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ABSTRACT

The standard neo-classical formulae for the user cost of capital is based
on the assumption that the retirement and decline in efficiency of the
capital units with age follow an exponentially declining function
(exponential decay). In the present paper, we generalize this specification
to the case where the capital volume is defined in terms of a general
survival function. The specification of the corporate tax system in this
context is discussed. Three capital concepts are involved: the gross
capital, the net capital, and the tax accounting capital. Conditions for
neutrality of the tax system, which generalize previous results in the
literature, are established. Numerical illustrations based on Norwegian
data are reported.
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1. INTRODUCTION

The cost of using real capital as a factor of production is one

of the principal determinants of the firm's investment decisions. It is also

a useful tool in theoretical and empirical analysis of the system of corpo-

rate taxation. Seminal contributions to this literature were the articles

by Jorgenson (1967) and Hall and Jorgenson (1967), in which the user cost of

capital and its dependence on the corporate income tax system were inte-

grated into a neo-classical model of producer's behaviour. A basic assump-

tion in these articles, which has been more or less tacitly accepted by

most researchers, is that the replacement investment (technical d

preciation) is a constant, time invariant proportion of the capital stock.

Constant rate of technical depreciation has also become a main ingredient

iii the growing literature on the optimality, or lack of optimality, of the

1)corporate income tax.

Several authors have, however, contested this hypothesis, both

theoretically and empirically 2) If we disregard the empirically un-

interesting situation in which investment grows at a constant rate it

will be satisfied only in the special case where the survival rates are

exponentially3)
 declining functions of the capital's age (exponential

decay). Jorgenson, on the other hand, has attempted to justify this

hypothesis as an approximate long-run description. (Jorgenson et al.

(1963).)	 He invokes "a fundamental result in renewal theory that

replacements for . 	 an infinite [investment] stream approach a constant

1) See e.g. King (1975), Sandmo (1974), Boadway and Bruce (1979), and
Atkinson and Stiglitz (1980, section 5.3).

2) Examples are Griliches (1963), Feldstein and Foot (1971), Eisner (1972),
Feldstein and Rothschild (1974), and Hulten and Wykoff (1981).

3) When considering time as continuous. If time is discrete, the hypothesis
implies geometrically declining survival rates.



proportion of capital stock for (almost) any distribution of replacements

for a single investment and for any initial age distribution of capital

stock"	 (Jorgenson (1963, p. 251).) Long-run constructs are, however,

difficult to implement.econometrically, and in any case, the relevance of

Jorgenson's simple conclusion for short-term model building is questionable.

The short-run variations in economic activity are usually accompanied by

large fluctuations in gross investment , and it may be a drastic simplifi-

cation. to exclude a priori the possibility that these fluctuations affect

the average annual depreciation rate.

The problem of defining and measuring the user cost of capital is

closely related to the problem of defining and measuring the volume of the

capital stock. They are, in a sense, dual problems: This implies that

the underlying specification of the replacement process should be the same

for the two variables if they are to be applied in the same analysis. It

would, for instance, be inconsistent to combine user cost series conctruc-

ted on the basis of a constant rate of technical depreciation with capital

data computed by cumulating previous investment series and assuming linear

depreciation or a 'one horse shay' (simultaneous exit) specification; the lat-

ter being .a coon procedure for constructing capital data in several

.	 4)
countries.

Moreover, taking constant rate of technical depreciation as a

maintained hypothesis will strongly restrict the class of tax systems which

can be analyze& fram the point of view of optimality (neutrality). Sympto-

matically, authors dep iag with this issue have almost without exception

considered, only the declining baZance method of calculating depreciation

allowances for tax purposes. 5)
This is probably due to the formal

4) See, for instance, OECD (1982).
5) Examples are Sandmo (1974), Hartman (1978), Boadway (1980), and

Bergström and Södersten (1982).



similarity between this depreciation scheme and the specification with

a constant rate of technical depreciation, since it implies that a constant

fraction of the firm's book	 value of the capital stock is written off in its

accounts each year. But practically important depreciation schemes like

straight-line depreciation and the sum-of -the -years'-digits method, cannot

be properly handled within this framework. So both theoretically and

empirically the standard parametrization may be felt as something of a

strait-jacket, and a generalization is well worth exploring.

In this paper, we attempt to generalize the specification

with constant rate of technical depreciation to the situation

where the capital volume is defined in terms of a general survival function

on the basis of past investment We start by defining the basic capital

concepts (and some related terms) required for deriving the user cost

of capital (section 2). It becomes essential to distinguish between the

capacity 'dimension' and the wealth 'dimension' of the capital. The former

represents the (potential) flow of capital services fram a firm's equipment

at a given point of time - it is the variable to be used as argument in

a production function. The user cost of capital is the cost per unit of

these capital services, or equivalently, the cost of using the capacity

of the capital stock at a given point of time. The wealth dimension of

the capital, on the other hand, is needed for defining corporate income,

depreciation, depreciation allowances for tax purposes, and hence taxable

income .- In section 3, we derive, on the basis of these two capital concepts,

a general expression for the user cost of capital in the presence of corpo-

rate taxation. In sertion 4, we consider more closely the effect of the tax

system on the user cost via the rules for depreciation allowances, interest

deductibility, and capital gains taxation. Our results appear as generali-

zations of previous conclusions in the literature confined to models with

exponential depreciation. Finally, in section 5, we present some numerical

results based on parametric survival profiles and Norwegian data.
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2. PRELIMINARIES: GROSS CAPITAL, NET CAPITAL, REPLACEMENT

(DETERIORATION), AND DEPRECIATION

Let J(t) denote the quantit Y invested by the firmat time t,

where time is considered as continuous. To characterize the retirement

of the capital units over time, we introduce the function B(s), indicating

the proportion of an investment made s years (periods) ago which still

exists as productive capital. It represents both the loss in efficiency

of existing capital units and physical disappearance of old capital goods.

This function, which we call the 'technical survival function', is non

increasing, with values between 0 and 1

°<B(s)<1, 	 B'(s)<0 (if it exists) 	 for all s>0,

B(0)=1, B (°°) =O.

We assume that the units of measurements
6) 

are chosen in such a

way that one capital unit '0,. ,o&tc..res' one unit of capital services per

unit of time. Then

(2) K( t, ․ ) = B (s )J (t—s)

represents both the volume of the capital which is s years of age at

time t and the momentaneous flaw of capital services produced at time t

by capital of ag, ; . The total capital volume at time t, in the following

to be denoted as the 'gross capita1 stock', is

Co 	00

(3) K(t) = fK(t, ․)ds =fBsJ(t-s)ds.
0 	 0

6) And possibly also the definition of the functional form of the production
function.



This is a technical concept, indicating the productive capacity of the

capital stock at time t .

The volume of the capital worn out at time t , or the replacement

(deterioration), can now be written as

Co

(4) D(t) = J(t) K(t) 	 f b(s)J(t-s) ds,
0

where (if it exists)

(5) b(s) = --B 1 (s)
	

(s>0) .

The function b(s) represents the share of an initial investment (expressed

7)
in efficiency units) which disappears s years after its instalment.

Let q(t) denote the investment price at time t. The current invest-

ment outlay is q(t)J(t). The market value of an old capital object does not,

in general, reflect its historic cost, but rather the service flow that it

is likely to produce during its remaining life time. It is this property .

which is of interest to a potential purchaser (user) of capital goods.

The value of the capital vintage t—s at time t can be written as

(6) 	 V(t, ․ ) = q t, K(t, 	 2

where q(t, ․ ) is the price of one capital (efficiency) unit o age s at time t, and

K(t, ․ ), as defined in eq. (2), is the number of such units.

Here we interpret the functions B(s) and b(s) deterministically. They
can also be interpreted within a stochastic framework: B(s) is then
the probability that a new capital unit will survive in at least s
years, and b(s) is the density function of its life time.
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We make the specific assumption that the relative prices per unit

of capital objects of different ages, at each point of time, perfectly

reflect the differences in their prospective service flows. The total

flaw of capital services from one capital unit during its life time is

CO

4)(0) 	 f B(z)dz.
0

In general,

(7) (1)(s) = I7177-f B(z)dz'
J s

hast the:interpretation as the flow of remaining capital services to be
CO

produced per capital unit which has attained age s , since f B(z)dz is the

service flow produced after age s by one initial capital unit and B(s) is

the share of this unit which attains age s .
8) We can then express our

assumption as follows:

(8)
q(t, ․ ) 	 q(t) 
4)(s) 	 . 	 (1)(0)-

for all s>0.

Substituting (2), 7), and (8) in (6), we obtain

(9) V(t, ․ ) 	 q(t)G(s)Vt-s),

where

Co

f B(z)dz
B(s)(1)(s) 	 s 

(10) G(s) - 4)(0) - 00
f B(z)dz 	

(s>0).

0

8) If the replacement process is interpreted stochastically (cf. footnote
7), it can be shown that c(s) represents the expected remaining life
time of a capital good which has attained age s .



The value of the capital vintage t-s at time t is thus the product of the

replacement value of the original investment, q(t)J(t-s), and the share of

the total service flow which is produced by one capital unit after it is

years old, G(s). Aggregation over capital vintages yields the following

expression for the total capital value at time t

00 	 CO

(11) v(t) = f V(t, ․ )ds = f q(t)G(s)J(t-s)ds.
o	 0

This value can be separated into a price and a volume

component im several ways. For our purpose, the follawing decomposition

is convenient:

(12) V(t) = q(t)K.( 3

where

CO

(13) K(t) = f G(s)J(t-s)ds.
o

We shall call KN (t) the 'net capital stock'. Like the gross capital K(t),

it is a volume concept constructed by aggregating the previous investment

flow in volume terms, but the weighting system is basically different. The

weight assigned to investment made s years ago in KN (t), G( ), is the

share of the total service flow produced by one unit invested after it is

years old, whereas K(t) is based on the survival rates B(s), or, what is

equivalent,on the instantaneous service flow at age s. From (10) and (1) it

follows that G(s) has the same general properties as B(s):

(14) 05.G(s)1, 	 Gy(s)< 	 (if it exists) 	 for all sA,

G(0) = 1, 	 G(00) = 0 •



Differentiating (12) with respect to time, we get

•
(15) V(t) = q(t)KN (t) + q (t)K 1 (t).

9
We define depreciation, in volume terms? as the difference between the

volume of the gross investment and the increase in the volume of the net

capital stock:

CO•

(16) J(t) -K(t)	 f g(s)J(t-s)ds,
o

where, (if it exists)

(17) g(s)  = Gf(s) 	B(s) 

B(z)dz
o

the last equality following from (10). The function g(s) has the same

relation to depreciation as b(s) has to deterioration; the former is in a

sense the economic counterpart to the latter, technical concept,

The (net) value of depreciation (the true economic depreciation) is

the difference between the current investment outlay and the rate if increase

of the capital value:

(18) E(t. = q(t)J(t)-V(t) = q(t)DN (t) - q(t)KN (t)

CO
	

•

= q(t) f (es) - q(t) -G(s) 1J(t-s)ds

9) We here define depreciation as a volume concept. It can alternatively
be defined "from the price side", i.e. in terms of the prices q(t, ․ ).
(Cf. e.g. Hall (1968) and Jorgenson (1974).) The two interpretations can
be shown to be equivalent.

0 	 77-7.



Here we can interpret q(t)D(t) as the gross value of depreciation, and

4(t)K1 (t), i.e. the part of the increase in the capital value which is due

to changes in the current investment price, as the value of the appreciation

of the capital. Their difference is the true economic depreciation. An

equivalent way of stating this is that the weight g(s) assigned to capital

vintage t-s when calculating the volume of depreciation, should be replaced

by the 'inflation adjusted' weight g(s) - [4(t)/g(t)]G(s) when calculating

its value counterpart.

3. THE USER COST OF CAPITAL : A GENERAL FORMULA

Since one capital unit produces 0(0) units of capital services

during •its total life time, and since - • in the absence of taxation - its

(effective) purchase price is q(t), q(t)/0(0) would be the price per unit of

capital services at time t - or the user cost of capital	in the absence

of interest costs. To account for such costs, we replace 0(0), as defined

in (7), by the corresponding service flow discounted at the real rate of

interest p
10)

CO

(19)	 0 (0)	 .	 fe -PzB(z) dz,
P	 0

and define the user cost as

(20)	 c(t q(t) _ 	(1(0 
(I) (0)	 Co

P 	f e -PzB(z)dz
0

•

10) More precisely, p is the rate of interest forgone by a producer who owns
the capital_and uses its services instead of purchasing interest-
bearing financial assets.
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[Note that if we set p r-y, where r is the nominal interest rate and y

is the rate of increase of q, and if r and y are constants, then (20) is
CO

equivalent to q(t)	 fe -rzc(t+z)B(z)dz.]
0

We now introduce corporate taxes into this framework. We proceed

by first specifying an income tax function which comprises a wide class of

tax systems as special cases, and expressing the user cost of capital in terms

of the parameters of this general function. Then, in section 4, we consider

some specific tax systems within this class.

Let X(t) denote the difference between the firm's output value and

the total costmf all other inputs than capital at time t. The tax function

is

(21) T(t)	 u[X(t) - q(t) f" 	 s)J(—s)ds]
0

where u is the income tax rate (assumed to be constant) and p(s) is a

function representing the effect of the previous investment decisions on

the current income tax base: an increase in the replacement value of an

investment made s years ago by one unit reduces the current tax base by

1.1(s) units. This is a general way of representing the depreciation

allowances, the treatment of interest deductions and capital gains, and

other factors determining the corporate taxable income. All tax systems

we shall consider i section 4 can be written in this format.

The firm's net cash—flow at time t is

(22) 11(t)	 =	 X(t) - q(t)J(t)	 T(t)

CO

(1-u)x(t) - ci(t)E.gt -ufps.gt-s)ds].
o
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Let r be the (constant) rate of (nominal) interest at which the firm

can discount receipts and outlays at different points of time, and assume

that Me investment price grows at a constant rate y . The present value

of the net cash-flow can then, after some rearranging,	 be written as

CO

(23) • W = 1 e- -rtR(t )dt

0

f e7rt(1....u)[x(t

0
-

1-Au
1-u J ( t ) ] dt + W0 ,

where

co 	 co
(24) e 	 q ( t ) 	 (s) J (t-s) ds dt

and

(25) Xf
e r-y)z P(z 

dz.
0

Since W is affected only by investment decisions made before time t =

it represents the part of W which is predetermined in relation to the firm's

plans for the period [0,03).

Eq. (23) shows an interesting correspondence between the income tax

(21) and a tax an the firm's. net cash-flaw: A tax on the corporate income

at the rate u is equivalent to defining a corrected investment price q (t)

ci(t) (1-Xu)/(1-u) and taxing the resulting net cash-flow X(t) - q * (t)J(t)

at the rate u in each period te[0, ) 11). 	We shall refer to (1-Xu)/(1- )

as the fiscal factor in the following. This motivates us to modify the

definition of the user cost of capital accordingly. We then get

11) This, of course, presumes the existence of a perfect financial market, by
means of which the firm can transform payment streams between periods at
the interest rate r.
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(26) 	 c(t)
q
*(

t) 

(I)	 (0)
r-^r

cl(t) 	1-xu
0 	 (0) • I:tl"—r-.y

or

investment price 
user cost of capital -

present value of capital service flow

fiscal factor.

This is our general formula for the user cost of capital in the

presence of corporate taxes. It is more general than the expressions usu-

ally discussed in the literature since it applies to any specification of

the survival function B(s) and any system of capital taxation which can be

represented by the general weighting function p(s).
12)

4,. THE EFFECT OF THE TAX SYSTEM

Let us now consider, more specifically, how depreciation allowances,

interest deductibility, and taxation of capital gains affect the form of

the function p(s), and hence the parameter X and the user cost of capital

c(t). For this purpose, we introduce the concept accounting capital. This

is the capital concept used by the firm (and the tax authorities) for accoun-

ting purposes in order to define depreciation allowances and, possibly, also

for calculating interest deductions, and capital gains. We define the value

of the accounting capital at time t as

12) It can be shown formally that (26) is consistent with the conditions for

maximization of W with respect to J(t), subject to (3). The first order

condition for this problem can be expressed as

1-Xu(t)
1-u

e
-rzyt+z)B(z)dz

0

where XK(
t+z) 	 aX(t+z)/aK(t+z) is the value of the marginal product of

capital services at time t+z. Since (26) implies
co

1-Xu-
( t)	 = fe

r 
zc(t4.2)13(z)dz,

1-u 0
the user cost of capital as defined above corresponds to the opportunity

cost of holding capital goods in this constrained optimization problem.



Co

(27) ES
= f A(s) e q(t-s)J(t-s)ds,

0

where A(s) is the proportion of the original investment cost which is

included in the accounting capital s years later, and e 	 an inflation

adjustment factor: E is the inflation rate which the firm is allowed to

use for tax accounting purposes. If 6=y, the accounting capital is based

on replacement cost, if E=0, it is based on historic cost, etc. The

function A(s), which may be denoted as the statutory survival function of

the accounting capital, is assumed to satisfy

(28) O<A(s)< ,	 A'	 <0 (if it exists) • 	for all s>

A(0)	 1,	 A(co) = 0,

i.e. it has the same general properties as B(s) and	 s); cf. (1) and (14).

The depreciation allowances at time t can be written as

CO

Es ,
e ut-s J(t-s)ds,

where if its exists)

(30)	 a(s)	 -A' (s) •

The function a(s) represents the statutory depreciation rates, i.e.

the weight assigned to capital invested s years ago when calculating the

volume component of the depreciation of this capital vintage. Its price

EScomponent is the original purchase price inflated by e .

From (27)-(30) we obtain

A (t) = q(t)J(t)-D
A
 (t) +ENT

A (t)
 '

13

(29)
	

f a
0



which shows that D
A
(t) has the character as the gross depreciation of the

accounting capital. Its net value is obtained by subtracting

the capital gains as recorded in the firm's accounts, EV A (t). Hence, in

Analogy with eq. (18), which gives the true economic depreciation of the

fines capital, we can define the accounted net depreciation as

(3 1)
	

E
A

(t) = q(t)J(t) -V
A

(t)	 -EV
A

(t)

CO

f {a(s)-6A(s)leEsq(t-s)Vt-s)ds.
0

Obviously, we have EA (t)	 E(t) (and VA (t) = V(t)) regardless of the time

path of q and J if the following two conditions are satisfied: (i)

A(s) = G(s) (.*.a(s) = g(s)), i.e. the statutory survival function for the

accounting capital coincides with the weighting function for the net

capital, and (ii) c=y=q(t)/q(t), i.e. the rate of inflation permitted

for accounting purposes is equal to the rate of increase of the investment

price.

Let m be the proportion of the (imputed) interests on the capital

value which is deductible in the firm's income tax base, and n the propor-

tion of the capital gains, defined as 4(t)KN (t)	 ArV(t), which is included

in taxable income. The tax function then becomes

(32)
	

T(t) = tibC(t)	 DA(t) 	 mrV(t) + TryV(t)].

Inserting fram (29) and (11), this implies that the function a(s) in (21) takes on

the following specific form:

( 33 )
	 a(s) = a(s)e (6-Y )s + Cmr- n-y }G(s).



Define, for an arbitrary constant p, the functions

CO

(34) SY = fe 	 G(s)ds,
	P 	 0

CO

(35) Z	 fe-PsA(s)ds.
0

Inserting (33) in (25) and making use of (34)-(35), we find that the para-

meter X in the fiscal factor can be written as

(36) X (r-e)Z	 + {mr -m'y } Y	 .r-e	 r-y

The resulting formula for the user cost of capital becomes

(37) c(t)
q(t) 

0	 (0) • 1-u
r -y

-u 1-(r-e ) Z	 +1] -
r-e	 r-y

We have thus expressed the user cost of capital in terms of the in-

vestment price q(t) and its rate of increase the interest rate r, the tax

parameters u, e, m, and n, and the present values of the survival rates of

the gross capital 0 	 (0), the net capital, Y	 and the accounting capital,Z	 -r-y 	 r-e

Note that the first two present values are based on the market real interest

rate r-y, while the third is based in the "tax permitted" real interest rate

r-e. From this formula we derive three conclusions:

1.	 The fiscal factor will be i when X.1. This is thus, in general form,

the condition for neutrality of the corporate tax system. It will be satis-

fied uniformly (i.e. for all values of u, r, y, and G(s)) in the following

cases:

(a) Depreciation allowances are based on replacement value (e.y),

with the depreciation rates equal to the true rates of depre-

ciation of the net capitaltA(s) r
 . Y

r , full interest



deductibility is permitted (m=1), and capital gains are fully

included in taxable income (n.1).

(b) Immediate deduction of capital purchases in taxable inc(tme is

permitted (Z	 . 1), no interest deductibility is permittedr-e

(m=0), and capital gains are not subject to taxation (n.0).

Conclusion (a) generalizes the conclusions of Sandmo (1974, sections 4, 6

and 7), King (1975, p. 2,75), and Boadway (1980, pp. 254-255) to the situation

with general survival functions of gross capital., net capital, and accounting

capital. These authors consider the case with an exponentially declining

-45s
survival profile (B(s) . e) and the declining balance method of deprecia-

-mmstion (A(s)	 e 5 ) only.. Conclusion (b) confirms the neutrality of the

cash-flow tax.

Z.	 These conclusions rest essentially on the assumption that the tax

permitted interest deductions, and the calculation of capital gains are

based on the capital calue V(t) as defined in (12). If, however, these

components are calculated on the basis of the accounting capital VA(t), as

defined in (27),,the tax function (32.) changes to

	ir(t) = [ X(t)	 D
A
 (t)	 mrV

A
 (t) 4 neV

A( t)]

and we get

	- m r	 -n)E}Z r-e

In this case, the condition- for neutrality (X=1) is simply m=n= 1,

regardless of the values of E and Z
r-E' 

and hence of A(s). The interpretation

of thLs is that with full interest deductibility and full inclusion of capital

gains, the tax system - including the form of the accounting capital function -

will not interfere with the firm's optimizing conditions, provided that the

same accounting capital concept is used for calculating depreciation

allowances, interest deductions, and capital gains. This generalizes the



conclusion in Boadway (1980, pp. 255-256), which is confined o a model

with exponential depreciation allowances.

3. 	 The distinction between the gross and the net capital concepts is

indispensible for the derivation of the general user cost formula (37).

one particular case, however, their values are equal, namely the familiar

exponential case B(s) 	 e
-6s. 

Then 0(s) . 1/6 and G(s) 	 B(s) for all s,

cf. (7) and (10). In this degenerate case, we have

(D)	 = Y"
r-	 r- /(r+6-y)y

If, for instance, depreciation - allowances are calculated according to the

-as
declining balance scheme A(s) = e (a>v), based on historic cost (e.0),

i• •

/(r+a
r-c

and if m=1 and n=0, q. (37) gives the same expression for the user cost

of capital as the one discussed in Boadway (1980, p. 257):

c(t) = q(t)(ri-6-y)(1 	 ]1-u)(r+d-y)(r+a) .

ur(6-y-a)

5. NUMERICAL ELLUSTRATIONS

The above results hold for any specifications of the survival function

forgross capital, B(s), and of the statutory survival function for accounting

capital, A(s), which satisfy (1) and (28). In this section', we consider a

selection of parametrizations of these functions to illustrate (i) the relation-

ship between the curvature of B(s) and the user cost of capital, and (ii) the

sensitivity of the user cost with respect to the tax parameters m, n, and e.



For this purpose, we specify two classes of survival functions for

gross capital, B(s). Both have two parameters, the first, denoted by N,

representing the (maximal) life time of the capital, the second indicating

the 'curvature' of the survival profile.

Class I
■■■■■■•■,

The first class has the forn

(38)	 B(s) = BI (s;N,T)
for 0<s<N_

for s>N,

where N and T are positive
13)
 constants, T integer. Inserting this in

(5), (10), and (17), we obtain

(39) b(s) =	
Ti

N	 N	
_T I
N	 s;N, --f)

T+1
(40) G(s) "4-

s 

	 = B (s;N,T+1),

	T+1	 +1(41)	 e 	 T
s) =	 (1- = 	 B (s;N,T)	N	 N	 N

respectively.

for 0<s<N,

13) B(s), G(s), and g(s) are defined also for T= , but b(s) is undefined.
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Class II

The survival function in the second class is

a

(42) B(s)	 s;-N,a)

for 0<s<N

for s>N,

where N and a are positive constants, a integer. This parametrization

implies

(43) b(s)
a-1

as =._
7 N	 N

s ;N,a-1 ) ] ,

(44.)	 G ( s) =, 1 aN

a
1	 1

=-	 a 	s,N,a+-1)a

(4 •)	 es •41
aN

a
s;N ,a) for 0<s<N .

These two parametrizations contain several specifications discussed

in the literature as special cases. The case in which all capital objects

retain their full productivity during N periods and are then completely

scrapped, (simultaneous exit, ' one horse shay'), corresponds to class I with

r=0, or class II with a -0-00. The case with a linearly decreasing survival

function B( s) is obtained. by letting 7=1 in class I or a=1 in class II. In

this case, the survival function for net capital is simply G(s)	 (1 -s/N)

with g(s) =( 2/N)(1-s/N), which follows from eqs. (40 and (41) (or (44) and

(45)). We recognize the latter as the depreciation rates implied by the

sum-of-the-years'-digits method. Furthermore, class I with T -0"c° (and N

finite) implies momentaneous scrapping of the capital once it has been

installed (for practical purposes, this is equivalent to a situation with



a service life of one year). If, however, T and N both go infinity while

their ratio is a finite constant cS , then class I degenerates to the

standard exponential case, B(s)=e

All members of class I in which T>2 have (strictly) convex survival

functions for both gross capital and net capital (i.e. b t (s)<O, e(s)<O).

In class II, a>2 implies a (strictly) concave survival function for gross

capital (i.e. b'(s)>0), but a (strictly) convex survival function for net

capital (i.e. g l (s)<O). There is thus no conflict between the assumption

that the technical deterioration of the capital is increasing with age and

the assumption that the depreciation (decline in capital value) is decreasing.

Function values of B(s) and G(s) for N=10,
14) 

with different values

of a and T , are given in table 1. Corresponding values of the relative

user cost of capital, c/q, with the fiscal factor set to unity (i.e. X=1),

are recorded in table 2. The user cost depends strongly on the curvature

of the survival profile, as characterized by a and T , the sensitivity

is larger the lower is he technical life time.

Table 3 illustrates the sensitivity of the user cost with respect to

the interest deductibility parameter m, the share of the capital gains sub-

ject to taxation n, and the inflation adjustment parameter e. For simplicity,

we consider only the case where the survival function of the. gross capital is

of the 'simultaneous exit' type (T=0, or a --) implying a linearly declining

survival function for net capital — and where the depreciation allowances

are	 linear	 over T years, where T IMIY be different fram N.

The forlzh column of the bottom part of the table (T=N=20, m=n=1, and 6=y)

corresponds to the neutral tax system referred to in section 4. We observe

that other constellations of the tax parameters T, m, n, and E may give large

departures from neutrality, in particular when the inflation rate is high.

14 Since (38), (40), (42), and (44) are homogeneous of degree zero in s and
N, it is straightforward to compute similar function values for other
values of N from this table.
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An interesting question for econometric work with invewtment equations

is to which extent the standard parametrization with constrant rate cf

(technical) depreciation is an acceptable approximation for practical pur-

poses. From our formulae, we can throw some light on this issue. In a

stationary ;situation with constant (gross) investment, the rate of deterio-
CO

ration (i. e. D/K) will be equal to 6 0 	1/IB(z)dz. Eqs. (38) and (42) give,
0

in particular,

T
N
	 (class I

* 1
	

(class II).
aN

Let us use this as an approximation to the actual deterioration rate in

situations with fluctuating investment. Assume that the actual survival

profile is of the simultaneous exit type (T.0, which implies ô

This suggests approximating 0	 (0) and Y r 
-7 

by 1/(r+1/N-y) in eq. (37),
r-y 

since 0 
ry

(0) . Y 
ri 

. 1/(r+6-y) holds exactly when the deterioration rate is
—g-

constant and equal to 6, i.e.„ in the case with exponential survival profile.

(Confer conclusion 3 in section 4 above.)

In table 4, we compare - for different values of the tax parameters

m, n, and e - these two ways of calculating the relative user cost (c/q).

The data employed for u, r , and. y = eik are Norwegian annual data for the

income tax rate (joint-stock companies), the interest rate (loans from

commercial banks to companies) and the rate of increase of the price of investment

in machinery and equipment for the years 1965-1980. We find that

the series calculated from the exact formula are significantly different



from those based on the approximate formula and the latter have a tendency

to exaggerate the fluctuations. In most cases, however, they move in the

same direction from one year to the next.

The results in table 4 indicate that a first order approximation

based on a constant rate of technical depreciation may lead to inadequate

estimates of the variations in the capital cost for policyanalysis and

prediction. This conclusion will probably hold a fortiori if 6 0 is replaced

by a time function equal to the observed ratio between the replacement and

the gross capital stock - a common practice in empirical investment analysis.

The formulae for 0	 (0) and Y	 , as well as their inverses, are, in general,
r-y	 r-y

highly non-linear expressions. In periods with fluctuating interest and infla-

tion rates - as several countries have exiDerienced during the last 15 years.

the standard treatment of the replacement component in the user cost of

capital may not be as innocent a simplification for empirical research as

it may first seem.
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