≈ 8 NOK in the sample period.
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as size and centrality.15 Mainly workers with the following three types of education

are represented in the chosen industry: education in “General Programs”, “Business

and Administration”and “Natural Sciences, Vocational and Technical subjects (Sci

& Tech)”. Only these categories are therefore represented by education-type dum-

mies in the model. The earnings measure used is total annual taxable (full-time)

labor income. Because the earnings measure reflects annual earnings, observations

where employment relationships begin or are terminated within the actual year are

excluded. Holders of multiple jobs and individuals who received unemployment ben-

efits or participated in active labour market programs are also excluded. It is also

required that each individual has at least two observations after the above-mentioned

exclusion criteria are applied. For the given individuals we also collect information

about the educational level of their parents and where the parents are born. After

the data are cleaned, the sample includes 178,381 observations, 37,562 individuals

and 2,162 firms. Descriptive statistics of key variables is presented in Table 1.

[Table 1 about here]

Because we focus on models with both individual- and firm-specific unobserved

effects (which may be either random or fixed), identification is facilitated by a sub-

stantial proportion of the individuals being observed in at least two different firms

over the period they occur in the sample. Table 2 provides some information about

worker mobility for the workers in our data set.

[Table 2 about here]

15See http://www.ssb.no/a/publikasjoner/pdf/sos110/sos110.pdf.
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We consider three main specifications for the firm effects in (21): No firm effects

(NO), random firm effects (RE) and fixed firm effects (FE).16 Henceforth, we use

the notation RENO for the combination of random individual effects (RE) and no

firm effects (NO), and analogously for REFE and RERE.

The unobserved individual-specific effect, µi, is treated as a random variable

that is (possibly) correlated with level of schooling, Si. The level of schooling is

determined by the ordered probit model (22)-(23). For the vector of explanatory

variables, Ui, of the ordered probit model, we include father’s and mother’s education

level and world region of origin as identifying instruments — in addition to the

exogenous variables from the wage equation (see Table B1). This is in line with a

long tradition of using family background variables as instruments (see Card, 1999).

The identifying instruments may affect the choice of schooling, but are assumed not

to influence the wage. In addition to functional form assumptions, these exclusion

restrictions identify the parameters of the model.

A full set of estimation results for the ordered probit model is presented in Table

B1. Without going into details, we see that most of the family background variables

are statistically significant. As seen from Table B1, a test of the relevance of the

eight proposed instruments yields an F-statistic of 440 (with 8 degrees of freedom

in the nominator), so that we clearly do not have a problem with weak instruments.

To calculate the F-statistic of the test, we utilize that an F-statistic with d degrees

of freedom in the nominator is asymptotically equivalent to W/d, where W is the

Wald statistic involved when testing d zero restrictions on the parameters of the

ordered probit model. The estimates reported in Table B1 were used to estimate

the control function κ(Si, Ui) occurring in the "augmented" wage equation (21) to

16The importance of accounting for firm effects when estimating wage equations using employer—
employee data has been emphasized among others by Lallemand et al. (2005), Plasman et al.
(2007), Heyman (2007) and Grütter and Lalive (2009).
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control for the endogeneity of schooling.

[Table 3 about here]

Table 3 contains estimation results of the wage equation under different assump-

tions with respect to the treatment of unobserved individual and firm-specific het-

erogeneity.17 In the specification corresponding to columns (1)—(2), no firm effects

are included, the results reported in columns (3)—(4) correspond to a model with

random firm effects, and the last two columns to a model with fixed firm effects.

For issues related to software and computing time, see Appendix A.

There is a positive selection into education, as seen from the fact that the esti-

mate of the coeffi cient π of the control function is significantly positive in all three

firm effects specifications (NO, RE or FE).18 The test of overidentification reported

in Table 3, shows that we do not reject the overidentification restrictions, except

in the RENO model (i.e., the model without unobserved firm effects). In line with

this, the estimated coeffi cient of years of schooling is higher in columns (1), (3)

and (5), where the control function is not included, compared to the corresponding

specifications that include the control function, i.e., (2), (4) and (6).

The estimated returns to an additional year of education is 0.068 in the model

with no firm effects, when we control for self-selection. The estimated returns to

education clearly become smaller when firm effects are included: 0.063 and 0.062

in the RERE and REFE specification (see columns (4) and (6), respectively). As

long as we correct for the correlation between the individual effect and education,

17All the estimation results are robust to initiating the estimation algorithm from different sets
of starting values. Thus the parameter estimates reported in Table 3 seem to correspond to global
maxima.
18We have also estimated the three models controlling for selection using a continuous education

variable instead of the category-based one which the results reported in Table 3 are based on.
These results —not shown here but available from the authors upon request —also show positive
self-selection.
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it makes no difference whether one uses the RERE or REFE model. However, if

we consider the model without unobserved firm effects (RENO) on the one hand

and the models with firm effects (RERE and REFE) on the other, we find that the

estimated returns to education for the former is 0.5—0.6 percentage points higher.

Thus the differences are quite substantial and also significant since the standard

error of the parameter estimate is less than 0.002 in the models with unobserved

firm effects. If we also exclude the observed firm variables the difference becomes

wider (about one percentage point).19

The parameter estimates for the experience coeffi cients do not vary greatly be-

tween the models. The maximum returns to experience are found to be at 25—30

years of experience, and the returns are more or less flat thereafter. The estimate

of the male dummy is about 0.25, showing that the estimated gender wage gap is

significant. The estimates of the education-type parameters are significant in all

the models and do not seem to be influenced by the inclusion of a control function.

Comparing the estimates for the three different specifications RENO, RERE and

REFE, the estimates are somewhat higher in the former compared to the two latter

specifications. Thus, to include unobserved firm-effects is more important than the

particular choice of a random vs a fixed effects specification in the firm effects.

Using a Hausman test, we have tested the RERE model against the REFE model

(i.e., fixed firm effects), in which the null hypothesis is that the RERE model is

correct. The p-value was practically equal to zero. Because Hausman tests routinely

reject the random effect specification in large samples, this test may not be very

informative. However, as emphasized above, as long as we control for selection into

education the parameter estimates of the two models, RERE and REFE, are very

19For the RERE and REFE models, the inclusion of firm-effects is of minor importance for the
other parameter estimates. These results are not reported, but available from the authors upon
request.
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similar. The high estimated values of σµµ compared with σνν reported in Table

3 (about four times as high), show that the individual effects have a much more

dispersed distribution than the firm effects.

We have also estimated the FEVD model using the felsdvreg routine for STATA

(see Cornelissen, 2008) followed by a vector decomposition to identify the effects of

the time-invariant explanatory variables and individual means of the time-varying

variables. The estimated returns to an additional year of education then becomes

0.072.20 This is substantially higher than our estimates of both the REFE and RERE

model with the control function included. This higher estimate is in accordance with

the general criticism of the FEVD estimator, which —in our application —fails to

address the problem of correlation between years of schooling and the individual

effects.

Our model does not include match effects. In our notation, such effects can be

described by the error structure ηit = φi,J(i,t) + η̃it, where the match effect φi,J(i,t)

depends on the matched pair (i, J(i, t)). Note that if the match effects are un-

correlated with the explanatory variables, our IFGLS estimator is still consistent

with regard to the slope coeffi cients. The presence of match effects is often associ-

ated with assortative sorting, implying that an individual will move to a new job

to obtain a better match, represented by a higher φi,J(i,t). This hypothesis implies

that the conditional expectation E
[
φi,J(i,t) − φi,J(i,t′)|J(i, t) 6= J(i, t′), t > t′

]
should

be positive. That is, job changes are, on average, associated with increasing match

effects. We tested this assumption using the residuals from our RERE and REFE

models (see Table 3, columns (4) and (6), respectively). The residuals were used as

the dependent variable in an auxiliary regression where each new job of a worker is

20The full set of results for the FEVD estimator is not reported, but available from the authors
upon request.

22



assigned a separate dummy (an indicator of the order of the job). Then we tested

the null hypothesis that the coeffi cients of these dummies were jointly equal to zero.

The p-value of the test was 0.24. This clear non-rejection, which contradicts other

findings in the literature (see especially Woodcock 2008, 2015), is likely to be due to

the fact that wages in Norwegian manufacturing to a large extent are determined in

negotiations between employer and labour unions (the labour union coverage is close

to 80 percent in NACE 29). Thus, there might be little to gain in terms of wage

increase associated with a job change. Sørensen and Vejlin (2013), using Danish

data, also found that the importance of the match effect was less than what was

found by Woodcock (2008) on US data. Denmark resembles Norway with respect

to union density and coverage.

4 Concluding remarks

More and more panel datasets are constructed by merging information from several

registers. Merged employer-employee datasets give researchers the ability to control

for a wide variety of observable characteristics as well as unobserved heterogeneity

related to the two types of observation units: The main unit (in our application, an

individual), and the secondary unit with whom the main unit is matched (in our case

a firm). In this paper, we consider a general regression model with unobserved ran-

dom effects corresponding to the main observational unit, and unobserved random

or fixed effects corresponding to the unit with whom the main unit is matched.

To assume that the effects corresponding to the main-unit are random (in our

case an individual), makes it possible to identify the effect of time-invariant individual-

specific variables directly. This contrasts the approach in more traditional models

for analyzing linked data models where the unobserved effects for the main units
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and the secondary units both are assumed to be fixed. In such approaches it is

common to rely on the fixed effects vector decomposition (FEVD) estimator where

one, after having estimated individual specific fixed effects in a first stage, run an

auxiliary regression to estimate the effects of time-invariant individual-specific vari-

ables. However, this approach does not solve any endogeneity problem —contrary

to a common belief —so one might instead use a random effects estimator, which

is generally more effi cient. In the case of endogenous regressors, we propose a con-

trol function approach based on instrumental variables, where the estimated control

function is included as a regressor in the original regression equation to control for

the endogeneity of explanatory variables.

A computation advantage of our approach is that it is mitigating the curse of

dimensionality in high-dimensional two-way random effects models. This is done by

using an IFGLS estimation procedure on variables subjected to the Helmert trans-

formation. Compared to for instance the mixed model approach implemented in

STATA this is a huge advantage in terms on computing time and memory require-

ments when it comes to handling large matrices.

Another advantage of our approach is that it utilizes more of the total variation

in the data than fixed effects approaches. For instance, in the matched employer-

employee data models identification of the fixed effects is driven only by the indi-

viduals moving from one firm to another over time. Thus with short panels, where

typically only a small share of the individuals is observed in more than one firm,

identification might be hard. In our approach, all the individuals contribute to the

identification of the unobserved effects. Thus, there are likely to be substantial ef-

ficiency gains from our approach compared to models where the unobserved effects

for both the main units and the secondary units are assumed to be fixed.
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In our empirical application, we find that if the endogeneity of the time-invariant

education variable is ignored —as done in matched two-way fixed effects employer

employee models — the returns to education is biased upwards. Controlling for

unobserved firm heterogeneity is only partly able to reduce the bias.

There are a set of issues we have not addressed and that need to be explored in

future work. It would be useful to apply our approach also to applications outside

the labour market area — as used for illustration in this paper. Furthermore, it

would be useful to extend our model also to include match effects, to control for

the value of match quality. A related issue, at least in employer-employee models,

is sorting of workers with different levels of skill into particular firms, and therefore

endogenous mobility. Still, the ideas and empirical evidence provided in this paper

show the importance and potential fruitfulness of departing from traditional models

where the unobserved heterogeneity of both the main units and the secondary units

are assumed to be fixed.
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Table 1: Descriptive statistics of key variables

Variable Mean Standard deviation

Log-earnings (in 1000 NOK) 12.416 0.421

Years of schooling 12.102 2.283

Experience 14.882 10.097

Male 0.883 0.321

Education type:

general programs 0.148 0.355

business and administration 0.088 0.283

sci & tech 0.702 0.457

World region of origin:

Nordic countries except Norway 0.014 0.118

Western Europe except Turkey 0.007 0.084

East-Europe 0.002 0.041

North America 0.004 0.062

Rest of the world 0.003 0.055

Length of father’s education 10.901 2.628

Length of mother’s education 10.326 2.133

Firm variables

number of employees1) 38 229

return on total assets2) 0.074 0.178
1)We do not apply the exclusion criteria involved when constructing the sample of

individuals when deriving the firm-sample. Neither, we exclude individuals with

missing relevant variables. Thus, when calculating the summary statistics for the

"number of employees" more individuals are recorded compared to the sample of individuals.
2)Results before extra ordinary items and taxes plus interest payments

divided by total assets



Table 2. Overview of number of firms in workers’employment history

Number of firms Number of individuals having worked in the indicated number of firms

1 28,649

2 6,376

3 1,806

4 593

5 127

6 11

Total 37,562



Table 3: Empirical results for wage equations. Dependent variable: log-earnings

Specification: RENO RERE REFE

Control function included: No Yes No Yes No Yes

(1) (2) (3) (4) (5) (6)

Control function, κ̂(Si, Ui) — 0.018 — 0.015 — 0.014

— (0.003) — (0.003) — (0.003)

Worker characteristics

years of schooling 0.075 0.068 0.069 0.063 0.067 0.062

(0.001) (0.002) (0.001) (0.002) (0.001) (0.001)

experience 0.055 0.054 0.055 0.054 0.054 0.054

(0.001) (0.001) (0.002) (0.002) (0.001) (0.001)

experience2/100 -0.172 -0.171 -0.172 -0.170 -0.170 -0.169

(0.005) (0.005) (0.010) (0.010) (0.010) (0.010)

experience3/1000 0.017 0.017 0.017 0.016 0.016 0.016

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

male 0.248 0.247 0.256 0.255 0.259 0.259

(0.005) (0.005) (0.008) (0.008) (0.008) (0.008)

Education type:

general programs 0.096 0.096 0.085 0.084 0.077 0.077

(0.008) (0.008) (0.031) (0.011) (0.011) (0.031)

business and administration 0.069 0.068 0.060 0.059 0.053 0.052

(0.008) (0.008) (0.034) (0.033) (0.012) (0.034)

sci & tech 0.049 0.048 0.038 0.037 0.033 0.032

(0.007) (0.007) (0.023) (0.010) (0.010) (0.022)

Firm variables

log-number of employees 0.068 0.068 0.039 0.039 0.028 0.028

(0.006) (0.006) (0.001) (0.001) (0.001) (0.001)

returns to total assets 0.033 0.033 0.065 0.065 0.066 0.066

(0.001) (0.001) (0.004) (0.004) (0.004) (0.004)

Variance components:

σηη (idiosyncratic noise) 0.035 0.035 0.027 0.027 0.027 0.027

σµµ (individual effect) 0.072 0.072 0.040 0.040 0.039 0.039

σνν (firm effect) — — 0.009 0.009 — —

Sargan test of overidentification (7 d.f.)

J-statistics 19.67 10.61 8.21

p-value 0.006 0.15 0.31

Sample: No. of individuals 37,562, no. of firms 2,162, no. of observations 178,381

Notes: Standard errors in parentheses. Year and labor market area effects are

accounted for in all the models. NO, FE and RE denote, respectively, the model with

no firm effects, the model with fixed firm effects and the model with random firm effects.



Appendix A. Supplementary materials

Obtaining derivatives of L(θ, B) Direct differentiation of L(θ, B) (see (10))

w.r.t. θ is intractable, because the number of computations involved is of order

O
((
TN

)2)
. To see this, it follows from Lütkepohl (1996, p. 198) that

∂((Y −XB)′Σ(θ)−1(Y −XB))

∂θ
= −∂vec(Σ(θ))′

∂θ
Σ(θ)−1(Y −XB)⊗Σ(θ)−1(Y −XB)

(⊗ denotes the Kronecker product), where Σ(θ)−1(Y −XB)⊗Σ(θ)−1(Y −XB) is a(
TN

)2×1 vector. In Proposition 2, we obtain analytical derivatives of L(θ, B) in an

indirect way by performing operations that typically will be only of order O(M2),

which is quite feasible even for large M .

Proposition 2
∂L(θ, B)

∂θ

∣∣∣∣
θ=θ0

=
∂M(θ|θ0;B)

∂θ

∣∣∣∣
θ=θ0

(25)

where

M(θ|θ0;B) = −1

2

N∑
i=1

Ti lnσηη −
1

2

N∑
i=1

ln(
1

Ti
+ λµ)

−1

2
σ−1ηη

N∑
i=1

(
1

Ti
+ λµ)−1

{
(yi − xiβ − ziγ −Giν̂(θ0;B))2 +GiV (θ0)G

′
i

}
−1

2
σ−1ηη

(
(−→y −−→Xβ −−→Gν̂(θ0))

′(−→y −−→Xβ −−→Gν̂(θ0)) + tr(
−→
GV (θ0)

−→
G ′)
)

−M
2

lnσνν −
1

2
σ−1νν ((ν̂(θ0)

′ν̂(θ0) + tr(V (θ0)))) . (26)

with
ν̂(θ0;B) ≡ E {ν |Y ; (θ0, B)} = P (θ0)(Y −XB) (27)

and
Var {ν |Y ; θ0} = V (θ0), (28)

where V ( θ0) and P ( θ0) are calculated from (13) and (12), respectively.

Proof:
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We first show that

M(θ|θ0;B) =

∫
ln f(Y, ν; (θ, B)) f(ν|Y ; (θ0, B)) dν (29)

≡ E {ln f(Y, ν; (θ, B)) |Y ; (θ0, B)} ,

where f(·;ψ) and f(·|·;ψ) is generic notation for joint and conditional probability

densities, respectively, that belong to a parametric family, with parameter value

ψ. The expectation in (29) is with respect to the latent variables (firm effects)

ν conditional on the data Y , given B and with θ evaluated at θ0. The function

defined on the right-hand side of (29) is well-known from the EM algorithm and is

usually referred to as the “complete data”log-likelihood. Given (29), the result (25)

is well-known from the literature. See for example Dempster et al. (1977), with

discussions, and Fahrmeir and Tutz (1994).

By definition

E {ln f(Y, ν; (θ, B)) |Y ; (θ0, B)}

= E {(ln f(Y |ν; (θ, B)) + ln f(ν; (θ, B))) |Y ; (θ0, B)} (30)

= −1

2

N∑
i=1

Ti lnσηη −
1

2

N∑
i=1

ln(
1

Ti
+ λµ) (31)

− 1

2
σ−1ηη E

{
N∑
i=1

(
1

Ti
+ λµ)−1(yi − xiβ − ziγ −Giν)2 |Y ; θ0

}

− 1

2
σ−1ηη E

{(−→y −−→Xβ −−→Gν)′ (−→y −−→Xβ −−→Gν) |Y ; θ0

}
− M

2
lnσνν −

1

2
σ−1νν E {ν ′ν|Y ; θ0} . (32)

To evaluate the expectations in (32), we only need to calculate the conditional

expectations

ν̂(θ0) ≡ E {ν |Y ; θ0})
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and the conditional covariance matrix Var {ν |Y ; θ0}. By applying the general for-

mulae in Francke et al. (2010), we verify that

Var {ν |Y ; θ0} = V (θ0),

and

E {ν |Y ; θ0} = P (θ0)(Y −XB̂),

where V ( θ0) and P ( θ0) are already defined (and calculated) in (13) and (12),

respectively. Furthermore,

E {ν ′ν|Y ; θ0} = ν̂(θ0)
′ν̂(θ0) + tr(V (θ0)).

Thus we have established that both (29) and (26) hold and hence Proposition 2.

In contrast to L(θ, B),M(θ| θ0;B) is trivial to differentiate with respect to θ (for

given θ0), since no matrix-inversions are required in (26) (the number of operations

needed to calculate V ( θ0) and ν̂( θ0, B) are of order O(M2), as discussed above).

Computational issues The whole estimation procedure is programmed in GAUSS.

For the sample used for illustration, we get convergence after approximately 8

minutes for the RERE and REFE models on a 64 cores Linux server with a maxi-

mum clock rate of 2.5 GHz (HP BL685c G7). For comparison, estimating the RERE

model (on the same server) using the STATA command mixed convergence was not

obtained within 24 hours even for a 10% subsample (it is acknowledged in the doc-

umentation of the STATA command mixed, that the approach is feasible only when

the dimensionality is small to moderate).21

21The syntax is

mixed depvar [indepvars]...||_all : R.individual||_all : R.firm

(see the user manual at http://www.stata.com/manuals13/me.pdf)
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We also estimate a real wage equation with random individual effects and fixed

firm effects. Convergence is achieved after approximately 8 minutes. For compar-

ison, the STATA command xtreg (with random individual effects and fixed firm

effects entered as dummy variables) takes 2 hours and 13 minutes to converge on

the same server using the full sample. We take this as evidence that our approach

provides a substantial improvement relative to popular approaches for analyzing

models with two-way unobserved heterogeneity.
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Appendix B: Estimation results of ordered probit
model
Table B1: Ordered probit parameter estimates. Dependent

variable: level of schooling

Variable/Parameter Estimate Standard error

Male .024 .016

Length of father’s education .088 .009

Length of mother’s education .063 .010

Length of father’s education x

Length of mother’s education .001 .001

World region of origin:

Nordic countries except Norway .015 .046

Western Europe except Turkey —.092 .072

East-Europe —.189 .141

North America .222 .093

Rest of the world .094 .112

Threshold parameters:

ζ1 .821 .109

ζ2 1.285 .109

ζ3 2.319 .110

ζ4 2.556 .109

ζ5 3.375 .109

ζ6 4.790 .114

ζ7 5.982 .284

Test of weak instruments:

F-statistic (p-value)1) 440.7 (0.000)

Number of observations (individuals) 37,562

Notes: Robust standard errors. Region of residence is

accounted for.
1) F=W(8)/8, where W(8) is the Wald test-statistic with 8 d.f.
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