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1 Introduction

Imperfect competition and scale economies have been the focus of a large amount of economic

research for decades. Still. the empirical significance of these two phenomena remain contro-

versial questions. There is not even a settled approach to study the empirical importance of

imperfect competition and scale economies. Hall (1988, 1990) has presented a new approach

to estimating the magnitude of the margin between price and marginal costs, as well as scale

economies. This paper merges Hall's framework with the literature on Divisia-index numbers'

and productivity measurement. The result is an extremely flexible framework with a very simple

linear regression structure containing only a few parameters to be estimated. The structural

parameters in the final regression equation are directly interpretable as the parameters of our

primary interest; the price cost margin and the scale elasticity. The linear and simple structure

greatly facilitates the statistical analysis of these parameters.

While Hall (1988, 1990) examined price-cost margins on the assumption of constant returns

to scale, our model integrates the study of price-cost margins and scale economies. This is

highly desirable, given the close links between the estimates of scale economies and markups.

For instance, with price and average costs as the observable point of departure, underestimating

the scale economies will imply overestimated marginal costs, providing an underestimated price-

marginal cost ratio. Given the large magnitude of the scale economies estimated in Hall's

separate study (Hall, 1990), it is somewhat discomforting that Hall retains constant returns to

scale as a maintained hypothesis in his parallel study of price-cost margins'.

Our model is estimated on a set of plant level data. It is by now widely recognized that there

is a lot of heterogeneity in the technology and behavior of firms even within narrow industry

groups. Griliches and Mairesse (1990) have documented the large amount of heterogeneity

and instability in production function parameters. This heterogeneity and instability makes it

desirable to move beyond rigid parametric functional forms in studies of firm behavior. The

framework presented in this paper is ideally suited to this task. By transforming our variables

in the appropriate way, the model is fully consistent with a situation where each plant has its

individual translog production technology and separate productivity levels. Persistent differences

1 See e.g. Diewert (1976, 1980).
2 Given that Hall has used highly aggregate data in his study, the scale economies relevant for the pricing

decision might differ from the scale economies at the industry level, due to externalities, entry and exit.

3



in productivity levels are found in most micro level data sets on plants and firms.

The framework presented below is consistent with capital inputs being adjusted in a subop-

timal way, due to e.g. adjustment costs, installation lags and expectational errors. An excessive

capital stock, say, will imply low marginal costs. Our estimates of the ratio between price and

marginal costs takes into considerations such effects of capital adjustments being out off long

run equilibrium.

It is noteworthy that we can obtain such a flexible model within a regression model with only

two structural parameters. It is also a desirable property, in our opinion, that the coefficients of

scale economies and markups appear as the parameters assumed to be fixed across our sample,

rather than, say, parameters in the translog production function which are harder to interpret

and which perhaps vary more across firms and over time.

The model has been implemented on a panel data set covering 3101 plants from nine (2.5

digit ISIC) manufacturing industries. We have a balanced panel for two cross sections from 1983

and 1990. Estimating our model on this sample gave us an initial set of estimates which are

not implausible, but too low to be entirely acceptable without further inquiry. That is to say,

the initial results suggested decreasing returns to scale in the clear majority of the industries

examined. None of the industries revealed results suggesting pricing beyond marginal costs. A

common explanation for (too) low parameter estimates based on panel data estimation with

fixed effects, is that the data are contaminated with measurement errors3 . Allowing for fixed

effects removes one source of bias - the endogeneity of the input variables in the regression - but

at the expense of augmenting the problem of measurement errors. The result of measurement

errors in the regressors is typically parameter estimates biased towards zero.

To examine the question of biases due to measurement errors, we have used as our point

of departure some basic ideas from the literature on identification of parameter bounds in the

presence of errors in variables. The basic result in this literature was derived by Reiersol (1941).

He proved that the parameters in a regression model with measurement errors in the regressors,

could be bounded by the coefficients from the set of the direct and the reversed regressions4 .

This result has been derived under the assumption of no correlation among the measurement

errors.

3 See e.g. Griliches (1986) and Mairesse (1990).
4 This useful result have been derived in alternative ways by Klepper and Learner (1984) and Willassen (1987),

among others.
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No correlation of the measurement errors in the regressors is an untenable assumption in

our case. Given the way the model is set up, and the way the variables have been transformed,

measurement errors in one regressor will surely affect also the other regressor, as the second

regressor is a function of the first regressor and some other variables. Such a situation is clearly

not uncommon in applied work. Trivial variable transformations will often create correlation in

the measurement errors between regressors, given that measurement errors are present in the

untransformed variables.

A primary contribution of our paper is to prove that parameter bounds can still be identified

in the presence of correlated measurement errors. In fact, we show that the ("standard") param-

eter bounds identified by Reiersol are still valid when we allow for correlation in the measurement

errors. The paper specifies the conditions required for the bounds identified by Reiersol's to be

valid in the more general case when the measurement errors are correlated across regressors.

Furthermore, we show that these conditions are empirically testable. Such a test is carried out

for our empirical model by menas of a bootstrap procedure. Our test results show that the

standard parameter bounds are valid in our case.

It turns out that the standard parameter bounds are too wide to be of much interest in our

case. In our data we have access to (only) one instrument, i.e. a variable which can be taken to

be uncorrelated with the measurement errors in the regressors, but correlated with at least one

of the regressors. Using an idea from Willassen (1987), we show höw to combine the information

in this single instrument with the "standard" parameter bounds to narrow down the parameter

bounds further. We also present the asymptotic theory required to derive standard errors on

these new set of (narrower) parameter bounds. Bootstrap estimates of these standard errors are

also presented to check the validity of the asymptotic approximations.

Adding the information in our instrumental variable narrows down the parameter bounds

substantially. The final set of estimated parameter bounds and their standard errors show that

our method comes close to identify the parameter values. More substantially, our parameter

bounds show that market power and scale economies of the magnitude identified by Hall (1988,

1990) do not prevail in the industries considered in our study. The results suggest that mea-

surement errors in our regressors gave a downward bias of the ordinary regression results by

5 Lach (1993) has made a similar point. He examined various implications of correlated measurement errors in
the regressors, introduced by one particular variable transformation.
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(slightly) less than 5 percent for both of the parameters of interest. Our findings indicate that

price taking behavior and constant returns to scale are adequate approximations for the majority

of the industries considered. This result is discussed further in the concluding section.

Our paper is organized as follows: The next section presents the theoretical framework and

the basic stochastic model which is the basis for our empirical analysis. This section illustrates

how simple transformations of the basic variables may induce correlation in the measurement

errors of the regressors. Section 3, the main statistical section of our paper, proves that the

"standard" parameter bounds bracket the true parameter values under more general conditions

than stated by Reiersol (1941). A sufficient condition - more general than no correlation in

the measurement errors in the variables - for the validity of the "standard" parameter bounds

is presented. The analysis outlines the ideas and results in general terms to reveal the wider

usefulness beyond our specific empirical model. Section 4 discusses how to carry out a formal

statistical test of the condition required for the parameter bounds to be valid. How to combine

the "standard" parameter bounds with the information in the available instruments is also

the topic of this section. Section 5 examines the possibilities for testing hypotheses on the

unidentified structural parameters. Our samples and details on the estimation procedures are

presented in section 6. Section 7 exhibits and discusses our empirical results. Final remarks are

added in section 8.

2 The model of producer behavior

This section presents our framework for production analysis6 . The framework can be considered

a hybrid of non-parametric productivity analysis and the traditional econometrics of producer

behavior. The analysis presented below consider an imperfectly competitive firm in temporary

equilibrium (i.e. with quasi-ked capital) which uses a technology with scale economies.

The starting point of this analysis is a differentiable production function for a technology

with one output and a number of inputs. Let us denote the production function as y = F(x),

where x denotes the vector of inputs and y is output. Assume that the production function

is a second order polynomial in log of the inputs, such as for the general translog production

function. We do not assume constant returns to scale or a homothetic technology. Diewert

(1976) has proved that in this case, for any two input-output vectors; (yi, x1) and (y2, x2), we

6This section builds on Klette (1993) and Hall (1988, 1990).



have that 7

EaY =	 (2.1)
lEI

where we use the notation that a hat above a variable represents the logarithmic changes, e.g.

= ln(y2 /yi ) etc., and

1	 1 (  xii OF(x i )	 x12 OF(x 2 ))
a EE- -- 

F(xi) axii
	-F 	

F(x 2 ) Oxi2 ) •	
(2.2)

In our case the two input-output vectors will refer to two different years. That is to say, "ii will

denote the growth rate of input "1" between these two years. I is the set of inputs. a/ is the

average output elasticity of input 1.

Under profit maximization the marginal revenue product of an input is equal to marginal

cost for a fully adjustable factor of production. Let us assume that the firm determines inputs,

considering input prices to be fixed 8 . It follows that

x lt	OF(x) 
F(x t) Ox lt

wtxt t = 1,2
lie)PtYt

(2 .3)

where 'e' is the output elasticity of demand, while wi and pt are the prices of input i and

output. Standard theory of profit maximizing behavior shows that the margin between price

and marginal cost tt is given by p = 1/(1 — 1/e). Combining this markup with (2.2) and (2.3),

we have that the output elasticity for an adjustable input is

a l
	 ,a x i w i 	x 2 w2

2 PlYi	 P2 Y2

(

(2.4)

where gi is the average cost share of input i in the two years.

Various kinds of rigidities, input lags and expectational errors make it dubious to impute

the marginal product of capital from observed prices on new equipment, interest rates etc. In

7 Diewert (1976) termed this the "Quadratic approximation lemma".
8This is clearly the case with standard price taking behavior. It is also true with a bargaining model where the

unions and the firm negotiate about the wage rate, while the firm unilaterally determines the level of employment.
See Nickell et al. (1991) for a discussion.
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productivity analysis of a competitive industry with constant returns to scale, this problem is

dealt with by estimating the shadow price, and thereby the (shadow) elasticity of capital, as a

residual. The case with imperfect competition and non-constant returns is almost as simple if

we assume that we know - or can estimate - the overall scale elasticity to all factors. Denote

this scale elasticity as y. Then we have that the output elasticity of capital (aK), obeys the

following relationships

aK = — E al

toK

=	 — 
/0K

	 (2.5)

The last equality follows from (2.4). Using the expressions in (2.4) and (2.5), equation (2.1) can

be rewritten

= E 	 _ iK) +
/0K

(2.6)

2.1 The empirical model

In our case, the explicit regression equation corresponding to the model derived above can be

stated:

= 70 + IL [št (îi -	 + gr(Thi - ki)] +	 +	 (2.7)

The left hand side variable is growth in output, while the right hand side variables refer to labour

(i), materials (rit) and capital (ic). The subscript 'i' refers to individual plants. All growth rates

correspond to changes from 1983 to 1990. We have added a constant term 70 which captures

technological change common across plants.

The model has a very simple regression form, with only three (main) parameters to be

estimated (70 , y and it). Nevertheless, the model is entirely consistent with the widely observed

fact that plants in narrow industries might differ in their productivity levels, due to differences in

management, labour quality or capital vintage effects. In the absence of measurement errors, the

model would provide consistent estimates of the parameters of interest even when such differences

affect the plant's size and the level of its inputs. The basic insight was pointed out by Mundlak
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and Hoch (1966) among others. They showed that estimating production functions in terms

of growth rates, such as we do here, will eliminate the simultaneity problem encountered when

estimating production relationships in levels. The error term in the levels regression will capture

permanent differences in productivity, which will tend to be correlated with the regressors. Our

model is consistent with differences across plants in the marginal productivity of a given factor

of production. Indeed, the estimating equation (2.7) is consistent with each plant having a

separate translog production function.

The main parametric constraint in this model is the assumption that all producers in an

industry have a common scale elasticity. But notice that the model allows the plants to differ

in the output elasticities of the individual inputs. In particular, the model claims that a plant

with a higher (than average) output elasticity of capital will have a lower output elasticity of

variable inputs, and vice versa. This is e.g. consistent with a situation where plants differ in

their, say, capital-labour ratio, as is widely observed in micro data. Such differences could be

due to temporary productivity or demand shocks and adjustment costs, or differences in the

cost of capital. Take the case where a plant has a high capital labour ratio. In this case we

would expect to find a high output elasticity of labour and a low output elasticity of capital.

This sort of differences in the output elasticities are captured by this model.

The model can be rewritten in a manner useful for the statistical section below:

-I- 726 + 734.3 = 7o (2.8)

where is ýj — iii. e2 corresponds to PK — — ici)] and is k. Also, 72 =

and 73 =

We have a set of observables which corresponds to the s. Reported sales is our observable

proxying output. Manhours and fire insurance values are the observables for labour input and

capital, while material inputs are directly reported in our data. There are a number of reasons

why we expect our observables to be "error-ridden" indicators of the variables in our model.

This will be discussed in more detail when we present our data set and variable construction in

section 6. Measurement errors in our observable corresponding to the capital variable (ki) will

give rise to an errors-in-variable problem both for e2 and e3 in equation (2.8). The point to notice

is that the measurement errors in the capital variable will give rise to correlated measurement

errors in two of our observables.
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3 Bounds on the structural vector () when the measurement
errors are correlated.

The specification (2.8) is a point of departure of the present study. The structural parameters

72 (= — the plants' price/cost margin) and 73 (= — the plants' scale elasticity) are important

economic entities about which we want to test specific hypotheses. However, this is not an easy

problem to deal with when the structural variables or regressors 2 and e3 are observed with

correlated measurement errors.

Although, our original concern was to solve some particular issues relating to the inference

about the structural parameters 72 and 73, the ideas we are going to present have general

applicability to this type of models. This will be evident in the sections to come where the

results and implications are worked out. In order to show that our results, presented in the form

of various lemmas and propositions, can be applied empirically, we shall steadily refer to our

basic model. This is specification (2.8) supplemented by the appropriate assumptions on the

stochastic variables modelled. For clarity we specify it succinctly below.

The relevant economic theory implies a linear stochastic equation between the structural

variables 6, e2 and 6. These variables, however, are not directly observable. What we observe

are the noise-corrupted indicators of these variables. We thus have the following latent variable

model:

72C2 + 736 =	 (3.1)

Supplemented by the measurement equations:

Xi =	 ei, 	j= 1,2,3,4	 (3.2)

in which the variable X2 is deduced from X3 and X4 by the equation:

	

X2 = S(X4 — X3) = S(e4 — 6) + 4E4 — e3),	 0 < s < 1.	 (3.3)

In eqs. (3.1)—(3.3) the Xi's denote observable variables, the 	 denote the unobservable

structural variables, and finally the ej's denote the random measurement errors.

We suppose that the structural variables (6, 6, e3) are random, but independently dis-

tributed of the random errors (el, E2 E3). We observe from (3.3) that e2 = 8(€4 E3). Thus 62
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and E3 will be correlated. We suppose, however, that the random errors e l , £3, E4 are uncorre-

lated. Then it follows that the covariance matrix of errors (Ei, E2, 63) is given by:

	A 2 	CI	 0
A = 0 3 2 (A3 + Ai) —sA3

	

1	 )
)q =- var(Ei), i = , 3, 4	 (3.4)(

	

0	 —sA3	 A3

The model spesified by eqs. (3.1)—(3.4) together with our assumptions on the random structural

variables and random errors stated above constitutes our model of reference.

Thus, the model we have to study is more general than the standard "Errors in variables"

(EIV) models, since we cannot assume that the measurement errors are uncorrelated. In the

classical treatment of EIV models it is always assumed that the covariance matrix of the random

errors is diagonal (see Willassen (1987) for an up-to-date study of these models).

Let us denote by Q the covariance matrix of the observable X variables. The classical result

of EIV models then says loosely speaking that if the elements of 9 -1- have certain patterns of

signs, then the structural vector (;)-) can be expressed as a convex combination of the columns of

SI -1 . Hence, although the structural vector is not identifiable, with an appropriate normalization

this result restricts ("0 to be situated in the simplex generated by the column vectors of Sr l .

This is a well-known result in econometrics whose origin is often connected with Frisch (1934)

and Koopmans (1937). However, the first general statement and proof of this result was given

by Reiersol (1941) (Willassen, op.cit. (1987)).

This proposition is very attractive and we wish to prove a version of it in the situation

that the random Measurement errors are correlated. The point is that, although, the calculated

simplices often will be too "wide" to be empirically useful, we shall argue that combined with

relevant extraneous information these simplices prove to be useful, indeed.

In our present model of reference we know the signs of the structural parameters and a rele-

vant instrumental variable. These two pieces of a priori information are the points of departure

of our theoretical analysis.

Extraneous information

We suppose the availability of the following a priori information.

(i) The signs of the structural parameters, i.e. the signs of the elements of the vector ;y- , are

supposed to be known.
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(ii) A set of instrumental variables, although , insufficient in number to identify the structural

vector (5, ), are at our disposal.

Although, the economic theory dealing with a particular problem is incomplete and tentative,

it will often be able to predict correctly the signs of the structural parameters involved. Also,

research workers studying a particular application usually will have at their disposal subsidiary

information in the form of one or more instrumental variables. As noted above, even if this

set is insufficient to identify the structural vector, combined with the regression simplex the

instrumental variables can be used to reduce the feasible region for the structural vector ()

(Willassen, op.cit. p. 309).

In the analysis to come we shall use the following definitions.

DEFINITION 3.1. A diagonal matrix A is called a sign matrix if and only if its elements are 1

or —1.

Evidently, any sign matrix A satisfies AA = /, so that A -1 = A.

DEFINITION 3.2. Given a class B of vectors, the class C of all non-negative linear combinations

E =	 a2b2 + • - • + aN 6N,	 ozi > 0, j = 1, 2,	 , N	 (3.5)

of vectors -61, -62 , ... -6N selected from B is a convex cone.

DEFINITION 3.3. For any matrix M we shall denote by cone(M) the convex cone generated by

the column vectors fil l , fn2 ,	 of M.

Evidently, any point -# E cone(M) can be expressed in the form:

k

e = Ea i ii-ti = Mii,	 ai >	 (i= 1 , 2 , ... , k)
i=i

The following simple lemma will be useful.

LEMMA 3.1. Let M and N be two matrices, and suppose that the number of columns of M is

equal to the number of rows of N (say k). Then the cone(MN) is contained in the cone(M) if

all elements of N is non-negative. Conversely, if P is another matrix and we have cone(P) C

cone(M), then there exists a matrix N with non-negative elements such that P = MN.

PROOF. The assertions of the lemma is evident from the multiplication rule of matrix theory.

•
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We are then ready to work out implications of assumption (i). First, it is instructive to apply

this assumption to the standard EIV model. We denote by IC the vector of observable variables,

by e- the vector of unobservable structural variables, by ë the vector of random measurement

errors, and finally, by ;y" the vector of structural parameters. Then, the standard EW model is

described by the following set of equations:

=	 (3.7)

k

(7Y 1 ) =	 = 70	 (3.8)

(S/ — LYy- = O	 (6 is the zero vector of appropriate dimension)	 (3.9)

(S2 — L) is non-negative definite.	 (3.10)

In (3.9) n denotes the covariance matrix of the observable variables, and L is the diagonal

matrix whose elements are the variances of the random errors. We suppose that S/ and L are

non-singular.

Setting

we have because of (3.9):

= frY

=

Since thethe diagonal matrix L has only positive elements, it follows from (3.12) that the column

vector has the same sequence of signs as the structural vector

Suppose now that we know the signs of the structural parameters 7i. Let A-#5, denote the

sign matrix whose diagonal elements correspond to the signs of the structural parameters; i.e.

if yi is positive the corresponding diagonal element of Ai, is +1, if 7i is negative the diagonal

element is —1. Post-multiplying an arbitrary matrix B by the sign matrix A5, leaves a column

vector of B unchanged if the corresponding element of A5, is positive, and changes its sign if

the corresponding element of A5, is negative. We shall call this procedure sign-correcting the

columns of B by the signs of the structural vector

Since, L is non-singular and ity-A.:1,- = I, we attain, immediately, from (3.12):

=	 = (L -1 Ai)A,s,§ = (L -1 A) 0̂- 	(3.13)
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where:

o = A (3.14)

Since has the same sequence of signs as ;if, it follows from the definition of A that the elements

of 9̂- Al-,"j are non-negative. Hence, if assumption (i) is satisfied in the standard EIV model,

the structural vector ;y- is contained in the convex cone generated by the sign corrected columns

of L. Thus, we write:

--y E cone(L 124) (3.15)

Since (L — I-Ai) is a diagonal matrix, its column vectors will be lying along the coordinate axes.

These axes, the directions of which are determined by the signs of the diagonal elements of A,

constitute the edges of the orthant in which the structural vector is situated.

By a similar reasoning we attain from (3.11) that:

5, E cone( 1A) (3.16)

Thus, the structural vector ;)-■ is restricted to the intersection of the two convex cones gen-

erated by (3.15) and (3.16). Although, these cones viewed independently can be "large" their

intersection can be "small".

We shall now relax the assumption that the covariance matrix of the random errors is diag-

onal, but otherwise we shall retain the specification given by eqs. (3.7)—(3.10). The covariance

matrix of the random measurement errors ^E" in now denoted by A. Thus we suppose that A is

an arbitrary non-negative definite, non-singular matrix. Again we shall suppose that we know

the signs of the structural vector ' (i)). The corresponding sign matrix is denoted

by A.

By applying our arguments above to this more general case, we attain the following lemma.

LEMMA 3.2. Suppose the model is specified by eqs. (3.7)—(3.10) modified in that the general

covariance matrix A is substituted for the diagonal matrix L. Let us also suppose that the signs

of the structural parameters are known, so that A5, is a known sign matrix. Then a necessary

and sufficient condition for the structural vector ;y" to be situated in the convex cone generated

by the column vectors of S2 -1 sign-corrected by the signs of the vector ", is that the structural

vector ;y- is contained in the convex cone generated by the column vectors of A-1 sign-corrected

by the signs of 7y .
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PROOF. It follows from (3.9) that the structural vector ; has to satisfy the equation:

A(12 - A);y- = Õ	 (3.17)

Setting

-• = (24SM

• =

we have inversely since Q and A are non-singular that:

(3.20)

, =
	

(3.21)

The contentions of lemma 3.2 follow from eqs. (3.20) and (3.21). •

The structural vector '- is defined in relation to the unobserved systematic variables el , e21 • elc•

If the random errors E i ,E 2, Ek are independent of ek which is the standard assump-

tion in EIV models, the structural parameters 71,72, .. ., 7k are also independent of the elements

of the covariance matrix A. That is, to any structural vector ;.-y there may correspond any co-

variance matrix A. Hence, the wider is the convex cone generated by the column vectors of

(A-1 A;y-), the more likely it is that it will contain the structural vector In the limiting case

where the column vectors of (A-1 A;y) are nearly proportional, the convex cone generated by

these vectors will be very narrow. In this particular case it appears to be very unlikely that the

structural vector ' is contained in this convex cone.

If we know a priori which elements of A are zero, eq. (3.21) can be used to derive restrictions

on the structural parameters. Later on we will show how these ideas apply to our reference

model.

Usually, the convex cones generated by the column vectors of the matrices ( 1 A) and

(A -1A) will not coincide. However, the case when the cone(f1 1 A-) is contained in the

cone(A -1A) deserves particular attention. We know from lemma 3.1 that if cone( 1 A) C

cone(A—l Ai) then there exists a matrix B with non-negative elements only, such that:

(A-1A)B 3.22)

The essential information is conveyed by the following proposition:
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PROPOSITION 3.1. Suppose that the covariance matrices 12 and A are non-singular. Suppose

that the matrix equation (3.22) is satisfied for a matrix B containing only non-negative elements,

and that the largest characteristic root of kl - A;y- AS2 -1 A1= O is simple and equal to k = 1.

Then the characteristic vector -6 = (A$,42);y' corresponding to the equation (I -	 =

has only non-negative elements, and the structural vector ;5", C cone(S2 -1 A5,.).

PROOF. According to (3.9) we have to solve the matrix equation:

- AYy	 (3.23)

wrt. the structural vector '5k. Since A-5, A.;y- = I it is easily verified that (3.23) is equivalent to

(I- A)5,Afr l ieli)A5,4/5, 	(3.24)

For this equation to have a non-zero solution wrt. à (= ity-Wy) or #-T , it is necessary that

lI - A,-y AS2 -1 A7y 1= 0

We observe from (3.22) that (A.;yAS2 -1 A-) = B, and, by assumption B is non-negative. The

conclusions of the proposition then follows from the Frobenius theory of non-negative matrices.

•

(A good review of non-negative square matrices is given by Debreu and Herstein (1953).)

A brief confrontation of prop. 3.1 with the standard EIV model is instructive. In the EIV

case the covariance matrix of the random errors A is diagonal. Therefore, also A -1 is diagonal

with positive entries. If we suppose that Q -1 has compatible signs, there exists a sign matrix T

so that (TS2 -171 ) has only positive elements. Then we can always find a non-negative matrix B

so that eq. (3.22) is satisfied. This conclusion follows easily from the following facts. Since A -1

is diagonal with positive elements and TT = I, (3.22) becomes:

(TS2 -1T) (TA -1T)B = A-1 B
	

(3.26)

Hence, we have:

B = A(Tft-in
	

(3.27)

The elements of B given by (3.27) are obviously positive since the elements of A and (T12 -1T)

are all positive. Hence, the conditions of prop. 3.1 work nicely in the classical ETV case.
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Now, it is urgent to apply our theory to our model specified by eqs. (3.1)-(3.4). Our speci-

fication and a priori information imply:

03 +	 -sAi
( 0

0 82

A? )
A = (3.28)

-sAi

A-1

1

0
1	 1

S
2

"
X

4
2	 sAi

1	 (À3 d-

sAi AA J

(3.29)

As to the present sign matrix the relevant economic theory definitely predicts that the regressors

and e3 have a positive effect on the dependent variable 6. Hence, writing our structural

relation on the form:

716 + 726 + 736 = 70
	 (3.30)

71 compared to (72, 73) have opposite signs. We choose Pyi = 1 and, therefore, 72 and 73 are

both negative (cf. model (2.8) ).

The sign matrix A5, becomes:

1	 0	 0 )
= 0 —i 0

—1

and consequently:

12

— — i

S2A2
	4 	 sAi

- i - (À3 + Ai) 
\

	

sAi	 A3Ai

If ' cone(A -1A) then the equation:

=

(3.31)

(3.32)

(3.33)

has a non-negative solution ei, i.e. -6' > O. Since the column vectors of A-1 Ai are given,

non-negative solution "6" will restrict the feasible region for the structural vector #-T

It follows from Farkas' lemma (Rockefellar (1970), sect. 22) that we can state:
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LEMMA 3.3. Either the equations:

=	 (3.34)

have a solution CI > 0, or the inequalities

z' (A-1 Ai) < ô,	 > O	 (3.35)

have a solution, but not both.

PROOF. The contentions of this lemma follow from Farkas' lemma. •

Thus, the equations (3.34) have a non--negative solution	 > 0), if and only if the inequalities

(3.35) have no solution. Hence, we wish to deduce conditions which exclude any solution of the

set of inequalities:

<

<
s2 A,21	sAi

—z2 	(A3 A.24 )z3
<

sAi	 A3Ä,21

72z2 73z3 > 0 (we suppose 71 = 1)	 (3.36)

It is not difficult to verify that this system of inequalities have no solution if the condition:

12
'14<	 < s (1 + -TT) ,

72	 "3
< s < i 	(3.37)

is satisfied. If the two error variances A3 and A4 are equal (3.37) becomes:

s < L3 < 2s,	 0 < s < 1	 (3.38)
- 72

The bounds (3.37) or (3.38) convey useful a priori information about the ratio between

the two structural parameters 72 and 73. In some econometric applications this is valuable

information.

However, the general useful results are conveyed by proposition 3.1. One of the essential

hypotheses assumed there is that the matrix equation (3.22) is satisfied for a non-negative

matrix B. We wish to check this hypothesis in the present application.

A?
- Z2	 Z3
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The signs of the estimated elements of the symmetric matrix sri
samples given by:

( Q11 Q12 f213

f221 Q22 1 23

s231 f232 1233

Sign-correcting the columns of sri by the sign matrix (3.31), implies

Qii --s2	 —9

( 	
12	 13	 + + + )

(srlity-) = f221 —Q22 -923 = — — —

Q31 - f232 - S133

—

(Q23) are in all our

(3.39)

(3.40)

Similarly we attain:

— —

8 2A2
4

- - (A3 + Ai)

A3Ai

?A 

o (3.41)

By comparing elements it is evident that we can find a non-negative matrix B = (bii) so that

the matrix equation (3.22) is satisfied. In the next section we elaborate on a formal statistical

analysis of this condition.

The hypothesis that the largest root of the characteristic equation:

Ik/ — AAÇr 1 A = 0	 (3.42)

is simple and equal to k = 1 is much more tricky to verify. It can be done along the lines followed

by Willassen ((1987), sect. 2). But a complete analysis of this question will lead us away from

our main line of reasoning. We thus assume that this hypothesis is fulfilled.

It follows from prop. (3.1) that:

= (S2 -1
	

where ã > O	 (3.43)

That is, the structural vector '  a non-negative linear combination of the column vectors of

(S2-1 Ai). Above we have assumed that 71 is positive. If the structural variable i denotes our

dependent variable, it is reasonable to normalize the structural vector 7y by requiring 71 = 1.

Hence, we can write our structural equation:

= 70 + g2 2 g36,	 where g2 = 72 , g3 —73 	(3.44)
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If := (1, g 2 , g3) we observe that ÿ = A. Using (3.43) we attain:

=	 A,y)e-t,	 õ >
	

(3.45)

It follows from eq. (3.22)

A;s42 -1 A,5, = (A7y. A-1 A.5,)B
	

(3.46)

for a non-negative matrix B. We verify directly by inspection that (A.-y-A -1 A) has only non-

negative elements. It then follows that the elements of (244/ -1 A-) are all positive.

For brevity we define:

H-1	 (Afriks,)	 (3.47)

:= fa row vector whose elements are all 1}	 (3.48)

D := fa diagonal matrix with elements consisting of the first row of H -1 1	 (3.49)

pël := (H'D')	 (3.50

In the present application the matrix P consists of 2 rows and 3 column vectors: P1, P21 P3-

We observe from (3.50) 

- f2 12	 -- 922	 - f2 23

Q11	 f/12	 1213P {P11 P21 153} =
- f213	 f223	 - 1233

(3.51)

Then we can prove: 

f2 11	 f/12 	1113 

PROPOSITION 3.2. Let all the hypotheses of proposition 3.1 be satisfied. Then the structural

vector -g is situated in the convex hull generated by the column vectors of the matrix (H -1D-1 ).

PROOF. According to (3.45) we have:

= (
1
g2) = H -1-6 = (.11 -1 D -1 )DEr	 (3.52)

g3

Setting ti = Dã it follows that t-v > O. From our normalization g i := 1 it also follows that the

components of fi) add to 1. Hence, in the (g2 ,g3)-plane we have the representation:

( gg:) _ 
W1P1 W2P2 W3P3

	
(3.52)
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3where Ei=i

If we define

•

:= {the convex hull generated by the vectors Pi , P2, i53},	 (3.54)

we note that in the present application P is a triangle in 1 2+ .

REMARK: The analysis carried out above rests on the assumption that we know a priori the signs

of the structural parameters. The signs of the elements of 12-1 then implied that the first row of

the sign-corrected matrix ( 12-1A) has only positive elements. This will always be the case when

we suppose that the sequence of signs of the structural parameters is the same as the sequence

of signs of the elements of the first row (or column) of S2 -1 (12-1 is, of course, symmetric).

From least square regression theory we know that by regressing X i on the remaining random

variables, the vector of parameters determined is a positive multiple of the first row (or column)

of (Q -1 ). Hence, the a priori information on the signs of the structural parameters used in the

present applications simply says that the signs of the structural parameters 72 and 73 are the

same as the signs of the parameters attained by regressing X1 on X2 and X3. That is, as the

signs of the components of the vector (-0 /0-21, -111 - f231/f111)• Hence, the signs predicted by

the relevant economic theory agree with the signs of the parameter estimates attained by least

square regression. In a way this is reassuring. Although the least square estimators are biased

in the presence of measurement errors, they will usually have the correct signs.

4 Restricting the convex hull P by using instrumental vari-
ables

In the present section we shall work out implications of our a priori assumption (ii). In order

to be spesific we shall study the trivariate case implied by our model of reference. Hence, we

wish to combine the simplex generated by the vectors Pi , P2, P3 of (3.51) with the information

conveyed by an instrumental variable Z.

In our application we observe a variable Z which certainly is correlated with the observable

variables Xi , X2, X3 and which is reasonably supposed to be independent of the random mea-

surement errors (Ei, E2, E3). This means that Z will serve as a proper instrumental variable in

the present specification. However, in order to identify the structural parameters (g2 , g3) defined

in eq. (3.44), we need two instrumental variables at least. Hence, with only one such variable the
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parameters (g2, g3) are still not identifiable. But we hope that a proper use of the instrument Z

will make it possible to dwindle considerably the feasible region for the structural parameters

(g2, g3).

Before we investigate this idea we have to clarify by a statistical test whether the matrix

equation (3.22) is satisfied for a non-negative matrix B of full rank. Equivalently, if

= (A;y-A-1 24;y-)B	 (4.1)

where A -1 is given by (3.29) and the sign matrix by (3.31).

From (3.29) and (3.31) it is readily verified that the matrix (A3-,A-1 A) is non-negative by

assumption. Thus, we shall consider eq. (3.22) or (4.1) to be verified if it can be justified by

statistical testing that the elements of (1/11r 1 Ai) are all positive. In effect, we wish to test if

the matrix Sr 1 has compatible signs (see definition 3.2). In this respect the following lemma is

useful.

LEMMA 4.1. A matrix M = (mii) has compatible signs if and only if the product

is positive for all indeces i, j, k, 1.

P RO OF. Evident. •

mikmilmikrnii)

In applying this lemma to the matrix Sr i we note the following facts. Since S/ is symmetric and

positive definite the same is true for 12-1 . This implies that the diagonal elements of R-1 are

all positive with probability 1. Using this fact together with lemma 4.1 we conclude that Sri

has compatible signs if and only if the product:

= n12f2 131123 > O
	

(4.2)

Thus, we wish to test the hypothesis:

Ho : O < 0	 against	 Hi : 01 > O	 (4.3)

In order to test this hypothesis we need the sample counterparts S, S -1 and Sii of S2, Sr i

and íij. We start with the consistent estimator ö of 0 given by:

= S12 S13 ,923	 (4.4)

It is evident that the finite sample distribution of ö (4.4) is very difficult to attain. Therefore,

in order to test Ho of 4.3 we have to resort to a large-sample test. From standard asymptotic
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theory (Serfling (1980)) we know that under quite general conditions the statistic fr\T(Ô - 0)

is asymptotically normal with mean zero and variance a. Estimates of the variance ail are

difficult to attain, but recent resampling techniques are tailored to handle situations like this.

Thus we calculated an estimate of a? by the Bootstrap method (Efron (1982)).0
As a test statistic of the null hypothesis Ho of (4.3) we shall use:

T= 4T =	 (4.5)
a

We reject Ho if T > te where P9=0 {T > tel E. (Here Pe=. 0 {-} denotes the standard normal

distribution, and f: is the chosen significance level).

If we reject H o of (4.3) we conclude that there exists a sign matrix A = (aii) so that by a

proper selection of the diagonal elements aii (= ±1), the sign-corrected matrix (AS2 -1 A) has

only positive elements. In the present application the distribution of signs of the estimated

elements of Q -1 are shown in (3.39). We observe that the estimated values of Q 12 and Q13 are

negative while the estimated value of f223 is positive. Thus, it is obvious that the sign matrix A

which makes (Al2 -1 A) positive in this application is the sign matrix A5, given by eq. (3.31).

Having verified that (2442 -1 A-5) is positive, and since (A-5,A -1A) is non-negative by the

specification of A (3.4), we conclude that eq. (4.1) is satisfied for a non-negative matrix B.

Thus, we have shown that an important hypothesis of prop. 3.1 is satisfied in our application.

Having clarified these details we are ready to introduce our instrumental variable.

Under the hypotheses of prop. 3.1 the structural parameters (g2, g3) are shown to be situated

in the simplex P generated by the points (vectors) Pi , P2, P3. In empirical applications this

simplex is often too wide to be of any practical use. Except in rare cases, an appropriate use

of our instrumental variable Z will restrict considerably the feasible region for the structural

parameters.

From the definitions (3.47)-(3.51) it follows that in the present trivariate case, Pi, P21 P3

are given by: r
1

12 ) 	r 
12

22' 	f223 

f2 1 	 Q 	 f2
P1 -7= 	 P2 -7-- 	= (	 13

„

—s213 	f223 	- 6 33

n11 	 f212 	 P13

(4.6)

where Ski is the cofactor of the element wii of Q.
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The edges of the simplex P are generated by the three straight lines:

	g g 23 ) = tPi + ( 1 — 02,	 0 < t < 1	 (4.7)

	(gg32 = ti51 + ( 1 - t)P3,	 < t < 1	 (4.8)

	

( gg: = ti52 -I- (1 - 03 ,	 0 < t < 1	 (4.9)

Since í is a symmetric matrix the cofactors f2 ii =	 By eliminating the parameter t in (4.7)-

(4.9) we attain 3 linear equations in (g2,g3). By using the symmetry of S2 together with an

appropriate use of identity (11.7.3) in Cramér (1946 p. 111) these calculations simplify greatly.

Corresponding to (4.7)-(4.9) we attain the 3 equations:

	W13 - g2W23 g3W33	 (4.10)

	

W12 g2W22 g3)23	 (4.11)

	

wu - g2co12 - g3w13	 (4.12)

We note that (4.10) and (4.11) correspond to the normal equations we attain by least squares

regression of X1 on X2 and X3.

Then we combine our structural eq. (3.44) i.e.

	7o + g 2 + g 3e3
	 (4.13)

with our instrumental variable Z. Multiplying (4.13) by (z- E(Z)) and then taking expectations

on both sides of the resultant equation, we attain:

Wlz = g2W2z 93W3z (I)
	

4.14)

where wi z =- cov(Xi, Z), i 1, 2, 3.

In deriving (4.14) we have used the fact that the instrumental variable Z is independent of

all the random measurement errors (Ei). Since Z is an instrumental variable this assumption

follows by definition.

The following requirement on the instrumental variable Z is reasonable and intuitive:

The instrumental variable Z is sensible if and only if the straight

line given by (4.14) intersects the simplex p whose edges are given
	

(4.15)

by (4.10)-(4.12)
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G2 -= [(C0 	W44,12W3z	 231z). (L013W3z W1zW33)]

(.'22W3z W23W2z ) 7 (• W23W3z W2zW33)

G3 = [(
4.023 4.01z	 W2zW13) (W22(4)12	 (012 4.02z )1

(W23W3Z W2Z W33 ) 7 (• 44)22W3Z W23W2Z

Hence, if Z is a sensible instrument the feasible set for the structural parameters (g2, g3)

reduces to the intersection between the triangle P and the straight line I. If Y denotes this

intersection we have:

= {(g2,g3) E CP ni) )} (4.16)

The straight line I (4.14) will, except in rare case, intersect only two of the edges of P. Which

two will be determined by the w's. In the present application the line I intersects the two edges

given by (4.10) and (4.11). For clarity we state the necessary details in the following proposition:

PROPOSITION 4.1. Let us suppose that the structural vectors (g2 ,g3) are situated in the simplex

1) whose edges are given by (4.10), (4.11) and (4.12). Let us also suppose that the instrumental

variable Z is sensible in that (4.15) is satisfied. Then the structural parameters (g2, g3) are

restricted to the intersection .7 of (. 16), and, therefore, contained in the rectangle (G2 x G3)

gi

▪ 

ven by:

(4.17)

(4.18)

PROOF. The intervals (4.17) and (4.18) are attained by solving eqs. ( .10) and ( .14), and then

(4. 11) and (4 . 14)- •

The following figure is instructive.
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132
(4.12)

Figure 1.

5 Testing hypotheses on the unidentifiable structural param-
eters (g2, g3)

The object of testing hypotheses on the unidentifiable structural parameters may seem strange,

but in cases where it is possible to identify bounds for their positions, it can be done. But the

standard approaches cannot be used directly. Usually they have to be adapted in some way or

the other.

Let us suppose we wish to test the hypothesis

Ho : g2 = g;
	

against	 Hi g2
	

(5.1)

Above we have shown that, under the stated conditions, both of g2 and g3 are positive. Hence,

we assume that 91 is some positive constant.

Let us denote the two bounds of the closed interval G2 of (4.17) by ai and a2. Since the

interval bounded by a i and o2 contains the structural parameter g2 , the hypothesis Ho of (5.1)

will imply the hypothesis Fo given by

Fo : {0 <	 < g; < a2}	 (5.2)
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The inequalities of (5.2) represent a hypothesis on ai and a2 which are parameters in the joint

distribution of the observable variables {X1, X2, X3, Z}.

Since the hypothesis Fo is implied by the hypothesis Ho , we should reject Ho if we reject Fo .

On the other hand if we accept Fo then .9, K is a possible value of g2 , and, therefore, we should

also abstain from rejecting H o of (5.1).

Several test procedures can be designed to test the hypothesis Fo or H. Perhaps the more

accessible approach to test Ho of (5.1) is the following based upon constructing a confidence

interval for the closed interval:

[al, ad (5.3)

We know from (4.17) that g 2 is contained in this interval. Since a i < g2 < a2 we observe that

a confidence interval for (5.3) will also be a confidence interval for the structural coefficient 9 2 .

Hence, we shall ask for a confidence interval for the interval (5.3).

A confidence interval will cover the interval (5.3) if and only if it covers its end-points. Thus

we start on constructing confidence intervals for the two end-points a i and a2 . From (4.17) we

observe that consistent estimators of ai and a2 are given by:

( 8 12 83z — 8 23 3 1z) 

( 8 22 83z — 823 8 2z)

( 8 13 83z — 8 1z.933)
62(N) = (5.5)

8 23 ,93z 82zS33)

where sii denotes elements of the sample covariance matrix S, and Siz denotes the sample

covariances between Xi and the random instrument Z. Both et i and ôt 2 depend on (N) via the

sample moments.

In the following we will need some results from multivariate statistical analysis to be found

in Anderson (1984). In particular we shall use his theorems (4.2.2) and (4.2.3). For the sake of

clarity we reproduce theorem (4.2.3).

THEOREM (4.2.3) (Anderson (op.cit.)). Let {U(N)} be a sequence of m-component random

vectors and b a fixed vector such that V-FV(U(N) — b) has a limiting distribution N (6,T) as

N oo. Let f(u) be a vector-valued function of u such that each component fi(u) has a non-zero

differential at u --,-- b, and let (a fi aui)b be the i, jth component of (Db. Then VAT(f(u(N)) —

AO) has the limiting distribution , Vb T4) b ).

61(N) = (5.4)
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This theorem also covers the case when f(u) is a real-valued function satisfying the appropriate

conditions. If f(u) is a scalar function, (1) b will be a vector. Hence, we can apply these theorems

to the functions of (s ii, siz ) given by (5.4) and (5.5). We conclude that Na(et i (N) — al ) and

fi—V(â 2 (N) — a 2 ) have limiting normal distributions given by M(O, ) and ft/(O, at). The

variances al l and 012 are attained by calculating the relevant quadratic forms (4);,71 0N), or they

can be calculated by the bootstrap method.

Let V1 and V2 be two random variables having the standard normal distribution N(0,1).

Then we can find a positive number t such that:

Pr{Vi > t} = Pr{V2 - -t} =	 (5.6)

As a confidence interval for the interval (5.3) we choose the interval:

[61 — to-a i ; et2 taeid (5.7)

The probability that the confidence interval (5.7) covers the interval (5.3) is equal to the prob-

ability of the set {V1 < t; V2 > —t}. The probability of this set is exactly (1 — (e/2))2 if V1 and

V2 are independent. Generally, V1 and V2 are correlated so that the confidence coefficient of the

interval (5.7) is approximately (1 — (E /2)) 2 which is slightly greater than (1 — E).

Since a l < g2 < a2 the probability that the interval (5.7) covers the structural coefficient

g2 is greater than the probability that it covers the interval (5.3). Thus, the interval (5.7)

considered as a confidence interval for g2 has a confidence coefficient greater than (1 — E). The

probability that the confidence interval (5.7) covers g2 depends on the position of g2 in the

interval [ai, a2]. In order to find this probability exactly for various values of g2 , we would need

the joint distribution of (x i and 6E 2 . However, we observe directly that if g2 is equal to one of the

end-pints of the interval, that is g2 = al or g2 = a2, the probability that the interval (5.7) covers

g2 will be only slightly less than (1 — (0)). For intermediate values of g2, i.e. ai < g2 < a27

this probability can be considerably closer to 1.

These considerations should be borne in mind when we wish to apply the confidence interval

(5.7) to test the null hypothesis Ho of (5.1). Having chosen a confidence coefficient of (1 — E)

and then calculated the interval (5.7), we recommend the following approach. If the interval

(5.7) does not cover the specified value g2 = g , then Ho should be rejected straight away.

If the value g is just inside this interval indicating that a i g.'2K or a2 g2* the decision of

28



accepting/rejecting li o should be taken only after we have considered the appropriate confidence

coefficient which is approximately (1 — (E/2)) in these two cases.

Finally we note that the length of the confidence interval (5.7) will not tend to zero as the

number of observations (n) tends to infinity. We note that irrespective of what method we have

used to construct a confidence interval for the interval [a i , ad, the estimated interval should

tend to the interval [a l , ad as N --+ oo.

Testing hypotheses on unidentifiable structural parameters is not entirely new. However, we

know of only two previous studies, namely Moran (1956) and Willassen (1984).

6 The data and estimation procedures

6.1 Measurement errors and the data

The empirical analysis has examined 9 different industry groups: Textiles (ISIC 32), Wood

products (33), Paper products (34), Chemicals (35), Mineral products (36), Metal products

(381), Machinery (382), Electrical equipments (383) and Transport equipment (384). The unit

of observation is a plant. The samples cover most of Norwegian manufacturing in 1983 and

1990. See the appendix for some further details on sample extraction.

As mentioned above, reported sales is our observable proxying output. Manhours and fire

insurance values are the observables for labour input and capital, while materials are directly

reported in our data. The number of employees is used as an instrument in the last set of

regressions presented below. Notice that we have used the number of manhours in our construct

of share weighted measure of variable inputs per unit of capital. The number of manhours and

employees are reported as separate items in our data. Deflators are taken from the Norwegian

National Accounts. Some details on variable construction are presented in the appendix.

There are several reasons why we would expect there to be an "errors-in-variables" problem

in our data set9 . Measurement errors in our regressors are created by well-known sources of noise

such as differences in dating of the inputs and the output of production, misunderstanding of

the questionnaire and typing errors. Furthermore, there are discrepancies between the variables

needed in our model, and those available in our data set. Our production relationship requires

observations on growth in the real, quality adjusted inputs. This is not available. E.g., we

9 See Griliches (1986) for a general discussion of data problems and measurement errors in panel data .
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use growth in manhours as our labour input variable, while growth in quality adjusted hours

(considering differences in schooling, on-the-job training etc.) would be more correct.

For capital we have used growth in the fire insurance values, deflated by the capital price

index from the National Accounts. This is clearly only an imperfect measure of the growth of

capital services. This is even more so, as we know that this variable have not been subject to

less scrutiny by the data collectors, as compared to most of the other variables.

An additional source of random errors is due to our assumption that the cost shares measures

the output elasticities of the variable factors up to a markup coefficient. Random departures

from this assumption, as well as unobservable factors (for us as outside observers) which enter

the profit maximization problem will add noise to the relationship between the cost share and

the output elasticity of a factor (cf. (2.4) ).

6.2 The bootstrap

We have used a bootstrap procedure to test whether the covariance matrix of our observable

variables have compatible sign, as required for the identification of the parameter bounds. As

shown in section 4, this amounts to testing whether 60 = 12 21323 is positive, where Ski is anQ--- 1 	Q- - 

element of the inverse of the covariance matrix of the e's in our structural model. There are two

reasons why it is desirable to estimate the distribution of ö by means of a bootstrap procedure.
"

It is simpler than deriving the analytical expression for the asymptotic variance of of 61, as 0

is a complicated function of the sample moments. The bootstrap is also claimed to a provide

better estimate of the finite sample distribution of a test statistic such as '01° In particular, a

bootstrap test is not confined to situations where the test statistic has a normal distribution,

where the first two moments are sufficient to identify the confidence interval.

We have carried out two alternative procedures to test whether 0 is positive. Both procedures

are based on a draw of 100 bootstrap samples of full sample size. Efron and Tibshirani (1986)

claims that between 50 and 200 bootstrap samples are sufficient in most situations. From each

bootstrap sample we have estimated a 9. The two test procedures use the resulting sample of

0-estimates differently. The first procedure assumes the distribution of ö to be normal. It follows

that a test can be carried out on the basis of the test statistic Fö lad , where the numerator and

the denominator are the mean and the standard deviation of the estimated sample of Os (cf.

10 See Efron (1982) and Efron and Tibshirani (1986).
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section 4). Clearly, this test-statistic should exceed the desired percentile in the standard normal

distribution to conclude that we can reject the hypothesis that 0 is negative.

The alternative procedure, termed "the percentile method" (Efron, 1982, ch. 10.5), identifies

the confidence region directly from the estimated distribution of eis. In our case this is very easy:

By identifying the smallest 0 estimate, we automatically get an estimate of the one percent

lower bound on 9. Efron and Tibshirani (1986) discuss more elaborate procedures to identify

confidence intervals based on the bootstrap method, which are more robust if the 'Ô has a non-

normal distribution. We have not considered such methods.

6.3 Estimating the variances of the parameter bounds

The variances of the parameter bounds have been estimated by two alternative methods: a

bootstrap procedure and analytically by asymptotic theory. The bootstrap procedure is carried

out in the same manner as explained above. Using 100 bootstrap samples we have obtained

a sample of estimates for both the upper and lower parameter bounds for each of the two

parameters of interest (72 and 73 ). Using these samples we have estimated the variance of each

of the parameter bounds. These variances are reported below.

An alternative procedure is to analytically identify the variances using asymptotic theory

as discussed in section 5. This is somewhat more cumbersome, as the following derivation

illustrates. Take the bound for the g2 parameter identified in (5.4), which we termed ei l (N) in

section 5. The variance of \r/V iii(N), denoted a6„,, is given by

. y v ( )  ) (6.9)ai

The first term on the right hand side is the transposed of the gradient of the ee l-bound with

respect to each of the covariances it depends on. We have stacked this set of covariances in a

vector; s = (\siz, 82z, 83z, 812, 822, 823)• The second term is the covariance matrix of this vector

of covariances.

Using the expression in (4.17), we have that

0'61 =as	
r

—D L-823, a1823, 0823, 83z, —0183, —083z].

Here we have defined D FE 82283z — 82382z , and 1,b (822s1z — s12s2z)/D•

(6.10)
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The s-vector consists of sample covariances. The asymptotic covariance matrix ( V(s)

of such a vector has a normal distribution given our assumption of independent observations

(across units). This follows from the multivariate central limit theorem presented in Anderson

(1984, Theorem 3.4.3). The explicit formula for the elements of the covariance matrix V(s)

can be derived by using results in Anderson (1984, chs. 2 and 3). This derivation require

the assumption of a multivariate normal distribution of the variables. Consider an element in

the s-vector: sii, where i and j are a suitable pair of the indecies 1,2,3,z. Then we have

that (N — 1)s -= EnN_ 1 (Xli — )(X — Xi) = Y.Y. Each element (1' ) in this sum is

independent with mean wii. The covariance between two such elements (171 and Y) follows

from the second, third and fourth order moments of the distribution. In the case of normality,

we have that

cov (1'i71 , 1711,) = E{[(Xli —	 —	 — wii][(Xr — p i )(Xj: —	 —

= WikWjl	 (6.11)

where we have replaced sample means by population means; the it's as we focus on asymptotic

results. The final equality follows from the properties of the second, third and fourth order

moments of the normal distribution (see Anderson, 1984, ch. 2.6.2):

E[(xli — tti) (x.7 — PA ]

EKXI' — 	 — 	 — pi)]
	

0,

E[Pcli — 	 — Pi) (xin — tti )(xki — /Lk)]
	

WijW1c1 WikWjl WilWj k
	

(6.12)

From (6.11) and theorem 3.4.3 in Anderson (1984), it follows that

COV (Sij, Slk)	 (Wikwjl WilWjk)/N1
	 (6.13)

and in particular

var(s) =	 wiiwii)/N.	 (6.14)

With these expressions at hand, we have computed the asymptotic standard error for the a i ,

replacing the covariances in (6.13) and (6.14) by the corresponding empirical covariances. In
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the same way we have derived the analytical expression for the asymptotic standard errors for

the other bounds, and estimated their values. These are reported below.

7 Empirical results

7.1 Ordinary regression results

Table 1 presents results from ordinary regressions using the model in equation (2.7). In most of

the industries, the markups (cf. it in (2.7)) are small. In none of the industries can price taking

behavior be rejected. Furthermore, the results reveal no presence of increasing returns in any of

the industries. Most industries reveal significant and substantial decreasing returns to scale.

While the results in table 1 are not entirely implausible, several researchers have raised the

question of whether estimates of production parameters similar to ours, tend to be downward

biased due to measurement errors in the regressors 11 . The statistical framework presented above

is suited to address this issue. Our next step is to use this framework to provide parameter

bounds, considering the possibility of measurement errors in our regressors.

7.2 Estimating the parameter bounds

The standard model for bracketing parameter estimates in the presence of (uncorrelated) mea-

surement errors in the regressors is to identify the bounds by the set of direct and reversed

regression. As shown in section 3, this procedure is also valid in the more general case with

correlated measurement errors, as long as the condition (4.2) is fulfilled. We have tested this

condition by means of a bootstrap test, as suggested in the previous section. Table 2 presents

the results for each industry separately. The first row reports the test statistic based on the

assumption of an approximate normal distribution for ö. The next row presents the one percent

lower bound on 0 identified by the "percentile method" discussed above. Both test statistics

suggest that the Os are non-negative for all our industries (though the evidence is a bit weak

according to the first test-statistic for the industries 37, 382, 383 and 384). We conclude that

proposition 4.2 seems applicable in our case.

Table 3 presents the corners of the simplex p defined in (3.51). These corners have been

identified by running the set of direct and reverse regressions. The parameter bounds in table 3

"See e.g. Mairesse (1990).
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are too wide to be of much value. Notice however that even the upper bounds for the price cost

margins are lower than the estimates found by Hall (1988, 1990) and Domowitz et al. (1988).

As explained in section 5, parameter bounds for our model can be obtained by identifying

the intersection between the simplex in the ( e L, 77)-space and the line traced out by our (single)

instrument (cf. (4.17) and (4.18) ).

The results are presented in table 4 and 5. Table 4 presents the direct estimates of the

bounds, with the asymptotic standard errors in parentheses. The results presented in table 5

are based on the first two moments of the set of bound-estimates obtained using the bootstrap

samples. The results in table 4 and 5 are very similar, the main difference being that the

standard errors based on the bootstrap are somewhat higher.

Comparing the bounds in table 3 and table 4 (or 5), the usefulness of a single instrument

clearly comes out. Even without complete identification of the parameters, the single instrument

narrows down the parameter bounds substantially. The standard errors are quite small. The

estimated lower bounds in table 4 for the price-cost margins are on average 3.2 percent higher

than the OLS estimates (cf. table 1). The corresponding ratio for the scale elasticity is 3.7

percent. If we replace the lower bounds by the average of the upper and the lower bounds, the

ratios are 4.6 percent and 4.1 percent. The major conclusion which emerges from this empirical

analysis is that the ordinary regression results are not entirely misleading. In particular, even

considering the impact of errors in variables, our estimates have lead us to conclude there is

not a large margin between price and marginal costs in the industries we have considered. Our

estimates are e.g. considerably lower than those identified by Hall (1988, 1990) and Domowitz

et al. (1988). With respect to scale economies, we do not find (significant) increasing returns

to scale to be present in any of our industries. In most industries we can not reject constant

returns to scale (cf. ISICs 32, 35, 36, 382, 383 and 384 in table 4), in the sense that either the

(estimated) upper or the lower bound of the scale parameter has a 95 percent confidence interval

covering the value one. See the discussion in section 5. Eight out of nine industries have a scale

elasticity at least 0.95 or higher, in the sense that the ninety five percent confidence interval (cf.

(5.7)) for the lower bound cover the parameter value 0.95. There is one industry characterized

by very low parameter estimates (ISIC 34).
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8 Conclusions

We have presented a simple regression model applicable to a panel data set on plants, firms or

industries. In our application, the framework is consistent with a very heterogeneous production

structure across plants. Each plant can have its separate translog production function. The

framework imposes the assumption that plants within an industry have a common degree of

scale economies and the same margin between price and marginal costs.

The model has been estimated for a number of manufacturing industries using plant level

data. The results suggest small margins between price and marginal costs, and scale economies

below unity. Other researchers have obtained similar results using a simpler production model.

There is a widespread view that these results are largely artifacts due to measurement errors.

Our analysis has led us to conclude to the contrary. Correcting for measurement errors we find

parameter estimates which are only slightly higher (less than 5 percent) than the OLS-estimates.

To reach this conclusion we have introduced some new statistical results which extend a

classical result on regression models with "errors-in-variables" due to Reiersol (1941). Our new

results show how to identify parameter bounds when measurement errors are correlated across

regressors. We also identify the advantage of having a few instrumental variables, even if they

are not sufficiently numerous to fully identify the parameters. These new results should be useful

to applied researchers beyond the empirical model presented here. They provide an alternative

to instrumental variable regressions when a sufficient number of instruments are not available

or one is worried about the assumptions required to justify the chosen instruments.
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Appendix: Details on the construction of the data set

The applied sample covers ten out of thirteen 2.5-digit (ISIC) manufacturing industries. We

have left out the sector "Food, beverages and tobacco" (ISIC 31) because it is heavily regulated,

questioning the validity of the behavioral model applied above. "Basic metals" (ISIC 37),

"Scientific instruments" (ISIC 385) and "Other manufacturing industries" (ISIC 39) are too

small to provide reliable results based on asymptotic statistical theory.

The sample was constructed from the "Panel data"-files for Norwegian manufacturing plants 12 .

These files are constructed on the basis of the census carried out by Statistics Norway 13 .

In the current study, only operating plants with at least five employees have been included.

All observations which did not report the variables required have been eliminated. Also we

removed observations with extreme value added per unit of labour input or extreme value added

per unit of capital. Extreme values were defined as outside a 300 percent interval of the median

values for each year and each 5-digit industry.

12 See Halvorsen et al. (1991) for documentation.
13 N0S (several years) reports a variety of summary statistics.
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