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Abstract This paper presents a unified framework for

regression-based statistical disclosure control for micro-

data. A basic method, known as information preserving

statistical obfuscation (IPSO), produces synthetic data

that preserve variances, covariances and fitted values.

The data are then generated conditionally according to

the multivariate normal distribution. Generalizations of

the IPSO method are described in the literature and

these methods aim to generate data more similar to the

original data. This paper describes these methods in a

concise and interpretable way, which is close to efficient

implementation. Decomposing the residual data into or-

thogonal scores and corresponding loadings is an es-

sential part of the framework. Both QR decomposition

(Gram Schmidt orthogonalization) and singular value

decomposition (principal components) may be used.

Within this framework, new and generalized methods

are presented. In particular, a method is described by

means of which the correlations to the original principal

component scores can be controlled exactly. It is shown

that a suggested method of random orthogonal matrix

masking (ROMM) can be implemented without gener-

ating an orthogonal matrix. Generalized methodology

for hierarchical categories is presented within the con-

text of microaggregation. Some information can then be

preserved at the lowest level and more information at

higher levels. The presented methodology is also appli-

cable to tabular data. One possibility is to replace the

content of primary and secondary suppressed cells with

generated values. It is proposed replacing suppressed
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cell frequencies with decimal numbers and it is argued

that this can be a useful method.

Keywords microdata anonymization · synthetic

data · microaggregation · hybrid microdata · cell

suppression · official statistics

1 Introduction

Microdata are data sets in which each record contains

several variables concerning a person or an organiza-

tion. Usually a microdata data set cannot be made

publicly available for reasons of confidentiality. Meth-

ods for statistical disclosure control of microdata aim to

create protected data that can be released (Hundepool

et al. 2012). Two main categories are non-perturbative

methods (information reduction, coarsening data) and

perturbative methods (changing data). The latter cat-

egory is often divided into perturbative masking meth-

ods and synthetic data generators. In addition, hybrid

data generators combine original and synthetic data.

Synthetic data are data randomly drawn from a statis-

tical model, often under constraints such that certain

statistics or internal relationships of the original data

set are preserved.

A broad class of masking methods falls into the

category of matrix masking (Duncan and Pearson

1991), which consists of replacing the original data ma-

trix, Y , with M1YM2 + M3. Then, M1 is a record-

transforming mask, M2 is a variable-transforming

mask, and M3 is a displacing mask. A specific masking

method is noise addition whereM1 andM2 are identity

matrices andM3 contains randomly generated data. As

follows below, when the M-matrices are allowed to be

stochastically generated, it becomes problematic to dis-
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tinguish between masking methods and synthetic data

generators.

Given a parametric model, making statistical infer-

ence from synthetic data the same way as from original

data requires that sufficient statistics for the joint dis-

tribution of all variables in the data are preserved. This

can be achieved by drawing data jointly from the con-

ditional distribution. In general, this is difficult, and

data may instead be drawn with fixed values of uncer-

tain parameters. The distributional properties are then

violated and variances in particular will be underesti-

mated.

The problems just described are commonly han-

dled by using multiple imputation with fully conditional

specifications (Loong and Rubin 2017; Drechsler 2011;

Reiter and Raghunathan 2007). Multiple imputation

makes it possible to correct for the additional variance

from imputation. The use of fully conditional specifi-

cations is a way of overcoming the problems of draw-

ing from a multivariate distribution. Then, the assumed

joint distribution is specified indirectly. The United

States Census Bureau releases synthetic data products

prepared by using multiple imputation (Benedetto et al.

2013; Jarmin et al. 2014). The conditional specifica-

tions of continuous variables involve normality and lin-

ear regression models. These specifications are consis-

tent with the properties of a joint multivariate normal

distribution. Sometimes the variables are transformed

so that they have an approximately normal distribu-

tion.

When all the variables to be synthesized are contin-

uous and assuming multivariate normality and a lin-

ear regression model, it is possible to generate syn-
thetic data in a way that exactly preserves the distri-

butional properties. Then there is no need for multi-

ple imputation. Such a basic regression-based synthetic

data generator is described by Burridge (2003) as infor-

mation preserving statistical obfuscation (IPSO). The

generated data then constitute a matrix of independent

samples from the multivariate normal distribution con-

ditioned on parameter estimates. An equivalent data

generation method was described by Langsrud (2005)

within the area of Monte Carlo testing. The simulation-

based tests were referred to as rotation tests since the

generated data can be interpreted as randomly rotated

data. This means that the data can be generated as

matrix masking with M1 as a random rotation ma-

trix and with M2 being identity and M3 being zero.

Strictly speaking, M1 is then a uniformly (according to

the Haar measure) distributed random orthogonal ma-

trix restricted to preserving fitted values. Given that

M1 is a restricted orthogonal matrix, this ensures that

the sample covariance matrix is preserved. The specific

uniform distribution ensures that original and gener-

ated data are independent. Such simulation methodol-

ogy can be traced back to Wedderburn (1975) in the

only intercept case where fitted values are the sample

means. In this case Ting et al. (2008) described gen-

eralized methodology called random orthogonal matrix

masking (ROMM). Their generalization allows M1 to

be generated in other ways so that the similarity to the

original data can be controlled.

Authors of popular software tools for microdata pro-

tection emphasize the importance of low information

loss or high data utility provided that the disclosure

risk is acceptable (Hundepool et al. 2014; Templ et al.

2015). Therefore, it is beneficial to use information pre-

serving methods that generate data more similar to the

original data than the IPSO method. In addition to

ROMM, such methods are described in Muralidhar and

Sarathy (2008) and in Domingo-Ferrer and Gonzalez-

Nicolas (2010). In these papers the distributional as-

sumptions are discussed in detail. The IPSO method

is made to preserve the sufficient statistics under mul-

tivariate normality. Even if the original data are not

multivariate normal, the results of common statistical

analyses relying on (multivariate) normality will be the

same regardless of whether the original or the IPSO

generated data are used. The results of analyses not

relying on normality will, however, be different. Gener-

ating data more similar to the original data also means

that the results of any analysis will tend to be more

similar to the results based on the original data. The

empirical distribution of the original data will also be

much better approximated.

The present paper describes several information pre-

serving methods under a common matrix decomposi-

tion framework. The aim is twofold. First, to describe

existing regression-based methods in a concise and in-

terpretable way, which is close to efficient implemen-

tation. Second, to develop new techniques and gener-

alized methodology within the framework. All in all,

an important class of tools within the area of statisti-

cal disclosure control is described. Disclosure risk and

information loss are not investigated in this paper, but

both are important when the methodology is applied in

practise. We believe that the methodology is well suited

to controlling these properties, since the flexibility en-

ables targeted changes.

A requirement that fitted values must be preserved

means that we can only change the residual data. In

Section 2 the residual data are decomposed into scores

and loading using an optional decomposition method

(QR or SVD/PCA). Generating data with preserved

information can be done by generating new scores and

Section 2 formulates an algorithm for the IPSO method.
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Section 3 considers the addition of synthetic val-

ues to preliminary residuals from arbitrarily predefined

data. According to Muralidhar and Sarathy (2008) in

particular, it is possible at the variable level to select

the degree of similarity to the original data. We will

also suggest another and related method that makes it

possible to control exactly the correlation between gen-

erated and original scores. This method can be viewed

as a modified and extended variant of the principal com-

ponent approach in Calvino (2017).

Section 4 describes an approach in which the IPSO

algorithm is modified by using scores from arbitrary

residual data. In Section 5 we look into the topic of

ROMM and discuss how other methods can be viewed

within this context. We show that simulations accord-

ing to Section 4 can be an efficient and equivalent alter-

native to doing computations via an orthogonal matrix.

Section 6 considers the generation of microdata

within the context of microaggregation. This means

that the IPSO method is applied to several clus-

ters/categories as described by Domingo-Ferrer and

Gonzalez-Nicolas (2010). New generalized methodology

for hierarchical categories is presented. Some informa-

tion can then be preserved at the lowest level and more

information at higher levels.

The methodology is also directly applicable to tab-

ular data obtained by crossing several categorical vari-

ables. Statistical disclosure control for tabular data is

an important field and several methods exist (Hunde-

pool et al. 2012; Salazar-Gonzalez 2008). In Section 7

we assume that a table suppression method has been

applied. It is then possible to replace the content of

suppressed (primary and secondary) cells by generated/

synthetic values. In particular, it is suggested replacing

suppressed cell frequencies with decimal numbers and

it is argued that this can be a useful method.

2 Information preserving statistical obfuscation

(IPSO)

Assume a multivariate multiple regression model de-

fined by

Y = XB +E (1)

where Y is a n × k matrix containing n observations

of k confidential variables and where the n×m matrix

X contains corresponding non-confidential variables in-

cluding a constant term (column of ones). The standard

assumptions are that the rows of E are independent

multivariate normal with zero means and a common

covariance matrix.

We now want to generate, Y ∗, a synthetic variant

of Y , so that the fitted values and the sample covari-

ance matrix are preserved. Equivalently, we impose the

restrictions that Y ∗
T
Y ∗ = Y TY and XTY ∗ = XTY .

The synthetic data can be drawn from the multivari-

ate regression model conditioned on the restrictions.

Burridge (2003) described such simulations as informa-

tion preserving statistical obfuscation. Langsrud (2005)

considered the same problem within the area of Monte

Carlo testing and the simulation-based tests were re-

ferred to as rotation tests. He described an algorithm

based on QR decomposition which is very similar to

the algorithm in Burridge (2003). Here we formulate a

similar algorithm using a general decomposition:

Y = Ŷ + Ê = Ŷ + TW (2)

Ys = Ŷs + Ês = Ŷs + T ∗Ws (3)

Y ∗ = Ŷ + Ê
∗

= Ŷ + T ∗W (4)

The data is split into fitted values and residuals.

Some method is used to decompose the residuals as

a matrix, T , of orthogonal scores and a matrix, W ,

of loadings (2). A simulated data matrix, Ys, whose

elements are independent standard normal deviates, is

decomposed similarly (3) to obtain the matrix T ∗ of

synthetic scores orthogonal to X. The synthetic data

is obtained by replacing T by T ∗ (4).

The fitted values are computed according to the re-

gression model (1). We allow collinear columns in X.

The fitted values are uniquely defined independently of

how this problem is handled. Two obvious candidates

for the decomposition method are QR decomposition

(Gram Schmidt orthogonalization) and singular value

decomposition (SVD) (Strang 1988). In the present pa-

per we refer to a generalized QR decomposition as de-

scribed in Appendix 1 (T =Q and W =R). This de-

composition is unique and dependent columns are al-

lowed. When using SVD as dealt with in Appendix 2, we

are essentially performing principal components analy-

sis (PCA) (Jolliffe 2002), but the scores are scaled dif-

ferently (T =U and W =ΛV T ).

The properties of the synthetic data are indepen-

dent of the choice of a decomposition method, but this

choice is important in some of the modifications below.

Note that Burridge (2003) formulated the algorithm us-

ing the Choleski decomposition (see Appendix 1). Then,

W is calculated from the covariance matrix estimate

and Ê
∗

is found as ÊsW
−1
s W . In the only intercept

case, Mateo-Sanz et al. (2004) formulated another algo-

rithm whereW is calculated by Choleski decomposition

and T ∗ is generated by an orthogonalization algorithm.

Note that in the special case of a single confidential

variable (k = 1), then T is simply the vector of residuals

scaled to unit length and W is the scale factor (scalar).

Thus, Y ∗ is obtained by replacing the original residu-

als by residuals obtained from simulated data, scaled
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so that the sum of squared residuals is preserved. This

yields a simplified procedure compared to the one re-

cently published in Klein and Datta (2018).

A logical question is: Why not simply release the

regression coefficients and the covariance matrix? Since

X is released there is no more information in the IPSO-

generated data than in these estimates. A good rea-

son for releasing synthetic data is that this is a user-

friendly product. Most users would prefer a data set

which can be analyzed by ordinary tools. Sophisticated

users who would prefer estimates instead can easily cal-

culate them. Anyway, this question is relevant for IPSO,

but not for the other methods described below.

3 Arbitrary residual data with a synthetic

addition

Instead of drawing synthetic data directly from the

model we may start with an arbitrary data set Yg and

add a synthetic matrix to preserve the required infor-

mation. However, since we want to preserve the fitted

values we will only use the residuals from the arbitrary

data set. Then, we generate synthetic data according

to

Yg = Ŷg + Êg (5)

Y ∗ = Ŷ + Êg + T ∗C (6)

Here we make use of a synthetic T ∗ similar to the one

generated in (3). In this case we will generate T ∗ in

a manner that it is orthogonal to both X and Yg. In

practice the QR decomposition of a composite matrix

(27) may be used. The matrix C is calculated from an

equation (see below), but a solution may not exist.

With reference to the decomposition of Y (2) two

important special cases of this approach can be ex-

pressed as

Y ∗ = Ŷ + ÊD + T ∗C (7)

Y ∗ = Ŷ + TDW + T ∗
√
I −D2W (8)

where D is a diagonal matrix whose i’th diagonal ele-

ment (di ∈ [0, 1]) controls how much information from

the i’th column of Ê (7) or T (8) is re-used. The first

method (7) was introduced by Muralidhar and Sarathy

(2008) and is described in a different way in their pa-

per. Equation (8) is written without C since, in that

case, the expression for C is known. The square root of

a diagonal matrix means that we take the square root

of each diagonal element. Hence, we calculate new unit

score vectors as diTi +
√

1− d2iT ∗i where Ti denotes the

i’th column of T . With a constant term included in

X, it is easy to show that di is a correlation coefficient

in both equations. That is, in (7), for each variable, we

control exactly the correlation between the original and

the generated residuals. And in (8) we control exactly

the correlation between the original score vector and

the score vector of the generated data. Note that if all

diagonal elements of D are set to to be equal, (7) and

(8) become equivalent.

Using (8) in the cases where all di’s are either zero

or one, we are keeping some score vectors and simu-

lating others. If in addition the decomposition method

used in (2) is SVD, the method is very similar to the

one described in Calvino (2017), where some PCA score

vectors are swapped (randomly permuted). Using swap-

ping instead of the above simulation leads to an approx-

imate instead of an exact preservation of the covariance

matrix. Our approach is also more general than the one

in Calvino (2017) since we allow regression variables be-

yond the constant term. Thus, within our framework,

PCA means PCA of residuals. In any case, we preserve

regression fits and preserving some PCA scores is one

way of generating data that is even more similar to the

original data.

Working with PCA score vectors can be very use-

ful when there are many highly correlated variables,

especially when a few components account for most of

the variability in the data. One may want to rotate the

components for better interpretability, however. Under-

standing the components is of particular interest when

some variables are considered more sensitive than oth-

ers. Then, the correlations (di’s) can be specified ac-

cordingly. Possible rotation of components fits into the

general framework of this paper. In fact, going from

PCA to QR is a rotation. If the aim is to have good con-

trol of the relationship to a few important y-variables,

the QR approach would be easier. One may choose the

column ordering of the y-variables to correspond to the

importance. Then d1 is the correlation between the orig-

inal and the generated residuals for the first y-variable,

similar to (7). Also note that, when using QR, setting

some of the first di’s equal to one is equivalent to reclas-

sifying those y-variables as x-variables. In general, the

method based on controlling components (8) is more

reliable than (7) because it avoids the problem of a

possible nonexistent C.

To discuss the calculation of C in general we will

introduce a scalar parameter α and we re-write equation

(6) as

Y ∗ = Ŷ + αÊg + T ∗C (9)

The matrix C can now be found from the equation

CTC = Ê
T
Ê − α2Ê

T

g Êg (10)

and the Cholesky decomposition may be used to com-

pute C when possible. An alternative is to find C via
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the eigen decomposition (see Appendix 2). But a so-

lution may not exist since negative eigenvalues of the

computed right side can occur (not positive definite).

However, we will present here a way of comput-

ing the largest α that makes the equation solvable. By

manipulating the characteristic eigenvalue equation it

turns out that the limit is found as the square root of

the smallest eigenvalue of Ê
T
Ê(Ê

T

g Êg)−1. A modifica-

tion is needed when (Ê
T

g Êg) is not invertible. One pos-

sibility is to find the limit as the square root of the in-

verse of the largest eigenvalue of (Ê
T
Ê)−1Ê

T

g Êg. The

calculation of the limit can be useful in combination

with the method (7) originally described by Muralid-

har and Sarathy (2008). In practice, one may choose

the limit if α = 1 cannot be chosen. Using α < 1 means

that the initial residual data are downscaled. In (7) this

means that all the required correlations are multiplied

by α and that the similarity to the original data is not

as high as expected.

4 Using scores from arbitrary residual data

To generate Y ∗ in a way that preserves the information

without considering its distributional properties, Ys (3)

can be replaced by anything as long as the residual data

have the desired dimension. Necessary scores can then

be computed. Using an arbitrary data set Yg, synthetic

data can be generated by

Yg = Ŷg + Êg = Ŷg + T gWg (11)

Y ∗ = Ŷ + T gW (12)

with W as above (2).

A possible application is when Yg is a preliminary

data set in some sense. In particular, the methodol-

ogy can be used in combination with another method

for anonymization of microdata. If the result of such a

method (Yg) preserves the information approximately,

the method here can be used as a correction to achieve

exactness (Y ∗). In such cases one would expect Y ∗ to

be close to Yg. This is the case when QR is used as

the decomposition method in (2), but not necessarily

so when SVD is used. The problem is that SVD is un-

stable when the difference between two singular values

is small. Therefore, QR decomposition is preferable.

Another possible application is to combine original

and randomly generated data and one may generate Yg

by

Yg = Y D + Ys (I −D) (13)

using a diagonal matrix, D, as earlier. To make the

parameters inD interpretable in this case, the variables

in the randomly generated data, Ys, should be scaled to

have variances similar to those of the original variables.

When all diagonal elements are close to one this means

that Yg is close to Y . Again, it is important to use QR

decomposition to avoid instability.

Since the aim is to generate scores, Yg may be cre-

ated by using original scores instead of original data.

This the case for the ROMM method described below

in (17).

5 Random orthogonal matrix masking

(ROMM)

Data generated according to ROMM (Ting et al. 2008)

can be expressed as

Y ∗ = M∗Y (14)

where M∗ is a randomly generated orthogonal ma-

trix. As described by Langsrud (2005) the basic IPSO

method of Section 2 can equivalently be formulated as

such a ROMM method with

M∗ = UXU
T
X +UEP

∗UT
E (15)

where the columns of UX form an orthogonal basis for

the column space of X and UE form an orthonormal

basis for the complement so that [UX UE ] is an or-

thogonal matrix. The matrix P ∗ is drawn as a uni-

formly distributed orthogonal matrix. Ting et al. (2008)

stated that all methods that preserve means and the co-

variance matrix are special cases of ROMM. This also

holds beyond the only intercept case. Regardless of the

method, as long as the generated data preserve informa-

tion as above, we can always write Y ∗ = Ŷ + T ∗W =

M∗Y where

M∗ = [UX T ∗ U∗A ] [UX T UA ]
T

(16)

Here, UA and U∗A are additional orthogonal columns

constructed so that the composite matrices are square.

A ROMM approach to generalizing the IPSO

method can be expressed by (15) and by letting P ∗

be the result of orthogonalizing I + λH where H is

a matrix filled with standard normal deviates. Since

we are referring to a regression model, this is an ex-

tended version of the method (only intercept) originally

proposed in Ting et al. (2008). However, in that pa-

per, such an extension was indicated in the appendix.

The QR decomposition will be used to orthogonalize

I+λH, and SVD will not work. The identity matrix is

obtained when λ = 0 and the original data are then un-

changed. An ordinary uniformly distributed orthogonal

matrix is obtained when λ→∞ and thus we have the

IPSO method. Since QR decomposition is sequential,

the diagonal elements of P ∗ will have a decreasing ten-

dency to approach one (sequentially phenomenon). This
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is probably not an intention of the method. This means

that the choice of the basis, UE , matters. To avoid this

phenomenon, a possibility is to generate the basis ran-

domly. To discuss this further we look at the special

case without a constant term or any other x-variables.

We also assume that T has full rank (or is temporary

extended to have full rank). Now it is possible to use

P ∗ directly as M∗ so that T ∗ = P ∗T . Thus, the above

sequentially phenomenon means that the similarity to

the original data is highest for the first observation. An-

other possibility is to make use of (15) without UX and

with UE = T . Then it follows that T ∗ = TP ∗ and now

the sequentially phenomenon means that the similarity

to the original data is highest for the first score vector.

Since T is orthogonal it turns out that we can perform

the QR needed to create P ∗ from I + λH after left

multiplication with T . In addition we have that TH

is distributed exactly like H. That is, we can find T ∗

by orthogonalizing T + λH. If we only need the first

columns of T ∗ (others were included temporarily), we

can simplify the method, without changing the result,

by only generating as many columns of H as needed.

The discussion when we have x-variables is simi-

lar, but a little trickier. We need to “work” in the

correct subspace. One possibility is to generate H so

that it is orthogonal to X. This can be done by left-

multiplying a preliminarily generated matrix by UE .

An easier and equivalent approach is to generate H

straightforwardly and instead enforce orthogonality to

X afterwards. Thus we obtain a method that is a spe-

cial case of the one in Section 4 with

Yg = T + λH (17)

where H is a matrix filled with standard normal de-

viates. This method is more efficient than generating

the orthogonal matrix, M∗. Especially in cases with a

large number of observations, ROMM will be very time

and memory consuming. Using (11), (12) and (17) now

solves this problem.

Note that Ting et al. (2008) have described another

ROMM approach that makes use of special block diag-

onal matrices. We will not discuss this topic in detail.

But when IPSO is performed separately within clus-

ters, as described in the section below, this can be in-

terpreted according to (14) where M∗ is a block diag-

onal matrix where the blocks are independent random

orthogonal matrices.

6 Generalized microaggregation

A particular method for statistical disclosure control

is microaggregation (Domingo-Ferrer and Mateo-Sanz

2002; Templ et al. 2015). Then, a method is first used to

group the records into clusters. The aggregates within

these clusters are released instead of the individual

record values. Equivalently, the microdata records can

be replaces by averages within the clusters.

The clustered data can also be the starting point for

the IPSO method in Section 2 and one may proceed in

two ways:

MHa: Run the IPSO procedure separately within each

cluster.

MHb: Add dummy variables toX corresponding to the

clustering before running IPSO.

The first method is described by Domingo-Ferrer

and Gonzalez-Nicolas (2010) as a hybrid method that

combines microaggregation with generation of synthetic

data. The notation, MHa, is chosen since this method

is known as MicroHybrid. The alternative method in-

troduced here, MHb, is also useful in combination with

microaggregation. In both methods sums within clus-

ters, the overall fitted values and the overall sample

covariance matrix are preserved. In MHa the fits and

the covariance matrix estimates within each cluster are

also preserved. An extended variant of MHb is to cross

all the original x-variables with the clusters. Then all

the fits will be preserved within clusters, but not the

covariance matrix estimates.

To discuss this more generally we will present an

algorithm in which some regression variables are crossed

with clusters and some are not. For this purpose we

assume two data matrices of x-variables, XA and XB .

The matrixXA consists of all the variables to be crossed

with clusters (including the intercept). As before, we let

X denote the full regression model matrix. We will now

extend and partition this matrix as

Xext = [X X3 ] = [X1 X2 X3 ] (18)

– X1 is the regression variable matrix obtained by

crossing XA with clusters.

– X2 contains XB adjusted for (made orthogonal to)

X1.

– X3 contains the regression variable matrix obtained

by crossingXB with clusters followed by adjustment

for X1 and X2.

Fitted values obtained by regressing Y onto X and

the corresponding residuals are two orthogonal parts of

Y . According to (18) we also divide each of these parts

into two orthogonal parts.

Y = Ŷ + Ê =
(
Ŷ1 + Ŷ2

)
+
(
Ê3 + Ê4

)
(19)

Here Ŷ1, Ŷ2 and Ê3 are the regression fits obtained by

using X1, X2 and X3, respectively.

Performing computations via X will be very ineffi-

cient when we have several variables, observations and
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clusters. We also want to (partly) preserve the covari-

ance matrix within clusters. Therefore some of the com-

putations will be performed within clusters and in the

following we will call this the local level. As opposed to

globally, locally means that we perform the computa-

tions by looping through all the clusters. In particular,

we can compute the fitted values Ŷ1 locally and then

we can use the original matrix XA and will not need

X1. Above, X2 was made orthogonal to X1. In this

case it does not matter whether we do the orthogonal-

ization globally or locally. In the algorithm below we

perform this computation locally using XA instead of

X1. As mentioned above, the regression fits obtained

by using X2 globally are contained in Ŷ2. If we instead

use X2 to compute regression fits locally, the result is

Ŷ2ext = Ŷ2+Ê3. This means that we have sketched how

to calculate the four parts in (19). In order to compute

synthetic data this will be combined with computations

on simulated data. We can use the following algorithm

for all the computations:

1. Globally simulate a data matrix Ys with the same

dimension as Y .

2. Locally calculate Ŷ1, Ŷs1 and X̂B by regressing Y ,

Ys and XB onto XA.

3. Locally calculate X2 = XB − X̂B .

4. Locally calculate Ŷ2ext and Ŷs2ext by regressing Y

and Ys onto X2.

5. Locally calculate Ê4 = Y − Ŷ1 − Ŷ2ext and Ês4 =

Ys − Ŷs1 − Ŷs2ext.

6. Locally decompose Ê4 = T 4W4 and Ês4 = Ts4Ws4

and calculate Ê
∗
4 = Ts4W4.

7. Globally calculate Ŷ2 and Ŷs2 by regressing Y and

Ys onto X2.

8. Globally calculate Ê3 = Ŷ2ext − Ŷ2 and Ês3 =

Ŷs2ext − Ŷs2.

9. Globally decompose Ê3 = T 3W3 and Ês3 =

Ts3Ws3 and calculate Ê
∗
3 = Ts3W3.

10. Globally calculate Y ∗ = Ŷ1 + Ŷ2 + Ê
∗
3 + Ê

∗
4.

In addition to this main algorithm we will discuss

five possible modifications.

a) Drop item 6 and replace item 9 by: Locally decom-

pose Ê3 + Ê4 = TW and let Ê
∗
4 = Ts4W and set

Ê
∗
3 = 0.

b) Drop item 6 and instead, after item 9: Find locally

Ê
∗
4 = Ts4C where the matrix C satisfies CTC =

Ê
T

4 Ê4 + Ê
T

3 Ê3 − Ê
∗T
3 Ê

∗
3. This is similar to (6).

c) This is a generalization with a) and b) as special

cases. Drop item 6 and modify item 9 by Ê
∗
3 =

αTs3W3 and find Ê
∗
4 as in b). This is similar to (9).

d) If we have groups of clusters, we may want some of

the variables in XB to be crossed with these groups.

At the beginning of the algorithm we then replace

XB with a model matrix that contains such cross-

ing.

e) If the clusters are partitioned into smaller pieces, we

may want some of the variables in XA (maybe only

the constant term) to be crossed with these pieces.

Before item 2 in the algorithm we will then locally

replaceXA with a model matrix that contains cross-

ing with pieces that are present in the actual cluster.

The main algorithm preserves the fitted values (or

regression parameters). However, the covariance matrix

is partitioned into two terms, Ê
T

3 Ê3 + Ê
T

4 Ê4. The last

term is preserved at the local level, but the first term

is only preserved at the global level. In the special case

where XB is empty, the main algorithm simplifies to

MHa and Ê3 vanishes.

When XB is not empty, we can use modification a),

b) or c) to preserve the covariance matrix at the local

level. In a) we have a side effect regarding the parame-

ter estimates corresponding to XB . They are preserved

globally as required, but within each cluster these pa-

rameter estimates have become identical to the global

estimate. This may or may not be a required property.

Modification b) avoids this property. With many vari-

ables in XB and/or few observations in each cluster,

modification a) or b) may not be possible. An extra

problem in b) is that the matrix C may not be found.

In cases where a) is possible but not b) one may choose

c). Within each cluster it is possible, using the method

in Section 3, to compute the largest α that makes it

possible to find C. The final α can be chosen as the

smallest of all these values.

Using modification d) we are only changing the in-

put. This method can be a compromise if one is uncer-

tain whether a variable should belong to XA or XB .

Modification e) is especially useful if we want to pre-

serve means in groups that are too small to be used as

clusters. In practice modification e) may also be used

in the special case of a single cluster. Then XB is not

needed and the method simplifies to MHb. The covari-

ance matrix is only preserved at the top level.

Modifications d) and e) can be combined and they

can also be combined with a), b) or c). All in all, the

main algorithm with the possibility of the modifications

is a flexible approach for generating hybrid microdata

within the context of microaggregation.

We will now exemplify the methodology by dis-

cussing scenarios where the general methodology may

be used in different ways, including the five modifica-

tions. We assume business data where Y consists of

sensitive continuous economic variables such as employ-

ment expenses and taxes. We have several categorical
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non-sensitive variables such as region, industry group

and employment size classes. We will refer to the lat-

ter categorical variable as KESC . The data can be sub-

jected to microaggregation with clusters created from

the non-sensitive variables. We assume that this is done

in such a way that KESC is unique within each cluster.

Synthetic data can be generated by the IPSO method

in two ways, MHa and MHb, as described at the be-

ginning of this section. In both cases, XB is empty.

When MHa is used, XA contains the intercept. The

other variant, MHb, means that input to the method is

a single cluster and that XA contains dummy variables

corresponding to the microaggregation clustering. The

choice between MHa and MHb is a question of whether

one wants to reproduce the cluster specific covariances

or not. If the variability in some clusters is very low,

the synthetic data will be close to the original data in

those clusters when MHa is used. When MHa is used, a

very high correlation between some sensitive variables

in some clusters will also be reproduced. To avoid this

property, method MHb may be chosen instead.

Now assume that the exact number of employees,

NESC , is a non-sensitive variable. Then, one objective

might be to preserve the correlations (or equivalently

regression fits) between NESC and the sensitive vari-

ables. This could be done by including NESC in XA

even though KESC is already a variable used within the

microaggregation clustering. This way of doing it is still

a possibility within MHa since IPSO, in general, can

include x-variables (beyond the intercept). This means

that the correlations to NESC will be preserved within

each cluster. If one company has a value of NESC very

different from the others in a cluster, the sensitive val-

ues of this company will influence the correlations a lot

and another method may be preferred. One possibil-

ity is to include NESC in XB instead. The correlations

between NESC and the sensitive variables will be pre-

served, but not within each cluster.

A possibility between including NESC in XA and

including NESC in XB is to preserve the correlations

within each employment size class (each KESC cate-

gory). Since the employment size classes are groups of

clusters, this mean that we use modification d). A re-

lated method is to use the employment size classes as

the clusters within the method and include NESC in

XA. Again the correlations are preserved within the

employment size classes. This time covariances of the

sensitive variables are preserved within the employment

size classes, but not within the original microaggrega-

tion clustering. We can still preserve the means within

the microaggregation clusters by using modification e).

This means that the original microaggregation clusters

are cluster pieces within the description of e).

Modifications a), b) and c) are relevant when XB

is in use. This was the case in the example above when

NESC was included directly in XB and when modifica-

tion d) was in use. In these cases the standard method

does not preserve covariances exactly within each clus-

ter (as required), but this can be achieved by means of

a), b) or c). In the case of a) this means that the rela-

tions, in terms of regression coefficients, between NESC

and the sensitive variables are made identical in each

cluster. The data may seem strange, because identi-

cal regression coefficients will never occur in real data.

Therefore, the method is probably not preferable and

one would prefer b). Since relations are preserved at the

global level, there is some information about this in each

cluster. When b) is used one can imagine that someone

may misunderstand this and may use the data to anal-

yse how relationships differ between clusters. Method

a) will prevent someone publishing misleading results

about differences. Although, method b) is the prefer-

able choice. But method b) may not be possible and c)

is chosen instead.

At the end of this section, we note that an alterna-

tive approach is to set all the residuals to zero. If we

consider only intercepts in XA and XB we obtain ordi-

nary microaggregation. The original values are replaced

by means within clusters. Beyond the only intercept

cases, we obtain a form of generalized microaggrega-

tion which, in some cases, can be a useful alternative

to ordinary microaggregation. Based on the above ex-

emplification one could imagine including NESC in XA

or XB . One reason could be as follows. Suppose many

users always divide all numbers by NESC to obtain per

employee data. From their perspective it would be bet-

ter to divide all data by NESC before microaggrega-
tion so that means per employee are preserved within

clusters. Producing two data sets is not an alternative,

but including NESC in the method may be a solution.

Means per employee will be closer to the truth at the

same time as ordinary means are preserved.

7 Suppressed tabular data

It is possible to combine the IPSO methodology in

Section 2 with statistical disclosure control for tabular

data. As described in Section 6, X may be composed

of dummy variables corresponding to a categorical vari-

able. Sums within the categories will then be preserved.

Instead of just a single categorical variable we may have

several variables, which can be used to tabulate the

data in various ways. When playing around with which

dummy variables are to be included inX, one is playing

around with which sums are to be preserved. Thus, we

can include in X only those variables that correspond
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Table 1 The example frequency table where cells to be sup-
pressed are marked with *.

col1 col2 col3 col4 Total

row1 3* 11* 32 30 76
row2 1* 9* 13* 8 31
row3 12 22 2* 2* 38
row4 18* 19 16 3* 56
Total 34 61 63 43 201

to cells that are found to be safe by means of a cell

suppression method.

Instead of using microdata as a starting point we

can use the sums obtained by crossing all the categori-

cal variables (cover table). This often means that most

of the input data are preserved and only some new data

are generated (the suppressed cells). In the following,

we apply the methodology to cell frequencies as a y-

variable. Even if all the original values are counts, we

will generate synthetic values that are not whole num-

bers. As will be discussed, this can be considered as a

nice property.

An example of a frequency table is given in Table 1.

We assume that values below 4 cannot be published.

This means that five cells in the table are primarily

suppressed. To prevent the possibility of these values

being calculated from other cell values, four additional

cells are secondarily suppressed. These additional cells

are found using cell suppression methodology. Here we

have 16 inner cell frequencies (totals excluded) and 16

publishable cell frequencies (suppressed cells excluded).

Generally, we let Y be n× k consisting of all the n

inner multivariate cell elements in a cover table. Fur-

thermore we let Z be m × k consisting all the m mul-

tivariate elements of the publishable cells.

We focus in particular on the univariate special case

(k = 1) where the values are frequencies. In Table 1 we

have n = m = 16.

Obviously Z can be calculated from Y and this can

be done via a n×m dummy matrix X:

Z = XTY (20)

We have one column in X for each publishable cell.

Each publishable cell is either an inner cell or a sum of

several inner cells. In the first case this means that the

corresponding column of X has only one element that

is one (others are zero). By regressing Y onto X we

can calculate fitted values by

Ŷ = X
(
XTX

)†
XTY = X†

T
XTY = X†

T
Z (21)

Since the columns of X are collinear we use the Moore-

Penrose generalized inverse here (see Appendix 2). It is

clear that the fitted values can be calculated directly

Table 2 The suppressed values of the example frequency ta-
ble and corresponding generated values.

(row,col) Y Y ∗ Ŷ Ŷmod4 Ŷmod10

(2,1) 1 11.1562 4.5217 0.8696 4.0870
(3,3) 2 9.3549 6.6957 1.8261 2.7826
(3,4) 2 -5.3549 -2.6957 2.1739 1.2174
(1,1) 3 0.1986 4.1739 2.9565 0.6957
(4,4) 3 10.3549 7.6957 2.8261 3.7826
(2,2) 9 6.1986 10.1739 8.9565 6.6957
(1,2) 11 13.8014 9.8261 11.0435 13.3043
(2,3) 13 5.6451 8.3043 13.1739 12.2174
(4,1) 18 10.6451 13.3043 18.1739 17.2174

from the published cell values. We also have that Z is

preserved in the sense that Z = XT Ŷ . Many elements

of Y are also elements of Z and they are reproduced

exactly in Ŷ . Elements of Y that are suppressed are

replaced in Ŷ by estimates computed from the pub-

lishable cells. Estimates of possible suppressed cells not

included in Y can be calculated from Ŷ . To be more

specific, we extend (20) to all elements and not only

the publishable ones and let ZAll = XT
AllY . Now we

can compute corresponding estimates by

ẐAll = XT
AllŶ (22)

Even though the starting point is different from ordi-

nary regression, synthetic data can be generated by the

same method. The IPSO method in Section 2 preserves

XTY and Y TY . We can generate synthetic residuals,

Ê
∗
, to obtain Y ∗ = Ŷ +Ê

∗
. Then the synthetic variant

of ZAll is

Z∗All = XT
AllY

∗ (23)

It is worth noting that

– The method can be simplified by working with re-

duced versions of Y and X. Rows corresponding to

publishable cells can be removed and then redun-

dant columns of X can also be removed.

– If preserving the covariance matrix is not a require-

ment, the fitted values (Ŷ and ẐAll) can be an al-

ternative to synthetic values.

Now we will look at the example in Table 1. All the

suppressed cells are inner cells and therefore, when con-

sidering generated values, we can refer to Ŷ and Y ∗.

These values are shown in Table 2. The underlying Ê
∗

was generated in the ordinary way.

When variance is not important, Ŷ , may be used.

However, these values are quite far from the true values.

One may wish for values that are closer to the truth and

still safe. One possibility is to do the calculations after

a modulo operation. With 10 as the divisor, this means

that we only consider the last digit of the suppressed

values as unsafe. In our example, this means that we
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Table 3 The example frequency table with decimal numbers
in place of suppressed values.

col1 col2 col3 col4 Total

row1 0.4449 13.5551 32 30 76
row2 4.2102 6.4449 12.3449 8 31
row3 12 22 2.6551 1.3449 38
row4 17.3449 19 16 3.6551 56
Total 34 61 63 43 201

replace the largest unsafe values, 11, 13 and 18, by 1, 3

and 8. After the calculations, 10 is added back to these

cells. The fitted values obtained in this way are pre-

sented in the last column of Table 2. Since the starting

point was that all values below 4 were unsafe, one may

try 4 as the divisor. However, in this case, this results

in model fits that are very close to the truth. In fact,

the true value is the closest integer in all cases.

Note that if one combines the modulo operation

with ordinary generation of synthetic values, the vari-

ance of the original values will not be preserved. A solu-

tion is to scale the residuals by a constant to achieve the

required variance. Even if correct variance is not impor-

tant, synthetic residuals may still be added. One reason

is to increase the differences from the truth. Another

reason is to ensure that none of the generated values are

whole numbers. Then, a linear combination of synthetic

values using integer coefficients cannot be a whole num-

ber unless it is possible to rewrite the combination as

a combination of publishable values (whole numbers).

Have in mind that the columns XAll are linearly de-

pendent so that linear combinations can be written in

several ways.

Table 3 presents the results from a method that may

be used in practice. The modulo 10 method is used and

the ordinary residuals are downscaled by a factor of 10.

In general, if we replace the original suppressed values

by values generated in a manner that includes synthetic

residuals, we have the following characteristics.

1. The values of all the publishable cells are un-

changed. In particular, the values add up correctly

to all totals and subtotals. In practice, however, we

need to take into account numerical precision error.

2. The values of all the suppressed cells, including pos-

sible subtotals, will not be whole numbers. Obtain-

ing a value as close to a whole number as the level

of the numerical precision error is very unlikely.

3. If a suppressed cell value is a whole number, this

means that the suppression algorithm has failed.

This can be verified by re-running the random gen-

eration part.

4. Assuming a successful suppression algorithm, any

sum of values resulting in a whole number is a true

and publishable value.

5. Negative values may be generated.

6. After cell suppression and generation of decimal

numbers, only the inner cells may be stored. Var-

ious totals can be calculated when needed.

7. The methodology can be used when several vari-

ables are involved (not only cell frequency). The or-

dinary method (no modulo and ordinary residuals)

may then be preferred.

As mentioned above, one reason to generate deci-

mal numbers may be to generate values to be stored.

They may never be shown and only used technically.

After computation of any requested totals, the whole

numbers may be shown and other numbers hidden. In

practice, a numerical precision limit is needed to de-

fine whole numbers. Another reason to generate deci-

mal numbers is to give more information to users. With-

out using the modulo method there is no extra infor-

mation in fitted values than is already hidden in the

published cells. Methods that assume positive integers

and produce lower and upper bounds will provide more

precise information about what is hidden in the data.

However, presenting intervals is more complicated and

precise information may not be the goal. Appropriate

information may be achieved by combining the mod-

ulo method and scaling of residuals. A third reason to

use the approach presented here may be to control the

result of the suppression method. Suppressing linked

tables can be especially challenging (de Wolf and Giess-

ing 2009), and not all algorithms guarantee protection.
When working with linked tables, we need to include all

cells from all tables in ZAll. A fourth reason to calculate

decimal numbers is to permit calculation of arbitrary

(user defined) sums of cells afterwards. A sum not in-

cluded in the suppression method may be publishable

even if suppressed cells are involved.

The fitted values contain only information available

from publishable cells. When variance is preserved, a

piece of information is provided about the suppressed

cells and this may be a reason to scale the residuals. One

problematic special case to be aware of is when the rank

of X is n− 1. Normally, the generated score vectors of

unit length underlying Ê
∗

are randomly orientated in

the subspace orthogonal to the column space of X. But

in this special case, the dimension of this subspace is

one. Thus, given preserved variance, ±Ê are the only

two possible instances of Ê
∗
. This is typically a problem

in small example data sets and not in applications. In

the example here, the subspace dimension is two and

this problem is avoided.
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To summarise, without using the modulo method

and using residuals scaled in a manner unknown to

the user, replacing ordinary suppression (missing value)

with decimal numbers releases no extra information.

Decimal numbers may, however, be a user-friendly al-

ternative. Switching to modulo should be done with

care as the method has not been thoroughly studied.

8 Concluding remarks

This paper has focused on information preserving

regression-based methods, which belong to the area of

synthetic and hybrid data. Such an approach to pro-

tecting microdata is sometimes preferred, but in many

applications other methods are used. In the area of

statistical disclosure control, insight into the described

methodology is useful regardless. Innovative tools are

often created by combining aspects of several meth-

ods. In the present paper, combined methods have been

described in Sections 6 and 7. In both cases, another

method is utilized before data are generated by the

synthetic data methodology. In the former case, clus-

ters according to microaggregation are made and in the

latter case table suppression is performed.

Since a requirement for all the methods treated in

this paper is to preserve fitted values, these methods

are mostly about how to generate residuals. In some

cases, an alternative is to set these residuals at zero.

Then we are replacing all the original data with deter-

ministic imputations (in the sense opposed to random

imputations). We discussed this approach in Sections 6

and 7.

Regression-based methods have been criticized for

not being able to deal with data with outliers in a sat-

isfactory way (Templ and Meindl 2008). This criticism

can be met by combining methods. As with other tech-

niques (Templ and Meindl 2008), one can start by di-

viding the data into outlying and non-outlying obser-

vations. Thereafter, one proceeds by generating data

within each group. One may use methodology described

in this paper in either group, or only in the non-outlying

observations group. In the case of both groups, we can

say that such methodology is already covered by the

general description in Section 6.

The contribution of this paper has mainly been to

describe and develop methods in a concise and inter-

pretable way. Several questions arise concerning the

performance of the methods and which method to pre-

fer in specific situations. A wide-ranging comparison of

the methods is beyond the scope of the present paper,

but studies and performance comparisons can be found

in the underlying references. The characteristics of the

methods are different and the preferred choice would

depend on the situation.

However, if we limit the discussion to non-combined

methods (Sections 2-5), we can make some reflections.

The IPSO method is the basic method to be used

when the aim is only to preserve variances, covariances

and fitted values. Technically, performing the computa-

tions via QR decomposition is faster than using SVD.

Methodology that controls the relationship with the

original data by means of a single parameter is easy to

understand. The IPSO method and the original data

are thus the two extremes. One such method is ob-

tained with all diagonal elements equal in (7) or (8).

These two equations are then equivalent. This method

is elegant and exact control is obtained. Furthermore,

this method is a special case of the one described in Mu-

ralidhar and Sarathy (2008). An easy and efficient im-

plementation is obtained by (8) and QR decomposition.

It is also easy adjustable, so that the relationship with

some x-variables can be controlled better. However, the

methodology in Section 3 makes use of new scores gen-

erated under certain orthogonality restrictions. In cases

with many variables and few observations this may be

impossible. The single parameter ROMM method may

then be an alternative. This method is efficiently imple-

mented by (11), (12) and (17) which utilize the theory

in Sections 4 and 5.

Appendix 1: Generalized QR decomposition

The QR decomposition of a n×m matrix A with rank

r can be written as

A = QR (24)

where Q is a n × r matrix whose columns form an or-

thonormal basis for the column space of A. This de-

composition can be viewed as the matrix formulation

of the Gram-Schmidt orthogonalization process. The

Cholesky decomposition of ATA can be read from the

QR decomposition of A as RTR.

In this paper, in order to allow linearly dependent

columns of A (r < m), we refer to a generalized variant

of QR decomposition. In such cases a usual decompo-

sition (Chan 1987) is

AP̃ = QR̃ (25)

where P̃ is a permutation matrix that reorders the

columns (pivoting) in order to make a decomposition

so that R̃ is upper triangular.

To make the decomposition unique, we require the

diagonal entries of R̃ to be positive. Furthermore, we

require P̃ to keep the order of the columns as close to

the original order as possible (minimal pivoting). We
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now have A = QR̃P̃
T

and in generalized QR decom-

position (24) we use

R = R̃P̃
T

(26)

The QR decomposition of a composite matrix can

be written as

[A1 A2] = [Q1 Q2]
[
RT

1 R
T
2

]T
(27)

Now Q1 can be computed by QR decomposition of A1.

The matrix Q2 can be computed by QR decomposi-

tion of A2 −Q1Q
T
1A2, which is the residual part after

regressing A2 onto A1.

Appendix 2: The singular value decomposition

The singular value decomposition (SVD) of a n × m

matrix A with rank r can be written as

A = UΛV T (28)

where Λ is a r × r diagonal matrix of strictly positive

singular values in descending order. This is the rank-

revealing version of the decomposition (Demmel et al.

1999). Other variants of SVD allow some singular values

to be zero, but these can be omitted. The columns of

U form an orthonormal basis for the column space of

A and the columns of V form an orthonormal basis for

the row space.

The singular values are the square root of the eigen-

values of of ATA and AAT . The eigen decompositions

of these two symmetric matrices can be read directly

from the SVD of A as V Λ2V T and UΛ2UT . It is also

worth mentioning that an alternative to the ordinary

Cholesky decomposition, ATA = RTR, is to let ΛV T

play the role of R.

To make the SVD unique we can require all column

sums of V to be positive. In cases with equal singular

values, the decomposition is not unique regardless.

There is a close relationship between SVD and

PCA. In PCA, the variables are usually centered to

zero means, and in many cases standardized to equal

variances prior to decomposition. If A is such a cen-

tered/standardized matrix then UΛ is the matrix of

PCA scores and V is the matrix of PCA loadings.

The Moore-Penrose generalized inverse of A can be

written as

A† = V Λ−1UT (29)

We have

A† = (ATA)†AT = AT (AAT )† (30)

When A is invertible, A† = A−1. When ATA or

AAT is invertible this means, respectively, that A† =

(ATA)−1AT or A† = AT (AAT )−1.
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