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Sammendrag 

Artikkelen introduserer begrepet co-non-linerity (”ko-ikke-linearitet”). Dette er en egenskap som kan 

klassifiseres som en common feature (”felles egenskap”), se Engle and Koziciki (1993, J. Bus. Econ. 

Statist.). Samtidig er det en videreføring av common nonlinear components (”felles ikke-lineære 

komponenter”), se Anderson and Vahid (1998, J. Econometrics). 

 

En common feature innebærer at flere tidsserier har en felles egenskap. Den felles egenskapen er slik 

at det er mulig å ta en (eller flere) lineære sammenhenger av tidsseriene slik at den felles 

sammenhengen forsvinner. Cointegration (”kointegrasjon”) er et eksempel. Her følger hver tidsserie 

en stokastisk trend, men det kan likevel finnes minst en lineær sammenheng mellom tidsseriene som 

ikke følger en stokastisk trend. Denne sammenhengen sies å utgjøre en kointegrerende sammenheng. 

 

Tidsserier kan også følge ikke-lineære prosesser. Samtidig kan det finnes lineære sammenhenger 

mellom tidsseriene slik at ikke-lineariteten forsvinner. Ledighetsraten og rentesatser kan være 

eksempler på ikke-lineære tidsserier. Samtidig kan økonomisk teori tilsi at det er en lineær 

sammenhenger mellom rentesatser. Terminstrukturmodellen i Cox (1985, Econometrica) innebærer en 

lineær sammenheng mellom rentepapirer med forskjellig løpetid. Tilsvarende innebærer CAPM-

modellen en lineær sammenheng mellom avkastningen på et verdipapir, avkastningen en portefølje av 

verdipapirer og renten. 

 

I denne artikkelen sjekker vi om det er co-non-linearity mellom innskuddsrenten, utlånsrenten og 

pengemarkedsrenten i Norge. Vi finner indikasjon på at det er to slike sammenhenger. Den ene 

innebærer et en-til-en forhold mellom pengemarkedsrenten og utlånsrenten på lang sikt. Det innebærer 

at hvis pengemarkedsrenten øker med ett prosentpoeng vil vi tro at utlånsrenten vil øke med ett 

prosentpoeng også. Den andre sammenhengen er mellom pengemarkedsrenten og innskuddsrenten. 

Denne sammenhengen innebærer at innskuddsrenten øker med 0,8 prosentpoeng når 

pengemarkedsrenten øker med ett prosentpoeng. Grunnen til at innskuddsrenten endres mindre enn 

pengemarkedsrenten kan kanskje forklares med at innskuddsrenten ikke kan være negativ, og at 

innskuddsrenten dermed nødvendigvis må falle mindre enn pengemarkedsrenten ved rentenedgang 

ved tilstrekkelig lavt rentenivå. Samlet sett innebærer de to sammenhengene vi finner at rentemarginen 

– definert som forskjellen mellom utlåns- og innskuddsrente – er lavere når rentenivået er lavt enn når 

rentenivået er høyt. 



1 Introduction

Economic time series may share similar types of properties. Non-stationary variables

may be cointegrated and stationary variables (or non-stationary variables differen-

tiated to be stationary) may share common cycles. Furthermore, variables may fol-

low processes with many breaks but there might still exist co-breaking relationships

among these variables. Here we will consider variables that follow non-linear pro-

cesses, but where the number of independent non-linear processes is less than the

number of variables. Hence, there exist linear relationships among these variables

that are not explained by these non-linear processes. Following the usual terminology

in the common feature literature, I will denote such relationships between the levels

of these variables as co-non-linear relationships.

Many variables seem to follow non-linear processes. For example, interest rates

and unemployment rates do not seem to be mean reverting; but at the same time

they are bounded so they can not follow deterministic or stochastic trends.1 Hence,

such processes can be considered as non-linear processes. However, two interest rates

might follow the same non-linear process such that there exist a linear relationship

between the two interest rates that is not described by a non-linear process. Economic

theory might imply such linear relationships. For example, the term structure model

by Cox et al. (1985) implies a linear relationship between interest rates of different ma-

turities. Similarly, the capital asset pricing model implies a linear relationship between

excess return on one asset and the excess return of a market portfolio of assets.

Co-non-linearity is an example of common features, a concept introduced by Engle

and Kozicki (1993). A feature is defined as common if the feature is present in a group

of series, and there exists a nonzero linear combination of the series that does not have

the feature. Cointegration (see Engle and Granger, 1987) is an example of a common

feature, as the individual time series follow a stochastic trend but there exists at least

one linear combination of the time series that does not follow a stochastic trend. Com-
1However, treating them as following stochastic trends may be a good approximation in empirical

work.
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mon cycles (see Vahid and Engle, 1993), common seasonality (see Engle and Hylleberg,

1996) and co-breaking (see Hendry and Massmann, 2007) are other examples of com-

mon features.2

Anderson and Vahid (1998) suggest a test for common nonlinear components in mul-

tiple time series. They provide a generalized methods of moments test in terms of

canonical correlation (i.e., reduced rank) between multiple time series. Similarly, Bierens

(2000) considers nonlinear cotrending among series that follow nonlinear trends. He

suggests a nonparametric test for nonlinear cotrending.

This paper builds on Anderson and Vahid (1998) and use reduced rank regression

in order to determine the number of non-linear processes. However, instead of using

generalized methods of moments, I use a maximum likelihood approach, as described

in Johansen (1996). Anderson and Vahid (1998) show that the test statistic based on

generalized methods of moments and maximum likelihood has the same asymptotic

distribution.

This paper extends Anderson and Vahid (1998) by deriving the co-non-linear rela-

tionships between the levels of the time series. Furthermore, I show how to formulate

hypothesis tests on the co-non-linear relationships. The test is formulated in terms of

a fully specified co-non-linear space, but can be generalized to less restrictive assump-

tions.

The paper is organized as follows: The econometric method is described in Section

2. An empirical example — using Norwegian interest rates — illustrates the method

in Section 3. Section 4 concludes and points out directions for future work.

2 Econometric method

This Section formulate the system of equations and defines the co-non-linear vectors.

I show how to test for restrictions on these co-non-linear vectors and suggest how to

approximate the non-linear part of the system. I also show how the approach can

2See also Anderson et al. (2006) and Urga (2007) for more overview, or special issues of Journal of
Econometrics 132(1) in 2006 and Journal of Business & Economic Statistics 25(1) in 2007.
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be modified if the time series are non-stationary but cointegrated. The estimation in-

volves reduced rank regression, see Anderson (1951) and Johansen (1996).

2.1 Identifying the co-non-linear space

Consider the non-linear system

Yt = ΠXt +
`

∑
i=1

ΛiYt−i + ΦDt + εt, (1)

where Yt is a vector of n variables; Xt is a vector of m variables that contain the non-

linear components; and Dt is a vector of nD deterministic variables. The non-linear

components in Xt can be non-linear functions of the variables in Y. Furthermore, Π,

Λi (i = 1, . . . , `) and Φ are coefficient matrixes (of dimension n×m, n× n and n× nD,

respectively). The errors are assumed to be Gaussian white noise (εt ∼ N.i.i.d. (0, Ω)).

In order to investigate reduced rank for the non-linear part, let Π = ξη′ where ξ is

of dimension n× s and η is of dimension m× s with 0 ≤ s ≤ min{n, m}.3 The term

η′Xt expresses the common nonlinear components, see Anderson and Vahid (1998).4

We may re-write (1) in difference form with one level-lag (also known as ’error-

correction form’ in the cointegration literature) to make it easier to identify and restrict

the co-non-linear space.

∆Yt = ξη′Xt + ΨYt−1 +
`−1

∑
i=1

Γi∆Yt−i + ΦDt + εt, (2)

where Ψ = ∑`
i=1 Λi − In and Γi = ∑`

j=i+1 Λj. Imposing the reduced rank on (2) im-

plies imposing (n− s) (m− s) independent coefficient restrictions. The likelihood ra-

tio statistic for the reduced rank is χ2-distributed with (n− s) (m− s) degrees of free-

dom when the variables are stationary, see Anderson (1951). Also when Yt and Xt

3Note that if m < n then Π will always have reduced rank. This will imply — as shown below —
that there are co-non-linear relationships between the series.

4The coefficient matrices ξ and η are not unique. If η is post-multiplied with an s× s matrix of full
rank and ξ is post-multiplied with the inverse of the same matrix, the product of these two new matrices
will yield the same Π as with the original ξ and η.
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are I(1) variables — i.e., stationary after differencing them once — this statistic is χ2-

distributed when no restrictions are imposed on Ψ, see Section 2.4.

The non-linear term in (2) can be removed by pre-multiplying with ξ ′⊥, where ξ⊥

is the orthogonal complement to ξ and ξ ′⊥ is the transposed of the orthogonal comple-

ment. This matrix has dimension (n− s)× n and has the property that (ξ, ξ⊥) has full

rank and ξ ′⊥ξ = 0. (For mathematical convenience, I define ξ⊥ = 0 if ξ has full rank

n and that ξ⊥ is any full rank n× n matrix if ξ has rank 0.) Pre-multiplying with ξ ′⊥

yields

ξ ′⊥∆Yt = Ψ∗Yt−1 +
`−1

∑
i=1

Γ∗i ∆Yt−i + Φ∗Dt + ε∗t , (3)

where Ψ∗ = ξ ′⊥Ψ, Γ∗i = ξ ′⊥Γi, Φ∗ = ξ ′⊥Φ and ε∗t = ξ ′⊥εt.

The coefficient matrix ξ⊥ is not uniquely identified as the matrix resulting from

pre-multiplying (ξ⊥)′ with any (n− s) × (n− s) matrix of full rank will also be the

orthogonal complement to ξ. Only the space spanned by this coefficient matrix is

uniquely identified.5 Hence, it may be convenient to normalize ξ⊥ by letting

c′ξξo
⊥ = In−s, (4)

where I use the top-script ’o’ to indicate that the coefficient matrix is normalized; and

cξ is an n× (n− s) matrix of identifying restrictions. One natural choice of cξ could

be cξ =
(

In−s, 0(n−s)×s

)′
as this will normalize ξ⊥ to ξ⊥ = (In−s, ϕ)′: then (3) can be

written as ∆Y1,t = −ϕ∆Y2,t + Ψ∗Yt−1 + ∑`−1
i=1 Γ∗i ∆Yt−i + Φ∗Dt + εt, where Y1,t are the

first n− s variables in Yt and Y2,t are the remaining s variables in Yt.

Proposition 2.1 Under the assumption that c′ξξ⊥ has full rank, the normalization in (4) im-

plies

ξo
⊥ = ξ⊥

(
c′ξξ⊥

)−1
(5)

Proof. Pre-multiplying (5) with c′ξ yields (4) if c′ξξ⊥ has full rank.

5Two matrices, say A and B, are said to span the same space if all vectors in A can be constructed as
linear combinations of the vectors in B and all vectors in B can be constructed as linear combinations of
the vectors in A.

7



The (n − s) × n coefficient matrix Ψ∗ in (3) describes the co-non-linear space. It

may be convenient to normalize the co-non-linear space. In order to do so we can

decompose Ψ∗ into two matrices by the equality Ψ∗ = ζυ′, where ζ is (n− s)× (n− s)

and υ is n × (n − s). Similarly, we use Ψ∗o to indicate that this coefficient matrix is

normalized when ξ⊥ is normalized (i.e., Ψ∗o = (ξo
⊥)′ Ψ). Now υ can be normalized by

c′υυo = In−s, (6)

where cυ is an n × (n − s) matrix of known coefficients. (Also here a natural choice

could be cυ =
(

In−s, 0(n−s)×s

)
.) The vectors in υo express the co-non-linear relation-

ships among the variables in Y.

Below (Corollary 2.1) I will show that υ is independent of the normalization of ξ⊥

in (4). This is an important results, as if υ had not been independent of (4) it would

be difficult to give it a meaningful interpretation. In contrast, the results in Corollary

2.2 show that ζ depends on the normalization in both (4) and (6) and — hence — it is

more difficult to give this coefficient matrix a meaningful interpretation.

Proposition 2.2 Under the assumption that c′υυ has full rank, the normalization in (6) implies

υo = Ψ∗o′
(
c′υΨ∗o′

)−1 (7)

Proof. Pre-multiplying (7) with c′υ yields (6) if c′υυ has full rank.

Corollary 2.1 υo is independent of the normalization in (4).

Proof. Inserting for Ψ∗o′ in (7) yields

υo = Ψ′ξo
⊥
(
c′υΨ∗′ξo

⊥
)−1

= Ψ′ξ⊥
(

c′ξξ⊥

)−1
(

c′υΨ∗′ξ⊥
(

c′ξξ⊥

)−1
)−1

= Ψ′ξ⊥
(

c′ξξ⊥

)−1 (
c′ξξ⊥

) (
c′υΨ∗′ξ⊥

)−1

= Ψ′ξ⊥
(
c′υΨ∗′ξ⊥

)−1 .
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The equality Ψ′ξo
⊥ (c′υΨ∗′ξo

⊥)−1 = Ψ′ξ⊥ (c′υΨ∗′ξ⊥)−1 shows that the expression in (4)

is independent of the chosen normalization on ξ⊥ as long as c′ξξ⊥ has full rank.

Proposition 2.3 Under the assumption that c′ξξ⊥ and c′υυ have full rank, the normalization

in (4) and (6) implies

ζo = Ψ∗ocυ (8)

Proof. Postmultiplying (8) with υo yields ζoυo′ = Ψ∗o.

Corollary 2.2 ζo depends on the normalization in both (4) and (6).

Proof. From the equality Ψ∗o = ζoυo′ = ζo (Ψ∗ocυ)−1 Ψ∗o it follows that ζo = Ψ∗ocυ. It

implies from this expression that ζo depends on the normalization of υo (through cυ)

and the normalization of ξo
⊥ (through Ψ∗o).

Imposing the decomposition of Ψ∗ in (3) yields

(ξ⊥)′ ∆Yt = ζυ′Yt−1 +
`−1

∑
i=1

Γ∗i ∆Yt−i + Φ∗Dt + εt, (9)

where υ is uniquely defined given (6) and ζ is uniquely defined given both (4) and (6).

Sometimes it may be informative to include some or all of the deterministic vari-

ables in the co-non-linear relationships (as also will be shown in Section 3). Let Φ∗Dt =

Φ∗0D0,t + Φ∗1D1,t where D0,t are the deterministic variables included in the co-non-

linear relationship. Equation (9) can then be reformulated as

(ξ⊥)′ ∆Yt = ζυe′Ye
t−1 +

`−1

∑
i=1

Γ∗i ∆Yt−i + Φ∗1D1,t + εt, (10)

where Ye
t−1 =

(
Y′t−1, D′0,t

)′
(with the top-script ’e’ used for extended). For example,

if a constant is the only deterministic variable included in the system, this constant

can be included in the co-non-linear relationships if the level of these relationships are

interesting to identify. If both a constant and a trend are included in the system, the

trend can be included in the co-non-linear relationships so that the drift of these rela-

tionships is identified. (The constant, however, will in this case not have a direct inter-

pretation, as it will be a function of both the level of the co-non-linear relationships and
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the drift in the variables.) Note that moving some of the deterministic variables into

the co-non-linear relationships does not involve any restriction on the system since

ζυe′ has full rank.

2.2 Hypothesis restrictions on the co-non-linear space

For given estimates of ξ⊥ restrictions on the co-non-linear space υ can be tested by

the formulation in (9) or (10) with techniques developed for testing the cointegrating

space in the cointegration literature, see e.g., Johansen (1996, Chap. 7) and Boswijk

and Doornik (2004). Below I will consider how to perform tests on the co-non-linear

space in a full information maximum likelihood setting (i.e., without conditioning on

any estimated coefficient matrix).

2.2.1 Testing for a fully specified co-non-linear space

Here we only consider restrictions of the form where υ is fully specified, i.e. υ = H,

where H is an n× (n− s) matrix of full rank where all elements are known. By using

the property In = H (H′H)−1 H′ + H⊥
(

H′⊥H⊥
)−1 H′⊥ equation (2) can be written as

∆Yt = ξη′Xt + ΨH
[
H′Yt−1

]
+ ΨH⊥

[
H′⊥Yt−1

]
+

`−1

∑
i=1

Γi∆Yt−i + ΦDt + ε, (11)

where ΨH = ΨH (H′H)−1 and ΨH⊥ = ΨH⊥
(

H′⊥H⊥
)−1. If the hypothesis is correct

then ξ and ΨH⊥ span the same space and the term ΨH⊥H′⊥Yt−1 can be included in the

reduced rank part together with Xt:

∆Yt = ξ
(
η′Xt + κ

[
H′⊥Yt−1

])
+ Ψ∗H

[
H′Yt−1

]
+

`−1

∑
i=1

Γi∆Yt−i + ΦDt + ε, (12)

where κ is an s × s matrix of coefficients. Pre-multiplying (12) with (ξ⊥)′ yields (9)

with (ξ⊥)′ Ψ∗H = ζ and H = υ. Hence, the system in (12) is equal to the system in (2)

with υ = H imposed. The restrictions on the co-non-linear relationship can be tested

with a likelihood ratio test statistic which under the null hypothesis is χ2-distributed
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with (n− s)s degrees of freedom (when Xt is known).

2.2.2 Testing for a partly restricted co-non-linear space

The approach for testing restriction on υ above can be extended to situations where

some of the elements in H are unknown. The restriction that we consider is υ = H(φ)

where φ is a k-dimensional vector of the unknown elements in H. We assume that

H(φ) is formulated such that the vector φ is identifiable.6

The hypothesis can be tested with a likelihood ratio test where the system under the

restriction is estimated with (11) with φ that is maximizing the likelihood of this sys-

tem. This implies that the system in (11) must be estimated with some maximization

technique. Under the null hypothesis the likelihood ratio test statistic is χ2-distributed

with (n− s)s− k degrees of freedom.

2.3 Approximating non-linear relationships

The non-linearity can be estimated directly, or an approximation can be applied. Here

I choose the latter. One advantage for choosing an approximation is that the approxi-

mation might work well for different non-linearities, and I do not need to identify the

type of the non-linearity. Another advantage is that estimation becomes easier: for

many types of non-linearities the estimation will involve some kind of optimization

techniques which can be rather complicated in a large system of equations.

The approximation I use is based on the theory on smooth transition regression

(STR) models, see e.g., Teräsvirta et al. (2010). However, I will also mention some

alternatives.

2.3.1 X as a non-linear function of the variables in Y

Here I will consider a generalization of a STR model to a vector of variables. The spec-

ification of the non-linearity is closely related to logistic vector STR model suggested

6Identifiability implies that the order and rank condition must be satisfied for H(φ). If not, the
degrees of freedom in the χ2-distribution must be adjusted.
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by Rothman et al. (2001) and Anderson and Vahid (1998). An important difference,

however, is that Rothman et al. (2001) also consider non-linearity in the short run dy-

namics, whereas I consider if there are common shifts in the mean of the variables and

the adjustment speed towards those levels.7

Consider the following expression of the s common non-linear components;

η′Xt = G (γ, c; zt) [Θ0 + Θ1Yt−1] , (13)

where Θ us an s× n coefficient matrix, and

G (γ, c; zt) = diag {g1(γ1, c1; z1,t), . . . , gs(γs, cs; zs,t)} ,

and where gi(γi, ci; zi,t) is a continuous bounded function between 0 and 1 with zi,t

as the transition variable. If Ψ has full rank — i.e., the variables are stationary — a

non-zero value of (any of the s element in) Θ0 will imply level-shift of one or more of

the variables in the system, whereas a non-zero value of Θ1 implies a shift in the speed

of adjustment towards those mean levels.

Here I will assume that the transition variables are linear functions of the variables

in Yt−1. The logistic STR model of first order (LSTR1) this transition function is given

by

gi(γi, ci; zi,t) =
1

1 + e−γi(zi,t−ci)
, γi > 0.

The test of s common linear components is H0 : (γs+1, . . . , γn) = 0 where n com-

mon non-linear components is the alternative hypothesis (i.e., Π has full rank). This

involves n− s parameter restrictions. It is shown for single equation models that this

test does not have a standard asymptotic χ2-distribution under the null hypothesis,

see e.g. Davies (1977, 1987, 2002). Hence, Saikkonen and Luukkonen (1988) suggest to

circumvent this problem by testing for linearity by using a Taylor-approximation. In

the system I consider, the first order Taylor approximation for the auxiliary regression

7Rothman et al. (2001) also allows for mean-level shifts and shifts in the adjustment speed, but does
not consider that such shifts can be common for the differen variables or cointegrating vectors.
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gives the following formulation of the non-linear part

η′Xt = Θ∗diag {z1,t, . . . , zs,t}Yt−1 + l(Yt−1), (14)

where l(Yt−1) is an s dimensional vector where each element is a linear function of

the variables in Yt−1 (plus a term picking up the approximation error). To apply this

approximation for testing the number of common non-linear components we replace

η′Xt in (2) with Θ∗diag {z1,t, . . . , zs,t}Yt−1 (as the linear part given by l(Yt−1) only

affects the estimates of Ψ and the intercept in ΦDt). This is the same as including

all cross products between the variables in Yt−1 (including their square) in Xt.

The formulation in (14) assumes that we know which variables are the transitory

variables. An alternative is that the transitory variables are unknown linear functions

of the variables in Yt−1 — i.e., zi,t = a′iYt−1 — where the parameters in the vector ai are

unknown.8 For the auxiliary regression we have

η′Xt =
s

∑
i=1

s

∑
j=i

Θ∗∗ij yi,t−1yj,t−1 + l(Yt−1), (15)

where Θ∗ij are coefficient vectors (of dimension s).

However, there is one problem by using the first order approximations in (14) or

(15) to test for non-linearity. As shown for the single equation equivalents, see Luukko-

nen et al. (1988), the test has no power in the case where a shift in the intercept is the

only non-linear element (i.e., where Θ0 6= 0 and Θ1 = 0). An alternative is to use the

third order Taylor approximation of (13):

η′Xt =
s

∑
i=1

s

∑
j=i

π1ijyi,t−1yj,t−1 +
s

∑
i=1

s

∑
j=1

π2ijyi,t−1y2
j,t−1

+
s

∑
i=1

s

∑
j=i

π2ijyi,t−1y3
j,t−1 + l(Yt−1),

8Normally a is assumed to be an indicator function, i.e., that all elements are zero except one that is
unity. For the test of linearity this restriction is not necessary. Here we only assume that not all elements
are zero (because if they are zero (13) is linear). However, if the non-linearity shall be estimated, such
restriction will be helpful as it reduces the number of non-linear parameters. In the present paper I do
not estimate the actual non-linear part of the model.
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where πkij are vectors with s elements. This approximation involves that 2p2s extra

parameter must be estimated. However, as Luukkonen et al. (1988) show in the sin-

gle equation version, of these extra parameters only π2ii (i = 1, . . . , p) are functions

of the level parameters in Θ0. Hence, if (15) is extended with the terms involving π2ii

(i = 1, . . . , p), this new auxiliary model has explainable power for all types of param-

eter shifts in (13). They label this the ’economy version’ since it does not involve all

the terms of the third order Taylor approximation. In our system the corresponding

approximation yields

η′Xt =
s

∑
i=1

s

∑
j=i

π1ijyi,t−1yj,t−1 +
s

∑
i=1

π2iiy3
j,t−1 + l(Yt−1). (16)

Based on (16) we include all the cross products between the variables (including the

square) plus the variables in the third power in X. This can be expressed as Xt =((
vech

(
Y′t−1 ⊗Yt−1

))′ , (Yt−1 �Yt−1 �Yt−1)
′
)′

, where ⊗ is the Kronecker product op-

erator, � is the Hadamard product operator and vech is the operator for vectorizing the

lower diagonal of a matrix.9 For example, if there are two variables in Y, we have

Xt =
(

y2
1,t−1, y1,t−1y2,t−1, y2

2,t−1, y3
1,t−1, y3

2,t−1

)′
. With three variables in Y, we have

Xt =
(

y2
1,t−1, y1,t−1y2,t−1, y1,t−1y3,t−1, y2

2,t−1, y2,t−1y3,t−1, y2
3,t−1, y3

1,t−1, y3
2,t−1, y3

3,t−1

)′
. In

general, Xt will contain m = n(n + 1)/2 + n elements.

2.3.2 Alternative approximations

Above I have considered an approximation of the non-linearity based on the smooth

transition regression literature. Standard switching models — see e.g., Tong (1990) —

are special cases of as special cases of the smooth regression for large γi’s.

However, other non-linearities and approximations might be chosen. Instead of

using one of the included variables as a transition variable — as above — time could

be used as a transition variable. Markov-switching regression models — see e.g., Lind-

9In our case the Kronecker product Y′t−1 ⊗ Yt−1 gives an n× n matrix where the i’th column is given
by yi,t−1Yt−1; and the Hadamard product Yt−1 � Yt−1 � Yt−1 gives an vector of n elements where the i’th
element is given by y3

i,t−1. Since Y′t−1 ⊗ Yt−1 is symmetric we use the vech operator to vectorize it and
thereby ignoring the upper diagonal elements.

14



gren (1978) — are special versions of standard switching models where the switching

variables are given by unobservable discrete stochastic variables. These models are not

special cases of the smooth transition regressions since the latter assumes the transition

variable to be observable. Hence, applying a Markov-switching type of non-linearity

would be an alternative to the one chosen here.

Furthermore, the non-linearity could be based on neural network modeling, see

e.g. Gonzalez and Teräsvirta (2008) for a process with shifting mean. Anderson and

Vahid (1998) also considers neural network model when testing for common non-

linear components.

Non-linearity in the error process — such as ARCH (autoregressive conditional

heteroskedasticity), see Engle (1982), and extensions such as GARCH (generalized

ARCH), see Bollerslev (1986) and Taylor (1986) — does not fit into the framework con-

sidered in this paper. Nor does state space models — see e.g., Durbin and Koopman

(2001) — where the parameters are time-varying.

2.4 Cointegration and co-non-linearity

Above it is assumed that the variables are — except for the non-linear part — station-

ary. However, if the variables are non-stationary I(1) variables — i.e., stationary after

differencing them once — we can follow the approach with minor modifications. Here

I will consider two alternatives. One where the cointegrating rank is established first

and another where the common nonlinear components and the co-non-linear relation-

ships are identified before the cointegrating rank test is conducted.

2.4.1 Testing the cointegrating rank first

Here I consider testing reduced rank of Ψ in (2) when no rank-restriction is imposed on

Π. The problem with this approach is how the non-linear term, X, affects the critical

values. If the non-linearity is approximated as suggested in Section 2.3 where the

variables are raised to the third power and some of these variables are following a drift,

then this has the same effect as to including cubic trend in the vector autoregressive

15



model. Critical values for reduced rank in such systems are not simulated.

The inclusion of variables in the third power in X is not done to allow the system

to have a cubic trend (and — since this trend is not restricted to lie in the cointegrating

space — the Granger represetation theorem for such a system would show that the

variables in it would follow a quartic trend — i.e., a trend in the forth power — if the

rank is not full); they are included to approximate non-linearities within the sample

we are considering. However, the interpretation of this non-linearity is important for

determining the critical values for the cointegrating rank test. This means that it is

necessary to restrict the functional form of the non-linearities first so that appropriate

critical values can be simulated.

2.4.2 Testing the cointegrating after the non-linearities are removed

An alternative to imposing additional restriction in the non-linear processes is to test

the cointegrating rank after the non-linearities are removed. This implies testing the

cointegrating rank of Ψ∗ in (3) where the estimates of ζ⊥ (through the estimates of ζ)

are used to reduce the system from a dimension of n down to a dimension of n − s.

Since the system dimension is reduced, we can not necessary identify all the cointe-

grating vectors in (2), but only those that remain in the common nonlinear components

of the system. This implies that we are not identifying the cointegrating vector that in-

volves non-linear terms.

The system in (3) is a conditional (or partial) system where the processes of the

n − s variables in (ζ⊥)′ Yt are conditioned on the s variables in ζ ′Yt. The theory for

the asymptotic distribution is discussed in Harbo et al. (1998) and approximated in

Doornik (1998). Tables for critical values are reported in Doornik (2003).

Without imposing restrictions on the deterministic variables the asymptotic distri-

bution of the rank test will involve nuisance parameters. The decomposition of the

deterministic variables described in Section 2.1 must therefore be used.

The asymptotically distribution of the test statistic for determining s — i.e., the
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number of non-linear components — is χ2-distributed also for I(1) variables.10 This

test is conducted before testing for cointegration. Hence, the number of stochastic

trends in the system is equal to n — i.e., the number of variables in Yt — both under

the null hypothesis (of reduced number of non-linear components) and the alterna-

tive hypothesis (of equal many non-linear components as n). Restriction that involve

reduction in the number of non-linear components corresponds to restrictions on the

cointegraed space for a given cointegration rank in standard cointegrated vector au-

toregressive models. These tests on the cointegrated space are known to be asymptot-

ically χ2-distributed.11

3 Co-non-linearity among Norwegian interest rates

We consider the three variables: rDep, the average deposit rate for household; rLend,

the average lending rate for households; and r, the three months money market in-

terest rate (given by NIBOR): Yt = (rDept, rLendt, rt)′. The data series are Norwegian

quarterly data, see Figure 1.

To approximate the non-linearity we use the ’economy version’, see (16), i.e.,

X̂t =
(

rDep2, (rDep ∗ rLend), (rDep ∗ r), rLend2, (rLend ∗ r), r2, rDep3, rLend3, r3
)′

t−1

The estimation period is 1990q1-2009q4, i.e., 80 observations. Due to the use of two

lags, I use data from 1989q3.

The rank reduction tests in Table 1 indicate a rank equal to 1 or 2. (The reduction

10For many types of non-linear processes (such as the LSTR1 in (13)) the Xt will have the same
integration-order as Yt, even though the approximations of that non-linear process might not have the
same integration-order as Yt.

11To see that restrictions on Π can be formulated as restrictions in the cointegrated space in a condi-
tional cointegraded vector autoregressive model, equation (2) can be reformulated as

∆Yt = Ψ
(
Yt−1 + ξ∗η′Xt

)
+

`−1

∑
i=1

Γi∆Yt−i + ΦDt + εt, (17)

where ξ∗ = Ψ−1ξ. Restrictions on the rank of Π = ξη′ can be formulated as restrictions on the rank of
Ψ−1Π = ξ∗η′. These are restrictions inside the cointegrating space given by Yt−1 + ξ∗η′Xt, and such
restrictions are known to have a standard distribution.
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Figure 1: Norwegian interest rates
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rDep: average nominal interest rate on deposits in banks, rLend: average nominal interest
rate on lending from banks to households, r: 3 months money market interest rate.

Table 1: Test of rank of Π (the number of independent non-linear processes)
rank −(T/2)|Ω| LR (vs full rank) LR (vs r+1)
3 1366.1
2 1363.5 5.192 ( 7) [0.637] 5.192 ( 7) [0.637]
1 1354.1 23.989 (16) [0.090] 18.797 ( 9) [0.027]*
0 1332.3 67.577 (27) [0.000]** 43.588 (11) [0.000]**
Degrees of freedom in parentheses and p-values in square brackets. One asterisk denote sig-
nificance at a 5 per cent level, two asterisks denote significance at a 10 per cent level.

from rank 3 to 2 is not rejected, the reduction to 1 is a borderline, and the reduction to

a rank equal to zero — i.e., no non-linearity — is clearly rejected). I continue with a

rank of 1.

In the case of a rank equal to 1 there is one common non-linear component

ζ̂
′ =

(
1 2.1208 2.5860

)
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Table 2: Hypotheses tests
H′ = −(T/2)|Ω| LR (d.f.) [p-val] φ̂

1354.1(
1 0 −1
0 1 −1

)
1346.1 15.8911 (2) [0.0004]** N.A.(

1 0 φ
0 1 −1

)
1353.7 0.7165 (1) [0.3973] -0.79902(

1 0 −1
0 1 φ

)
1346.2 15.7387 (1) [0.0001]** -0.93066(

1 0 φ
0 1 φ

)
1351.1 5.9813 (1) [0.0145]* -0.82102

Notes: See Table 1.

and, hence, two common co-linear components

(
ζ̂⊥
)′ =

 1 0 −0.38670

0 1 −0.82031

 .

The normalizing of the co-non-linear relationships can be written as

υ̂e′Yt =

 1 0 −0.79829 0.00209

0 1 −0.95585 −0.01702




rDept

rLendt

rt

1


=

 rDept − 0.79829rt + 0.00209

rLendt − 0.95585rt − 0.01702

 (18)

Next we test some restrictions on the co-non-linear space, υ, see Table 2. In the first

line of Table 2 we test if the difference between any two of the interest rates expresses a

co-non-linear relationship. The restriction matrix H is formulated as a test of rDep− r

and rLend− r jointly being two independent co-non-linear relationships. If they are,

it follows that also rDep− rLend is a co-non-linear relationship (as it is only a linear

combination of tho two former). This gives −(T/2)|Ω| = 1346.1 and a LR test value

of 2(1354.1− 1346.1) = 15.8911. The test is χ2-distributed with 2 degrees of freedom,

and the hypothesis is clearly rejected. (The corresponding p-value is 0.0004).
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In the last three lines in Table 2 we test if one of the interest rate difference ex-

presses a co-non-linear relationship. We see that the test of if rLendt − rt is a co-non-

linear relationship is not rejected (p-value of 0.40), whereas the tests of rDept − rt and

rDept − rLendt are both rejected.12

The estimated co-non-linear space with intercept included for the hypothesis that

was not rejected in Table 2 is given by

υ̂e′Yt =

 rDept − 0.79902rt + 0.00213

rLendt − rt − 0.01440

 (19)

The coefficient for the intercept in the second co-non-linear vector implies that over

time the lending rate is 1.44 percentage points higher than the money market rate.

The coefficient of about 0.8 for the money market interest rate in the first co-non-

linear vector implies that the deposit interest rate increases by 0.8 percentage points

when the money market rate increases by one percentage point.13 The lack of a one-

to-one relationship between these two interest rates might be due to the fact that the

deposit interest rate can not be negative. Hence, when the money market interest rate

decreases, the deposit rate might not be able to fall equally much. Should the money

market interest rate fall to zero, the intercept in the first co-non-linear relationship

implies a deposit rate of 0.2 per cent — implying a negative deposit margin for banks.

However, the intercept is probably not significantly different from zero.14

Under the (non-rejected) restriction that rLendt − rt is a co-non-linear relationship,

12The latter restriction could also be written as H′ =
(

1 −1 0
0 1 φ

)
or H′ =

(
1 0 φ
1 −1 0

)
, as all

these matrices are spanning the same space.
13Raknerud et al. (2011) also find this relationship between the money market rate and the deposit

rate in Norway. However, they can not reject the hypothesis of a one-to-one relationship between the
lending rate and the deposit rate. One reason for this can be that they are using a shorter data set
(2001q2-2010q3).

14The hypothesis that this coefficient for the intercept is zero can be tested with (12) where Yt−1 is
replaced by Ye

t−1; Dt is replaced by D1,t (which in this case does not involve any series); and H =(
1 0 φ1 0
0 1 −1 φ2

)
(or any other H-matrix spanning the same space).
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Table 3: Test of rank of Ψ∗ (the number of remaining cointegrating vectors)
rank −(T/2)|Ω| LR (vs full rank) 95% quantlie
2 860.77
1 857.32 6.90 [0.3328] 12.28
0 845.88 29.79 [0.0138]* 25.57
Notes: See Table 1. P-values are based on Doornik (1998).

the estimated common co-linear component is

(
ζ̂⊥
)′ =

 1 0 −0.38956

0 1 −0.89459

 .

We can test for remaining cointegrated vectors under this co-non-linear restriction

by pre-multiplying the system with this estimated co-linear component matrix. The

cointegrating rank tests are reported in Table 3. The results show that we can not reject

the hypothesis of a rank equal to 1. However, a rank equal to 0 is rejected (at a 5 per

cent significance level).

4 Conclusions

This article introduces the concept of co-non-linearity. The naming of the property

follows the convention in the common feature literature. For example, as cointegra-

tion (CI(1,1)) involves linear relationships of integrated series such that the integrated

process vanishes, co-non-linear relationships involve linear relationships of non-linear

processes such that the non-linearity disappears.

In the common feature literature (or co-feature literature, see Ericsson, 1993) each

feature can normally be studied from two different angels. The focus can be on the

features that are in common, such as common stochastic trends or common non-

linearities. Alternatively, the focus can be on the relationships that remove the com-

mon feature (i.e., the focus is on a co-feature), such as cointegration or co-non-linearity.

Co-non-linearity can be seen both as an alternative and as a complement to coin-

tegration. A non-linear process can be used as an alternative to an integrated process.
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At the sam time, non-linear processes and integrated processes can be combined in the

same system, as this article shows.

In the present paper I have not modeled the non-linearity directly. This could be

a natural extension. Then it would be possible to distinguish between non-linearity

in the short run dynamics and non-linearity in the relationships between the levels of

the series. If a linear relationship between two or more variables only involves non-

linearity in the short run dynamics, we could choose to also define such a relationship

as a co-non-linear relationship.
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