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1 Introduction

A common way to deal with changes in regime in models for economic time series is
to let the parameters switch between several possible values according to an unobserved
stochastic process. Often this is taken to be a Markov chain with finite state space.
This implies that the times the process stays in a particular state will be geometrically
distributed. In this paper we shall study what modifications are necessary to allow for
more general distributions of the unobserved stochastic process.

To be specific we shall consider models where the observations, Y 1 , - , YT, are given
by the following autoregression

(1) Yt PSt OlYt-1± OkYt-k (5'Dt + Et, t = • T

where Dt represents a vector of fixed regressors, which in the following mainly will be
seasonally centered dummies. The term pst can take two values po = pc and = j +
according to whether a stochastic process {St} is in state 0 or 1. The distribution of {St}
depends on the parameters p. The error terms e t , t = 1, - • - , T are independently N(0, (72 )
distributed, and independent of the process {St }. We furthermore consider the k initial
observed values y-k+1, • - • Yo as given.

The interpretation of the model is that the states 0 and 1 represent different regimes
governing the data generation process . It is furthermore an implication of the model that
the process {St} for the changes is independent of the past observations. Which regime
is the prevailing one does not constitute part of the data, but is represented by the latent
or unobservable variables S1, - - - ST.

The model where the stochastic process {St } is a homogeneous finite Markov chain has
in the economic context been introduced and developed by Hamilton in a series of papers
(1989,1990,1993,1994a and 1996). It is however not surprising that similar ideas have
been used in other fields, since models of this type are natural for sequential data with
clustering and abrupt changes. Hidden Markov chain model is a suggestive denomination
that is often used. In a recent monograph MacDonald and Zucchini (1996) claim that the
discrete versions of the hidden Markov models are suitable as models for a wide range of
discrete-valued time series. For applications to speech recognition Rabiner (1989) gives a
nice survey.

Stripped of its autoregressive and regressive parts and assuming that the Markov chain
is just independent switching between the two states, the model (1) is a mixture of two
normal distributions. Such models have been extensively studied. Although they can
often increase the goodness-of-fit substantially, the estimation is frequently complicated
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by the existence of several local maxima of the likelihood function. When dynamics are

introduced through the Markov chain and an autoregressive structure, additional prob-

lems arise. Solving model (1) backwards one can see that stationarity of the process

{St} and the usual conditions on the autoregressive parameters, ensure that the model

is stationary. However, under slight modifications of formulation (1 ), e.g. letting one

of the autoregressive parameters depend on the state of {S t }, there is no known charac-

terization of the parameters corresponding to the stationary solutions. Some discussion

and partial results on this point can be found in Holst, Lindgren, Holst and Thuveshol-

men (1994). Ryclén (1994) and Bickel and Ritov (1996) investigate efficient estimation in

hidden Markov models with no autoregressive part.

The motivation for fitting a model of type (1) may vary. Sometimes there is no

particular reason for the choice of this type of models beyond a desire to improve the fit

by using a flexible class. When studying business cycles, however, one typically wants to

interpret the process {S t } as indicating the phase of the cycle, whether there is a recession
or low growth, or a recovery or high growth at time t. The conditional probability for being

in state 1, say, given the observations up to time t, or given all the available observations,
is a crucial element in this respect. Using a two-state homogeneous Markov chain to model

the latent process may pose some problem, however. As already mentioned, an implication

of the Markov hypotheses is that the distribution of the length of time the process {St}

spends in each state must be geometric. A consequence is that the probability that the

process {St} stays for short periods in each state will be larger than the probability

for longer sojourns. This does not correspond to the general conception of the business

cycles, according to which the lengths should be concentrated around four to five years for

recessions, and due to the generally perceived asymmetry of the business cycles, somewhat
longer for recoveries.

The distribution of the durations can also be expressed by the hazard rate, which

is the conditional probability for a stay to end at duration w given that duration w is

achieved. The geometric distribution is characterized by having constant hazard rate. An

increasing hazard rate indicates positive duration dependence. The longer the process has
stayed in the present state, the higher is the probability that it will switch.

The problem of possible duration dependency of business cycles has been noticed

earlier, and there have been several studies of the American business cycle based on

the NBER chronology. The conclusions seem to be somewhat contradictory. Diebold

and Rudebusch (1990), using nonparametric techniques, did not find strong evidence for

duration dependence, while Sichel (1991) concluded with positive dependence for pre-war

expansions and post-war contractions. There seems now to be a general agreement on
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the positive duration dependence of US post-war contractions (Diebold and Rudebusch
1996).

Recently several modifications of the homogeneous two-state Markov chain as a model
for the latent process have been suggested. In an interesting paper Durland and McCurdy
(1994) considered a modification where the first order transition probabilities of {St } were
allowed to depend on how long the process has been in the current state. Filardo (1994)
allowed the transition matrix to depend on economic-indicator variables. In Diebold,Lee
and Weinbach (1994) a similar model is studied.

In this paper we shall consider another modification, where the process {S t } is a so-
called alternating renewal process, see e.g. Cox and Isham (1980). This is a process {S t }
which alternates between the two states 0 and 1.. The process is therefore described by
a sequence of intervals indicating the length of time the process has spent in each state.
These intervals are independently distributed and sequentially drawn from distributions

fo and A on the positive integers. The two state homogeneous Markov chain arises as a
special case when the distributions fo and f i are both geometric.

From a modeling point of view what need to be specified is therefore the distributions
of the lengths of time the process {St } spends in each state.

The technique that can be used to handle the generalization, is just to introduce a new
process {Wt}, which counts how long the latent process {St } has been in its present state.
Then the joint process {S t , Wt } is a Markov chain. Once the transition matrix of this
chain is taken into account, the usual estimation procedures can be employed provided
the Markov chain is finite.

In the applications we will assume that f o and fi are truncated geometric and bino-
mial densities. This entails that the indicated Markov chain is finite. The values where
these are truncated are so large, however, that for suitable values of the parameters, the
distributions that are used can be viewed as approximations to the geometric and the
Poisson distribution. In addition one has to specify an initial distribution for the alter-
nating renewal process. As will be explained later, specifying the sojourns to start at the
first time period is an easy solution.

Apart from the intrinsic interest of the more general formulations, the models yield
a framework that will make it possible to carry out some sensitivity evaluations of the
unrestricted two-state Markov chain hypothesis.

Since the model contains latent variables, the EM (expectation-maximization)-algorithm
can also be used for obtaining maximum likelihood estimates. One of the advantages of
using this method instead of a direct maximization of the likelihood by numerical opti-
mization techniques, is that the likelihood increases in each step. It is well known that the

3



EM-algorithm provides a robust, although slow, method for finding the maximum likeli-
hood estimates. We will therefore implement a version of the EM-algorithm. A reference
to the use of the EM-algorithm in this kind of time series is Hamilton (1990).

The model in (1) is not the only possible. As pointed out by Hamilton (1993), the

following specification may have more plausible dynamic properties in some contexts

(2) Yt Ast = 01(17t-i — + Ok(Yt-k — + õ'Dt ft, t = 1, • • - , T.

This is a more complicated model to estimate in the framework outlined above, however.
In addition to {(St , Wt)} the state of {St } for the k previous periods has to be taken into
account. Also the log likelihood of the complete set of variables will no longer be linear
in the parameters ,u,, , Ok, so the EM-algorithm will be more complicated.

For macroeconomic time series, which often are highly aggregated, gradual shift are
frequent. Specification (1) may be more suited to capture this phenomenon than (2), so
we have chosen the former. Hansen (1992,1996) contain some results comparing the two
specifications for the American GNP. His analysis suggested a model of form (1), where
in addition to the intercept, the second autoregressive parameter was allowed to switch
between the two states.

There are several directions for extending the models presented in this paper. One of
the most immediate is to augment the number of possible states occupied by the latent
process {St}. Sichel (1994) argues that a three-phase pattern is necessary to describe US
real output.

The plan for the paper is as follows. In the next section we show how the extended
models are defined, and how the maximum likelihood estimates can be computed. In
section three we apply the proposed models to some macroeconomic time series taken
from the Norwegian quarterly national accounts.

2 Definition of the model and computation of the

maximum likelihood estimators

We shall in the following estimate the parameters of the model by the method of max-
imum likelihood. I turns out that it is convenient to split the parameter vector A' =
(p, A, 01 , - , Ok, 5', O , p') into two parts, A' = (9', p') where p contains the parameters of
the process St.

If we let yt denote the observations Y1, , Yt, the conditional likelihood given the
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initial observations may be written by using successive conditioning

Till 	 exp(—
-	 - OlYt-1 . 	OkYt-k - (5'Dt ) 2 )P(St = ilYt-i; A).

t=i i.o v 27ra

Thus provided the conditional probabilities, P(St = ilYt_i; A), t = 1,...,T, can be
evaluated, maximum likelihood estimates can be found by using a suitable numerical
optimization algorithm.

Remark that this result is quite general and does not depend on any properties of
the distribution of the process {St } beyond the independence of {St} and the error terms
{Et }. For the case where {St} is a renewal process, and the distributions of the time of
sojourn in each state are concentrated on finite intervals, the distribution of {S t } may
be formulated by the help of a finite Markov chain. The recursions given in Hamilton
(1994b) can therefore still be used to compute P(St = i jyt_ i ; A), t 1, - T, i = 0, 1.
But some restrictions on the transition matrices have to be taken into account.

We shall explain the modifications that are necessary. Let the time of sojourn in state
0 and 1 be given by two random variables Vo and V1 taking values in {1, , Ko l and
{1, }. Let the densities be fo(s; Po) and fi (.; p i ) respectively. If we let Wt be a
random variable denoting the length of time the process {S t } has been in the present
state, i.e. Wt sup{k : St-k St}, the process {(St , Wt)} is a finite homogeneous
Markov chain. If the process {(St , W)} is in state (0, j), say, either the process is in state
(0, j 1) at time t 1 or the sojourn in state 0 ended and the process is in state (1, 1).
Therefore the rows of the transition matrix contain only two non-zero entries and the
transition matrix must have the form

0	 1 — h1 ,0 	- 0	 h1,0	 0	 • . 0

0	 0	 - - • 0	 h2,0	 0	 . . 0

0 	 0 	 • • • 1 — hKo_i,o liK0-1,0 0	 . • . 0

0 	 0 	 • • • 0 	 1 	 0 	 • • • 0

h1,1 	 0 	 . • • 0 	 0 	 1 — h1,1 • • • 0

hic-1,1 0	 - . • 0	 0	 0	 • • • 1—

1	 0	 - . • 0	 0	 0	 - • - 0

	where K Ko -I- K1 and hi ,i , j =	 = 0, 1 are the hazard rates for the densities
fo and li ,

 i.e.

hj,i= P(Vi=	 =1, • • • ,Ki-
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The hazard hj ,i is precisely the conditional probability that a sojourn in state i lasts for

exactly j periods, given that the duration is j or more periods.

In addition, the initial distribution of the process {(S t , W)} is given by the distribution

pA. One possibility is to assume that the process {(S t , W)} starts in (0, 1) or (1, 1).

Another possibility would have been to consider the situation where the alternating

renewal process is a stationary process. This corresponds to the first run being distributed

according to

mo I w
fo (w )	

m1 	fi (0) , w(fo fi)(w) 
mo 4- m1 7•17

)
4)	 mo 4- m1 (m1	 mo 4- m1

where m1 and m2 are the expectations in the distributions having densities f , i = o, 1.

Now, to compute the value of the likelihood at specific values of the parameters, what is

needed is only that the restrictions on the transition matrix just described, are taken into

account. Since {(St , Wt)} is a finite homogeneous Markov chain, the formulas in Hamilton

(1994b), i.e. equations 22.4.5-6 can be used to compute P(St = i, Wt = wlYt--1, A), t =
1, - - ,T,w = 1, . i = 0, 1 using the transition matrix above. The conditional proba-

bilities P(St = ilYt-i, )), t = 1, - T, i = 0, 1 are then found by summation over w. Due

to the presence of all the zero entries in the transition matrix, it is possible to simplify

the formulas considerably.

We shall now describe how the EM-algorithm can be implemented for the models for

change in regime we have been considering.

The likelihood of the total sets of variables, both observed and latent, conditioned on

the initial observations y_k+1, - , yo, can, using that {St } is independent of the shocks,

be written

(3)
\T 1

(NT iS-r ) exPv- 20-2 E(yt — Ast —	 —okyt_k —5'DX)
t=1

on the set {S1 = sl,	 , ST ST}.

Then, if the likelihood is denoted by f (y, s; )) the EM-algorithm consists of computing
recursively

(4) Q(An+i, )‚n) = arg max Q(A, An)

where

(5) Q(A, )tn) = EA„, [log(f (y, S; A)) Di
with S = (S1 , - , STY and ÿ = Yr.
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Noticing that f (y, s; )) f (Ws; A) f (s; A) = f (y(s; 19) f (s; p) the part of Q that depends
on 0 can be expressed as

-(T 12) log 27o-2 -
1

20-2 	 kYt	 ° • • OkYt—k — 61 Dt) 2 )P (St	 0 1 3) ; An)
t=1

(6)
1T

20-2 	 t Ii — L -	 • • OkYt-k - öTt) 2)P(St = 1(ÿ; An).
t=1

Thus, when the estimation is based on the EM-algorithm, it is crucial to obtain the
smoothed probabilities, P(St = i ( y, A), t = 1, • , T, i = 0, 1. These can be obtained
from formulas 22.4.14 in Hamilton (1994b) in the same way as described above for the
probabilities P (St = ilYt-i; A)

The updated values of the first part of A, i.e. the parameters contained in 0, are
determined directly by maximizing the expression ( 6) with respect to these parameters.
This is straightforward, since the first order conditions found by differentiating ( 6) can
be explicitly solved.

The parameters of the process S t is contained in p. In the situations we shall consider

Pl = (Po, pa), where Po and p i are the parameters of the densities fo and To find the
updated values for po and pi note that there is a correspondence between the elements
of the set S = {(si, , ST) : Si E {0, 1}} and the elements of the set R, = {{riwt} : w E

{1,	 ,	 j = 0, 1, t = 1, . , T}, where riwt denotes a sojourn in state i of length w
ending at time t. Thus

(7) Q(A, An) = EÄn [log( f (y, s ; A))1y]

= EAn [log( f	 R; A)) I y]
= EAn [log( f (Y(R; 0)) ± log( f (R,p)

Only the last term depends on Po and pi , so that only this term needs to be maximized
to find updated versions of Po and pi . The maximization can be explained as done by
Hamilton (1990,p.50), as a weighting of each of the first order conditions for the loga-
rithm of the probability of the possible events in R where the weights are the conditional
probabilities, given the observations, for each of these events to take place.

Then f (R; p) may be written on the set {R = riwt}

P(Vi > 1;Pi)	 P(Vi = w;Pi) 
P(Vi = w;Pi) = fi( w ;Pi)	 p(vi > 1;p) • • P(Vi > w;Pi)

= (1 - h 1 ,i) • (1 -

if w < t, t = 1,	 , T,
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and denoting the initial distribution with 	 j = 1,	 , K , i = 0,1,

	P(Vi > w t + 1; p) 	P(Vi = w;pi)
Pw-t-1-1z

P(Vi > w — t +1;pi) • • • P(Vi w;Pi)
P(Vi = W; Pi)= r-w—t+1,2,Ap(vi	 > w t + 1; pi)

= fi(w;POPw-t+i,i,VP(Vi w — t -+ 1;pi )

if w > t, t = 1,	 , T.

The last term in (7) may be found by summing these terms with weights P(R = riwt IY; An)-
From the last equation we see that the case where w > t can cause some problems,

since both fi (w, pi), Pw-t+i,i,A and P(Vi > w — t + 1; pi) enter. The two last terms can be

complicated functions of the parameters. In the empirical applications below we therefore

suppress the dependence on these two terms by assuming that pi,i,A = 1 for either i = 0
or 1. Hence Wt < t and the two terms are independent of p i , i = 0,1. This means that

the alternating renewal process always starts with a complete run.

It is also possible to introduce additional independent parameters for the quantities

> w — t + 1; pi) if w t = 1, , Ki along the lines suggested by Hamilton

(1990). When K0 or K1 are large, this may be problematic, however, since a lot of new

parameters will be introduced.

In either case the first order conditions for maximizing (7) with respect to p i can now

be expressed as a weighted sum of the first derivatives of fi (w; pi ).

In the updating of the parameters both the quantities P(St = il)), An), t = 1, ... T
and P(Riwt = ritw IY; An), t = 1, . , T + w,w = 0, 1 enter. We have already

discussed how to compute the former. To compute the latter a modification is necessary,

see e.g. Storvik, Bolviken and Solberg (1994). The event that St = i, Wt = w, i.e. that

the latent process has been in state  i for w periods, corresponds to the union of the event

that it changes to the other state next period, which is just R = ritw and the event that

the process remains in state i at time t + 1, which is the event St+i = i, Wt+1 = w 1.
Hence

P(R = ritwlY; An) = P(St = Si, Wt = WI )' ; An)

P(St+i = Wt+1 = W 1 1Y; ) n),

t= 1,••.,T— 1,w= 1,.••,Ki ,i= 0,1•

In case a stay starts before T and ends after we have to use

P(R = ritw 13); An) = P(ST = WT = W — t TIY; An) X
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(1 — hw-t-FT,i) - •	 —

t.T,...,T+w — 1,w.1,...,Ki ,i= 0,1.

As is well-known in this kind of models there is an identification problem. For example,
the models where (S1 , W1) = (1, 1), b = bin(no, Po)), fl = bin(n i , pi ) and A > 0 are ob-
servationally indistinguishable from models where (S1 , W1) = (0, 1), b = bin(n i , pi ), fi =
bin(no , Po) and A < 0. As pointed out by Hamilton (1989) this ambiguity can be solved
by associating state 1 with high growth, which means that A > 0. -

If we estimate the models without imposing the restriction A > 0, an estimated value
of which is negative means that we have to reinterpret the model using a correspondence
as indicated in the previous paragraph.

A further consequence is that if Â is positive, the maximal value of the likelihood
will be greater or equal to what can be obtained by imposing the restriction A > 0 and
estimate the model with the alternative initial state. Hence, estimating the unrestricted
model with initial value say (0, 1), and getting a positive 3., yields a no smaller value of
the likelihood than what can be obtained by using initial state (1, 0) and estimating with
the constraint A > 0 imposed. This argument will work when fo and fi belong to the
same class of distributions. If they do not, both possible combinations must be estimated,
and we can be certain to have obtained the largest possible likelihood in the restricted
models, i.e. where A > 0, only for the combination resulting in the largest maximum
likelihood.

3 Application to two Norwegian macroeconomic time

series

We shall in this section report on some applications of the methods described above and
compare various specifications of the alternating renewal processes. The series used in
the following estimation are both taken from the Norwegian quarterly national accounts.
They are mainland GDP (i.e excluding the oil sector) (1966:1-1993:4) and total private
consumption (1966:1-1993:4). The series are displayed in Figure 1.

For each series, models of the type (1) are fitted to the first difference of the logarithm
of the observations. This means that the two states of the process {St} will correspond
to different rates of growth of the original series. In all the models centered, quarterly
dummies have been used as regressors, and in addition separate sets have been used before
and after 1978:1, at which point there is a break in the seasonal pattern. The truncation
points for the distributions, i.e. K0 and K1 , have been set equal to 100, which should
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allow for reasonable approximation to the pure geometric and the Poisson distributions
for suitable values of the parameters.

Figure 1. The mainland GDP and total private consumption in billions Norwegian

40 '

;1970
	

1980
	

1990

Several types of models have been considered where the time of sojourn is truncated ge-

ometrically and/or binomially distributed. We denote the combinations geo/geo, geo/bin

etc. where the first distribution refers to state 0. In all cases reported the initial values
were (S1 , W1) = (1, 1) and the estimated value of L positive.

The frequencies are therefore given by

P(Vi w;132) 1 
ez 	 7
	 w

and
— 1 )

P(Vi = w; Pi) = w 1
pr-1(1 ", W = 	 , K.

The estimates reported below were computed by implementing the EM- algorithm
of the previous section in GAUSS. We have checked the results using an unconstrained
numerical optimizing procedure. As starting values we used the OLS estimates from a
pure autoregressive process, and a grid of the other parameters. In some cases the global

maximum corresponds to values on the boundary of the parameter set. Since these values

do not make sense in a business cycle context, we excluded such cases and used the values

in the interior of the parameter space corresponding to the local maximum having the
largest value of the likelihood.

The estimated standard deviations are computed by the method in Hamilton (1996).

We have compared the standard deviations computed with this method with the inverse
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elements of the Hessian from the numerical optimization of the likelihood. These values

tend to be somewhat smaller, but the general impressions from the two types of estimates

of the standard deviations are the same.

3.1 Mainland GDP

Since the data are quarterly, a reasonable starting point is a forth order autoregressive

model with seasonal dummies. Deleting the dummies results in a decrease in twice the

logarithm of the maximal value of the likelihood of 2x(289.84-268.00) = 43.68. Compared

to a x2 distributed value with six degrees of freedom, this is clearly significant at all

reasonable significance levels. This is compatible with the fact that most of the t-values

for the seasonal dummies are larger than two in absolute value. Concerning the autore-

gressive part the coefficients before the third and fourth lag are numerically small, and

also statistically insignificant judged by the t-values. Hence it is not surprising that there

is almost no decrease in the likelihood, 289.91-289.84=0.07, when they are deleted. It

therefore seems that an AR(2) model with seasonal dummies is appropriate in this case.

Considering the other models, geo/geo etc. yields the same conclusion. The results from

fitting models with two autoregressive lags and including seasonal dummies are, with the

exception of the coefficients of the dummies, reported in Table 1.

The estimates of the seasonal effects and the coefficients of the autoregressive lags are

practically the same for the four switching models.
To evaluate the significance of the estimates of parameters Po ,Pi and A with a likelihood.-

ratio test is well known to be problematic in cases like this, since even if the pure autore-

gressive model is nested in the models for change in regime, the parameters are present

only under the alternative. Hence the usual assumptions for likelihood ratio testing are

invalid. A more informal judgment reveals that there is some improvement in the fit as

judged by the increase in the likelihood, and the decrease in the standard deviation of

the errors, a. This is most pronounced in the bin/geo model. Comparing the t-values of

the estimates, the t-values of the estimate of A is larger than two in all the models. For

the parameters Po and p i , it is only in the geo/bin and bin/bin models, that the t-values,

using a 5% level, indicate that one of them belongs to the interior of the parameter set.

To compare the distributions it may be more relevant to consider the estimated means,

which are 2.5 and 10.4 (quarters) in the geo/geo model, 9.3 and 24.9 in the geo/bin model,

19.4 and 55.0 in the bin/geo model and 18.6 and 82.7 in the bin/bin model.

The conditional probabilities for St = 1, t = 1, . . . ,T are presented in Figure 2. The

estimates for the upswings in the beginning in the 80's and 90's for the geo/geo and
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geo/geo geo/bin bin/geo bin/bin AR(2)

' log L 292.28 291.63 '	 292.26 295.21 289.84

A 0.024 0.013 0.013 0.015 -

(0.005) (0.006) (0.005) (0.006) -

IL -0.006 0.003 0.002 0.010 0.012

(0.005) (0.006) (0.005) (0.005) (0.002)

01 -0.757 -0.691 -0.690 -0.694 -0.619

(0.109) (0.123) (0.116) (0.109) (0.093)

02 -0.338 -0.327 -0.328 -0.332 -0.259

(0.089) (0.104) (0.099) (0.099) (0.093)
o- 0.013 0.015 0.015 0.015 0.016

(0.002) (0.001) (0.001) (0.001) -

Po 0.598 0.892 0.186 0.178 -

(0.219) (0.115) (0.106) (0.082) -

Pi 0.904 0.242 0.987 0.825 -

(0.083) (0.067) (0.020) (0.073) -	 ,

Table 1: Estimates of the parameters in models for mainland GDP. Estimated standard
deviations in parentheses.

geo/bin models agree with the general conceptions of the Norwegian business cycle. The
bin/geo and especially the bin/bin model are more peculiar, as is also evidenced in the
estimated means reported previously.

As one can expect, using a geometric distribution instead of a binomial for the length
of stay in state 0 and 1, favors short sojourns in each state. This is reflected in the
smoother appearance of the conditional probabilities as functions of time when the bino-
mial distribution is introduced.
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Figure 2. The mainland GDP and the conditional probabilities for being in recovery.
Solid lines indicate the conditional probabilities given all the observations, and dotted
lines indicate the conditional probabilities given all the observations up to time t. The
geo/geo model is in the upper left-, the geo/bin in the upper right-, the bin/geo in the
lower left and the bin/bin in the lower right-hand corner
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3.2 Total private consumption

In this case it is sufficient to include the first autoregressive lag. The estimates of the
parameters, except the coefficients of the seasonal dummies are shown in Table 2.

The highest value of the likelihood is now for the bin/bin model. For this model
judged by the significance of the t-values of the coefficients, we can conclude that A is
different from zero at the 5% level. This is less evident in the geo/bin and bin/geo model
and not at all the case in the geo/geo model. Concerning the parameters Po and pi it

is only in the bin/geo and bin/bin models, that we can conclude that both belong to
the interior of the parameter space by comparing the significance of the t-values at the
5% level. This is consistent with the fact that the largest increase in the log likelihood

13



compared to the pure AR(1) model is found for this model. In this case the estimated
means for the distributions fo and fi are 19.1 and 4.8 in the geo/geo-, 29.6 and 10.2 in

the geo/bin-, 30.0 and 5.8 in the bin/geo- and 25.9 and 9.3 in the bin/bin model.
The conditional probabilities are displayed in Figure 3. Also in this case it appears

that the conditional probabilities as functions of time, are smoother for the models using
binomial distributions. The plots for the different models are more similar than for the
GDP series.

geo/geo geo/bin bin/geo bin/bin AR(1)

log L 260.82 261.92 262.55 264.28 260.05

A 0.016 0.017 0.019 0.018 -

(0.015) (0.008) (0.011) (0.007) -

/2 0.006 0.004 0.006 0.005 0.009

(0.007) (0.005) (0.003) (0.003) (0.002)

01 -0.461 -0.482 -0.474 -0.492 -0.419

(0.126) (0.101) (0.109) (0.095) (0.088)
a- 0.020 0.020 0.020 0.020 0.021

(0.002) (0.002) (0.002) (0.002) -

Po 0.948 0.968 0.293 0.251 -

(0.156) 0.045 (0.143) (0.068) -

Pi 0.793 0.093 0.827 0.084 -

(0.317) 0.064 (0.132) (0.039) -

Table 2: Estimates of the parameters in models for total private consumption. Estimated
standard deviations in parentheses.

4 Conclusion

In this paper we have pointed out a problem in interpreting the usual models for change
in regime based on a hidden Markov model when it is applied to the analysis of busi-
ness cycles. There is a bias towards short cycles. We point out how the problem can be
circumvented by introducing using a finite Markov chain having transition matrices sat-
isfying certain restrictions. Some of the proposed models are compared using time series
from the Norwegian quarterly national accounts. For one of the series, the total private
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consumption, it seems that using one or more binomial distributions yields a better fit,

and one may even question the appropriateness of a model based on a two-stage Markov

chain for the process St indicating the prevailing regime. The conditional probabilities

of being in a particular state show, as predicted, a more erratic behavior for the models

based on a pure two-stage Markov chain than the models that use one or two binomial

distributions to describe the lengths the latent state process is in each state. The sensi-

tivity to the choice of latent model seems to be somewhat different. For the GDP series

the results seem to be most variable, while for the the total private consumption, all four

fitted models yield more similar results.

Figure 3. Total private consumption and the conditional probabilities for being in the

high growth state. Solid lines indicate the conditional probabilities given all the observa-

tions, and dotted lines indicate the conditional probabilities given all the observation up

to timet. The geo/geo model is in the upper left-, the geo/bin in the upper right-, the

bin/beo in the lower left- and the bin/bin in the lower right-hand corner
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