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ABSTRACT
This paper presents a newly developed R-package for calculation of variances 

of estimates based on data from several waves of a repeated survey with partly over-

lapping samples. Development of the package is a part of on-going work on quality 

improvements of the Labour Force Survey in Norway, which is quarterly and based 

on a rotating panel. The package can, for example, be used to calculate variances of 

net changes of annual averages of unemployment rates for persons aged 20-64. The 

methodology is based on linearly calibrated weights (as calculated by the packages 

ReGenesees and survey) and residuals from the corresponding regression modelling. 

These computations may be done separately for each wave. The functionality is generic 

and the user can specify any calibration model and any linear combination of (quarterly) 

estimates. Linearization is used to calculate variances of rates. The main method as-

sumes that all relevant population totals can be computed from register data, but situa-

tions where totals are unknown for some of the calibration variables are also handled. 

Keywords: Calibration weighting, Rotating panel survey, Nonresponse ad-

justment, Model-based, Design-based, Multivariate regression, Linearization
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 INTRODUCTION

This paper accompanies the R-package, CalibrateSSB (Langsrud, 

2016), which calculates variances of (change) estimates based on data from 

several waves of a repeated survey with partly overlapping samples. Within 

each wave the data are weighted by linear calibration. Finding the weights 

can be viewed as the Þ rst of three important estimation tasks. The second task 

is to establish a covariance matrix for the total estimates. The third task is to 

calculate variances of linear combinations of these estimates, such as mean 

changes. 
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 The starting point for the package development was to implement 

generically the variance and covariance formulas in Hamre and Heldal (2013) 

which are based on Hagesæther and Zhang (2007). These estimates are design 

based estimates under some asymptotical assumptions and they are calculated 

from the residuals according to the regression models corresponding to the 

calibration. A closely related design based approach is recommended in Osier 

et al. (2013) and described in Berger and Priam (2016).They use residuals 

from a model which includes covariates which specify the stratiÞ cation and 

interactions which specify the rotation of the sampling designs. 

 However, a main approach of the present paper is not design based 

and we call it model based. We will calculate a robust or empirical covariance 

matrix which is also known as a sandwich estimator (Kauermann and Carroll, 

2001). Since this deviate from the classical parametric approach, this is also 

sometimes referred to as not model based. Multivariate linear regression 

modelling is an important part of the description below. The formulation by 

matrix notation is very similar to how this is implemented in the R-package. 

 Ordinary linear calibration and weighted linear regression are equivalent 

and Section 2 describes calibration as a model based regression technique. 

Sections 3 and 4 formulate robust model based estimators of the covariance 

matrix. The corresponding covariance matrix according to Hamre and Heldal 

(2013) are given in Section 5. Their design based estimate is very similar to the 

model based estimate. Finding the covariance matrix of linear combinations is 

described in Section 6. How to handle ratios by linearization is treated in the same 

section. As written in Section 7, cluster-robust variants of the covariance matrix 

estimates can be easily obtained. Section 8 treats the situation where some of the 

population totals of the calibration variables are estimated. This is partly based on 

the design based methodology of Särndal and Lundström (2005), but a difference 

is that we assume that all the calibration variables are individually known in the 

gross sample. A multivariate generalization of their estimate of variance due to 

non-response is proposed. This is used to adjust the covariance matrix estimates 

in order to take into account the presence of estimated population totals. 

LINEAR CALIBRATION AND MULTIVARIATE 
REGRESSION

 We assume that the population data follow a multivariate multiple 

regression model deÞ ned by 

(1)

 where the N × m matrix YU consists of m outcome variables of interest. 

The auxiliary matrix X consists of p linearly independent columns and thus 
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the matrix B of regression parameters is of size p × m. The rows of the residual 

matrix EU are independent with zero mean and a common covariance matrix, 

. 

 We assume that the Þ rst column of XU is the constant vector of 1’s. 

Below such a constant vector is written as 1. The population totals can then 

be written as   

onstant veeeeeeeeeecccctccccccccccccccccc o

.  Now, assume that the outcome variables are 

observed in a response set, r. According to the ordinary regression estimates 

the transposed total vector based on predictions are 

(2)

 These totals are weighted sums of the observations in the response 

set and w are these linearly calibrated weights. The calibration equation is 

satisÞ ed: . Above (2) the observed part of YU was replaced by 

predicted values. The totals will, however, be unaffected by such a replacement 

when a constant term is included in the model. The residuals sum to zero. 

The standard theory of calibration involves sampling weights and the calibrated 

weights can then be written as 

(3)

 where D is a diagonal matrix of sampling weights. This means that 

ordinary regression is replaced by weighted regression. To justify weighted 

regression under the population model (1) , the covariance matrix assumption 

needs to include the inverse sampling weights as proportionality constants. 

This time the weighted (sampling weights) sum of the residuals is zero. 

In practice, (near) collinearity may need to be handled and the calibrated 

weights can then be computed as 

(4)

 where “-” denotes a generalized inverse. 

THE COVARIANCE MATRIX OF TOTAL ESTIMATES

 We consider the total estimate 

(5)

 Under the Þ nite sampling approach the relevant covariance matrix 

estimate is 
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(6)

 Under the above model (1) it turns out that 

(7)

where “·” is included to indicate scalar multiplication. By plugging in an 

estimate of  we obtain 

(8)

where  is the matrix of residuals from the regression modelling 

underlying the calibration. To relax the assumption of a common covariance 

matrix we will consider a robust or empirical covariance matrix estimate 

which can be said to be a sandwich type estimator: 

(9)

 Here  denotes element-wise multiplication and . That 

is all columns of W are equal and  can be expressed as (11) below. This 

equation means that a individual covariance matrix estimate is based on each 

row of  . The Þ nal estimate is obtained by simply summing these 

individual estimates together. This is consequence of independent rows. The 

case of dependence within clusters is treated in Section 7. 

 An estimate of Cov( -T) can be obtained by replacing W by (W 

- 1) where 1 is a matrix of ones. Then, (9) is a multivariate generalization 

of the robust variance estimate described in Valliant et al. (2000). The last 

component of (6) is then considered as negligible. But instead of neglecting 

this component we instead suggest the estimate 

(10)

 which turns out when the last component of (6) is estimated from the 

observed residuals by using weights (more details below). 

 The residuals may be replaced by adjusted residuals as described 

below. 

THE COVARIANCE MATRIX IN PANEL SURVEYS

 Now we will generalize the above methodology to panel surveys and 

the total estimate is written as 

(11)
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 Each row of Yr represents a sampling unit and each column is a variable 

from a speciÞ c wave. Thus, two columns of Yr may be the same variable 

from two different waves. These are calibrated separately and the weights 

are different. Unlike above, all columns of W are not equal. Furthermore, the 

samples may not be completely overlapping and therefore many elements of 

Yr are not observed. We solve this by setting the corresponding elements of W 

to zero. For the computations below we also set the corresponding elements 

of  to zero. 

 Since missing residuals have zero weights we can still make a robust 

estimate of  according to (9). Even if the data set is complicated, this 

estimate is very simple. The problem of partly overlapping samples is handled 

indirectly. 

 Again a possible estimate of Cov( -T) can be obtained by replacing 

W by (W - 1). Equation (10) cannot be used when the columns of W differ. 

Instead we propose an estimate which is consistent with (10): 

(12)

 Negative elements (caused by zero weights) are set to zero before 

the element-wise square root operation. The last row act as an estimate of 

the last component of (6). To calculate the covariance between two variables 

(numbered 1 and 2), we here use  +  

as a substitute for  which is used when the weights are equal (10). 

More speciÞ cally, this means that outside the sample (last component of (6)), 

the covariance between variables 1 and 2 are estimated as a weighted mean 

of the corresponding residual products with weights .

Furthermore, the size of the overlapping population outside the sample is 

assumed to be the sum of these weights. Unless the weights are equal, this is 

in practice a conservative (towards zero) estimate of the covariance. Have in 

mind that we are now only discussing a component of the variance which is 

negligible when the sampling fraction is small. The notation, , is introduced 

since the estimate is an alternative to similar design based estimates below. 

The function name, F, is introduced since it is needed later in this paper. 

 To avoid downward bias caused by model Þ tting one can replace the 

residuals by adjusted residuals as described in Valliant et al. (2000): 

(13)
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where  denotes element-wise division and again the square root is also 

element-wise. The matrix Hii consists of the diagonal elements of the so-called 

hat matrix from the regression calculation underlying the calibration and they 

are also known as the leverages. In the situation of Section 3 all columns of 

Hii are equal (similar to W). To be more robust against model misspeciÞ cation 

one can drop the square root: 

(14)

 The resulting residuals are exactly those obtained by leave-one-

out cross-validation (Shao, 1993) and as written by Valliant et al. (2000) it 

is guaranteed that the corresponding robust variance estimate is not biased 

downwards. 

A DESIGN BASED COVARIANCE MATRIX

 First we deÞ ne an observed unobserved indicator matrix, J, with the 

same dimensions as Yr. Then, the matrix n = JTJ has ordinary sample sizes on 

the diagonal and otherwise sample sizes of overlaps. The row vector of mean 

weighted residuals can be written as 

(15)

 where diag(n) consists of the diagonal elements of n. 

 The formulas of variances and covariances in Hamre and Heldal 

(2013) can now be summarized as 

(16)

 The variances and covariances of differences and ratios which are 

described in Hamre and Heldal (2013) are in accordance with the description 

in the section below. 

LINEAR COMBINATIONS AND RATIOS

 To calculate the covariance matrix of linear combinations we make 

use of the property 

(17)

 where Z is a random vector and where M is a matrix of coefÞ cients for 

the linear combinations. In the four-element case we choose M = [-1,-1, 1, 1]⁄2 

to calculate the difference between the mean of the two Þ rst and the two last 

values. Several linear combinations are obtained when M has several rows. 
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In order to calculate variances of ratios and covariances between ratios we use 

a Þ rst order Taylor series (delta method) substitute: 

(18)

 where uppercase means stochastic variables and lower case means 

observed values. Hence when going from a vector of ordinary totals to a vector 

ratios, 1⁄c and -a⁄c2 are the coefÞ cients needed to deÞ ne the linear combination 

used to create the covariance matrix. 

 When Z = [Z1,Z2,Z3,Z4]T we obtain the covariance of [Z1/Z2,Z3/Z4]T 

by using 

(19)

 In practice we may compute the covariance matrix by utilizing (17) in 

three steps starting with Z = : 

 1. Linear combinations of totals. 

 2. Ratios of these linear combinations. 

 3. Linear combinations of these ratios.

CLUSTER-ROBUST ESTIMATION

 The above discussion assumes independent individuals or random 

sampling of individuals (not families). However, clusters (families) might 

have been neglected and we may calculate the variance in a way that is robust 

against model misspeciÞ cation of this kind (Cameron and Miller, 2015). 

 If e1 and e2 are two independent residuals we estimate 

(20)

 If we cannot assume independence we can instead estimate this as 

(21)

 In other words we can say that (21) is a cluster-robust alternative to 

(20). This is similar for several variables and covariance matrices. We can 

use this to make a cluster-robust alternative to (9). We simply replace the 

matrix 

s to maaaaaaaaaamaaaaammaaaakekkkkkkkkekkkekkkkkkk

 by a matrix with fewer rows. In the new matrix the rows are 

summed within clusters. We can use a similar technique to construct a cluster-

robust variant of (12). 
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ALLOWING ESTIMATED POPULATION TOTALS

 Above non-response was not treated explicitly. Calibration was 

performed based on the net sample only. Now we will consider the situation 

were some population totals are unavailable, but the corresponding x-variables 

are individually available in the gross sample. In this case we suggest to 

calculate the weights, w, according to this expression of  : 

(22)

 Here  contains data for the whole gross sample and  is the same 

matrix except that the last k columns are omitted. These omitted columns 

correspond to the unavailable population totals. The matrix  is the 

corresponding population matrix. One way of viewing the difference between 

this expression and expression (2) is that ordinary x-totals are replaced by 

estimates. These estimates are found from population predictions based 

on regressing Xs on . Then, for the Þ rst p-k variables, the estimated and 

observed totals are identical. A second viewpoint is to say that the estimated 

x-totals are obtained by using the weights, , which are calculated by 

calibration from the gross sample to the population by using . Equation 

(22) can also be interpreted a third way. The y-totals are found by weighting 

the predicted gross sample ( ) by the weights . We can generalize (22) to 

include diagonal matrices of design weights so that ordinary regressions are 

replaced by weighed regressions. 

 This procedure is closely related to the recommended procedure 

in Särndal and Lundström (2005). The difference is that they estimate the 

unavailable population totals by using design weights instead of . Then all 

the x-variables do not need to be individually known in the gross sample. 

However they mention: “If available, a better estimate (but unbiased or 

nearly so) is allowed to take place of [the design weighted total].” Also note 

that calibration according to (22) generalized to incorporate design weights 

corresponds to the method in Estevao and Särndal (2002) referred to as the 

one that “use the complete auxiliary information”. 

 In order to estimate variances in this case we can calculate two 

matrices of residuals. 

(23)

(24)
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 Here  is the net sample variant of . It is not straightforward to 

generalise the model based robust covariance matrix above (12) to estimates 

based on (22). If we use  we do not take into account that the estimated 

population totals are uncertain. If we use  we do not take into account 

calibration towards the estimated totals. 

 In the case of a single y-variable, Särndal and Lundström (2005) have 

described a design based variance estimate which uses both types of residuals. 

Although, their residuals are calculated from weighted regressions based on 

the Þ nally calibrated weights instead of the design weights (then  in (16) 

vanish). When all population totals are available, 

ggggggg gggggggggggggggggg

 and the univariate 

variance estimate of Särndal and Lundström is very similar to estimates obtain 

by (12) and (16). 

 Their formula consists of two parts. The sampling variance component 

(using ) and the nonresponse variance component (using ). The latter 

part can be expressed as this sum over the response set: 

(25)

 were di are design weights and vi = wi /di. Here we cannot omit design 

weights by setting them to one. However, above we used  instead of design 

weights and we will also do this here. Then it is ensured that 

sssss ead o d

 in the 

case of no non-response. 

 We can obtain a multivariate generalization by 

(26)

 with F as deÞ ned in (12) and where  contain weights according 

to . With no non-response  and . In the special case 

where the gross sample is the population all relevant elements of  are one 

and 

g

 becomes equivalent to the covariance estimate in (12). In cases 

where the columns of W are equal, (26) is a natural generalization of (25) 

with  and . The tricky part is covariances between variables 

with different weights. Similar to the text in Section 4,  + 

 is used as a substitute for vi(vi - 1). Now, the difference 

between vi and (vi - 1) is substantial. 

 The present paper does not intend to generalize the sampling variance 

component in Särndal and Lundström (2005). Instead we will use the non-

response component (26) to adjust the estimates in (12) and (16) which is 

calculated from . Especially the adjusted variant of (12) can be expressed 

as 

(27)
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 The underlying idea is that the unadjusted estimate is similar to the estimate 

of Särndal and Lundström in the case were 

jjjj

. This means that the original 

estimate contains a non-response component based on , but this component 

should have been based on 

pppppppppppppppppp

 instead. The estimate in (16) can be adjusted the 

same way and we can then say that the Þ nal estimate is design based. 

THE R PACKAGE – THREE MAIN FUNCTIONS

 The methodology described above is implemented in the R package 

CalibrateSSB. The description below contains the most important input and 

output for three main functions in this package. The calculations can also be 

performed by one single function. See the package documentation for more 

details. 

 CalibrateSSB

 Input: 

   Gross sample data with speciÞ ed y-variables, the calibration 

model, population data or population totals, variables deÞ ning 

domains for calibration, speciÞ cation of external package, 

possible sampling weights. 

 Output: 

  Calibrated weights, residuals, leverages.

 The function computes calibrated weights. One alternative is to 

base all computations on the package ReGenesees (Zardetto, 2015). Then, 

unavailable population totals are not allowed and leverages are not computed. 

Weights (w) can alternatively be computed by the package survey (Lumley, 

2014) or according to (4) without any external package. The unavailable totals 

are estimated by the method of calibration from the gross sample as described 

in Section 8. The weights, , are also included in the output object together 

with two types of residuals and leverages according to (23) and (24). 

 WideFromCalibrate

 Input: 

   Output object from CalibrateSSB including the original y-data, 

variables deÞ ning the panel waves, sampling unit identiÞ er, 

variables that split the data into estimation domains, possible 

extra variables. 

 Output: 

  Reorganised data.
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 This function reorganises the data so that a matrix is created for 

each variable. The rows represent the sampling units (persons) and it is one 

column for each wave. Furthermore, the data may be split into sub-datasets. 

Possible extra variables can be included. I practice this can be used to include 

a clustering variable (families). 

 PanelEstimation

 Input: 

   Output object from WideFromCalibrate, possible speciÞ cation 

of numerator and denominator, matrix deÞ ning linear 

combinations, estimation type, leverage power, possible 

clustering variable. 

 Output: 

  Estimates and corresponding variances.

 This function performs all calculations separately within each 

estimation domain as speciÞ ed when running WideFromCalibrate. Initially 

this function calculates a covariance matrix according to the theory above. 

The estimation type parameter determines whether this is based on (9), (12), 

(12) without the last row, (16) or a cluster robust variant. 

 The residuals can be adjusted by leverages by using a nonzero 

leverage power, 1/2 when (13) and 1 when (14). When the input contains 

two types of residuals (caused by unavailable population totals), adjustment 

according to (27) is performed. When numerator and denominator are not 

speciÞ ed, linear combinations and corresponding variances are calculated 

directly according to (17) with M taken from input. When numerator and 

denominator are speciÞ ed an extra round of initial computations of ratios are 

performed. The covariance matrix for the ratios is calculated as described in 

Section 6. Additional functions to compute the linear combination matrix are 

supplied so that various changes and mean changes can be computed easily. 

 

SUMMARY

 CalibrateSSB is an R-package that handles repeated surveys with 

partially overlapping samples. Initially the samples are weighted by linear 

calibration using known or estimated population totals. A robust model 

based covariance matrix for all relevant estimated totals is calculated from 

the residuals according to the calibration model. Alternatively a design based 

covariance matrix is calculated in a very similar way. A cluster robust version is 

also possible. In the case of estimated populations totals the covariance matrix 
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is adjusted by utilizing the theory of Särndal and Lundström (2005). Variances 

of linear combinations (changes and averages) and ratios are calculated 

from this covariance matrix. The linear combinations and ratios can involve 

variables within and/or between sample waves. In summary, various estimates 

based on data from several waves are calculated with standard errors. 

References

 1.  Berger, Y. G. and Priam, R., 2016, “A simple variance estimator of change for rotating 

repeated surveys: an application to the European Union Statistics on Income and Living 

Conditions household surveys”, J. R. Statist. Soc. A, Vol. 179, Part 1, pp. 251-272. 

 2.  Cameron, A. C. and Miller, D. L.,  2015, “A Practitioner’s Guide to Cluster-Robust Infer-

ence, Journal of Human Resources”, Vol. 50, No. 2, pp. 317-373. 

 3.  Estevao, V. M. and Särndal, C.-E., 2002, “The Ten Cases of Auxiliary Information for 

Calibration in Two-Phase Sampling”, Journal of OfÞ cial Statistics, Vol. 18, No. 2, pp. 

233-255. 

 4.  Hagesæther, N. and Zhang, L.-C., 2007, “Om estimeringsusikkerhet og utvalgsplan 

i AKU. Notater2007/22, Statistics Norway”  (Norwegian only), https://www.ssb.no/a/

publikasjoner/pdf/notat_200722/notat_200722.pdf

 5.  Hamre, J. og Heldal, J., 2013, “Improved calculation and dissemination of coefÞ cients 

of variation in the Norwegian LFS”, Documents 46/2013, Statistics Norway. http://

www.ssb.no/arbeid-og-lonn/artikler-og-publikasjoner/_attachment/148090?_

ts=142476a8ad0

 6.  Kauermann, G. and Carroll, R . J., 2001, “A Note on the EfÞ ciency of Sandwich Cova-

riance Matrix Estimation”, Journal of the American Statistical Association, Vol. 96, No. 

456, pp. 1387-1396. 

 7.  Langsrud, Ø., 2016, “CalibrateSSB: Variance estimation for repeated surveys with 

partially overlapping samples”, R package intended to be published on CRAN. 

 8.  Lumley, T, 2014, “Survey: analysis of complex survey samples”, R package version 

3.30, CRAN. http://r-survey.r-forge.r-project.org/survey/

 9.  Osier, G., Berger, Y. G. and Goedemé, T., 2013, “Standard Error Estimation for the EU-

SILC Indicators of Poverty and Social Exclusion”, Eurostat Methodologies and Working 

Papers series. http://ec.europa.eu/eurostat/documents/3888793/5855973/KS-RA-

13-024-EN.PDF

 10.  Särndal, C.-E. and Lundström, S., 2005, Estimation in Surveys with Nonresponse, 

John Wiley and Sons, New York. 

 11.  Shao, J., 1993, “Linear Model Selection by Cross-Validation”, Journal of the American 

Statistical Association, Vol. 88, No. 422, pp. 486-494. 

 12.  Vaillant, R., Dorfman, A. H., and Royall, R. M. ,2000, Finite Population Sampling and 

Inference, a Prediction Approach. Wiley, New York. 

 13.  Zardetto, D., 2015, ReGenesees: “R Evolved Generalized Software for Sampling 

Estimates and Errors”, R package version 1.7, Istat. http://www.istat.it/en/tools/

methods-and-it-tools/processing-tools/regenesees


