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Several reasons have been put forward to explain the high dispersion of productivity across 

establishments: quality of management, different input usage and market distortions, to name 

but a few. Although it is acknowledged that a sizable portion of productivity dispersion may 

also be due to measurement error, little research has been devoted to identifying how much 

they contribute. We outline a novel procedure for identifying the role of measurement error in 

explaining the empirical dispersion of productivity across establishments. The starting point 

of our framework is the errors-in-variable model consisting of a measurement equation and a 

structural equation for latent productivity. We estimate the variance of the measurement error 

and subsequently estimate the variance of the latent productivity variable, which is not 

contaminated by measurement error. Using Norwegian data on the manufacture of food 

products, we find that about 1 per cent of the measured dispersion stems from measurement 

error.  
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1. INTRODUCTION 

It is widely accepted that the dispersion of productivity across establishments and industries is 

high. Dispersion is commonly measured by means of the standard deviation across 

establishments, where the productivity of each establishment is measured relative to a 

reference point, such as the mean productivity level at a given point in time. Using this 

procedure, it is typically found that the standard deviation across establishments is large and 

lies in the range of 30 to 100 per cent; see Bartelsman and Wolf (2018).   

 Several reasons have been put forward to explain this high productivity dispersion: 

noisy selection (Jovanovic, 1982), sunk cost of entry (Hopenhayn, 1992), quality of 

management (Bloom and Van Reenen, 2010), different input usage, as the intensity of R&D 

or other intangible capital (Crepon et al., 1998), product substitutability (Syverson, 2004), 

product market rivalry (Bloom et al., 2013), market distortions (Hsieh and Klenow, 2009), 

skill-biased technical change and technological adoption (Dunne et al., 2004) and innovation 

dynamics (Foster et al., 2018), to name but a few. Although it is acknowledged that the high 

productivity dispersion may also be due to measurement error, little research has been 

devoted to identifying how much they contribute.   

In this paper, we outline a novel procedure for identifying the role of measurement 

error in explaining empirical productivity dispersion across establishments. We define 

productivity as the log of the ratio between gross nominal output and the number of employee 

man-hours. One reason for the presence of measurement error in productivity is that our labor 

input variable relates to input according to the labor contract, which may deviate from the 

actual man-hours executed. Another source of measurement error is misclassification, which 
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occurs when the main part of the establishment’s production belongs to an industry other than 

the one considered, see e.g. Bartelsman et al. (2009, p. 28). 

The starting point is the typical errors-in-variable framework consisting of a 

measurement equation and a structural equation for latent productivity. The key idea in our 

identification strategy is to estimate the variance of measurement error in a consistent way so 

that we can then estimate the variance of the companion latent variable, which is not 

contaminated by measurement error. To this end we build on the econometric theory of 

measurement error in dynamic models, see e.g. Komunjer and Ng (2014). Specifically, we 

remove time effects by means of a transformation in which we from each observation subtract 

time specific means of observation units that are present in all years. Unobserved 

establishment-specific heterogeneity is removed by differencing over time. The resulting 

model is a first-order autoregressive process in demeaned productivity growth rate. 

Measurement error variance and the productivity shock variance related to the development in 

latent productivity may be estimated by utilizing the covariance structure of the composite 

error terms. We estimate the amount by which productivity dispersion is reduced when 

measurement error is accounted for. Our findings indicate that about 1 per cent of measured 

productivity dispersion is attributable to measurement error. 

The rest of this paper is organised as follows: Section 2 outlines the procedure and the 

model for establishment-specific productivity. Section 3 describes the data and presents the 

results. Section 4 provides a conclusion. 

 

2. MODELLING FRAMEWORK 

Correcting for measurement error when assessing productivity dispersion across 

establishments presents a conceptual challenge. It can be illustrated analytically that 
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measurement error increases the empirically observed dispersion compared with the 

dispersion in the latent productivity variable by considering the following econometric model 

(1)                                                       * ,it it ity y u= +  

where ity  (i.e., the log of the ratio between gross production and man-hours) denotes the 

observed productivity and *
ity  the latent productivity of establishment i in year t. The last 

symbol in Eq. (1), itu , denotes a random measurement error, i.e., it is assumed that 

( ) 0 ,itE u i t= ∀  and that 2( ) ,τ τδ δ σ=it j ij t uuE u u where ijδ and τδ t denote Kronecker deltas such 

that 1ijδ = if ,i j= 0ijδ = if ,i j≠ 1τδ =t if τ=t and 0τδ =t if .τ≠t  The symbol 2
uuσ denotes 

measurement error variance. Furthermore *( ) 0 , , , .τ τ= ∀it jE y u i j t  Thus, the two terms on the 

right-hand side of Eq. (1) are assumed to be uncorrelated. We assume that ity and *
ity follow 

trend stationary processes. In the empirical part of the paper we conduct a test to provide 

support for the trend stationary hypothesis. Let the time-invariant variances of the observed 

productivity and latent productivity variables be denoted 2
yyσ  and * *

2
y yσ , respectively.1 Under 

the imposed assumptions, it follows from taking the variance on both sides of Eq. (1) that the 

presence of measurement error leads to wider productivity dispersion, i.e., 2
yyσ  > * *

2
y yσ . 

To identify how much of the variance of observed productivity is due to measurement 

error, we need a model for the latent level of establishment-specific productivity. Our point of 

departure is the standard model of technology diffusion used in the literature. The key idea in 

this model is that there should be an underlying driving force causing equalization of 

productivity if information can flow freely and know-how can be adopted easily. The further 

                                                           
1 In the empirical application, we carry out sub-sample estimation by considering shorter time periods. Indirectly, this sheds 
some light on the assumption of time-invariant variances. 
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away an establishment is from the technology frontier, the higher the potential for 

technological catch-up and the higher the growth in productivity will be. Analytically, this 

may be represented by the following model for establishment-specific latent productivity:  

                  * * * *
, 1 , 1 , 1( ) ,µ λ ε− − −= + + − +it i t i F t i t ity y y y for i = 1,…, 𝑁𝑁𝑡𝑡, 

where iµ captures the establishment’s own rate of innovation through its underlying 

capabilities and itε  is the stochastic shock to productivity growth. It is assumed that 

( ) 0 ,itE i tε = ∀  and that 2( ) ,τ τ εεε ε δ δ σ=it j ij tE  where 2
εεσ denotes the variance of the 

productivity shock. Furthermore, ( ) 0 , , , .τε τ= ∀ìt jE u i j t  The term * *
, 1 , 1F t i ty y− −−  measures the 

distance between the technology level of establishment 𝑖𝑖 and the frontier F, and 0 1λ< <    

determines the speed of catch-up or technological adoption. The symbol Nt denotes the 

number of establishments present in year t. This model has been applied in numerous books 

(Banks, 1994; Benhabib and Spiegel, 2005; Acemoglu, 2009) and articles covering both 

technology adoption between countries (Griffith et al., 2004; Madsen et al., 2010) and 

technology adoption among establishments within countries (Cameron et al., 2005; Griffith et 

al., 2009). To proceed with the analysis of this model, we let the establishment’s own rate of 

innovation iµ be an unobserved establishment-specific fixed effect, and we let latent 

productivity at the frontier follow a deterministic function represented by fixed time effects, 

which leads to the following specification for development in latent establishment-specific 

productivity: 

(2)                                * *
, 1 ,it i t i t ity yβ µ α ε−= + + +  for i=1,…,Nt,                                      

where 1β λ= −  and iµ and tα  are a fixed establishment and a fixed time effect, respectively. 

That  𝛽𝛽 lies between zero and unity is implied by the model for technology diffusion, since 

0 1.λ< <   
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 Inserting for *
ity  from Eq. (1) into Eq. (2) yields2  

(3)                                           , 1 ,µ α β η−= + + +it i t i t ity y                                                                                                                          

where , 1.η ε β −= + −it it it i tu u  It follows from our assumptions that  

              2 2 2 2
it uuVar( ) (1 ) .ηη εεσ η σ β σ= = + +        

To remove the time effects, we make use of a transformation given by the difference between 

the observation and the time-specific mean of the observations for establishments present in 

all years. Let B denote a set containing all units observed in all years and let NB denote the 

number of such units. Later we will refer to B as the reference group. All other observational 

units are in the set B.3 Let 

1 ,B
t kt

k BB
y y

N ∈
= ∑  

1 ,B
k

k BBN
µ µ

∈
= ∑  

1B
t kt

k BBN
ε ε

∈
= ∑  

and  

1 .B
t kt

k BB
u u

N ∈
= ∑  

It therefore follows that 

                                                           
2 One could also consider the case of systematic measurement error, such that Eq. (1) is augmented with an intercept. In that 
case Eq. (3) will also contain an intercept. However, this parameter is not identifiable since fixed time effects for all years 
also are present in the equation. 
3 To avoid additional symbols, we also use B and B in sub- and superscripts to indicate that the measures relate to 
establishments in the sets B and B, respectively. 
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(4)                                            , 1 , 1,d d d d d d
it i i t it it i ty y u uµ β ε β− −= + + + −                                          

where 

,d B
it it ty y y= −  

,d B
i iµ µ µ= −  

d B
it it tε ε ε= −  

and 

.d B
it it tu u u= −  

Eq. (4) is in the form used by Komunjer and Ng (2014). By differencing over time, we may 

filter out the time-invariant term .d
iµ  Such a transformation yields 

(5)                                    , 1 , 1.
d d d d d
it i t it it i ty y u u∆ β∆ ∆ε ∆ β∆− −= + + −                                       

The transformation underlying Eq. (5) implies introducing heteroscedasticity, which easily 

can be corrected for and which vanishes asymptotically. For observational units outside the 

reference group, i.e., ,i B∈  we multiply Eq. (5) by [ ] 0.5( 1)B BN N −+  and for observational 

units within the reference group, i.e., ,i B∈ we multiply Eq. (5) by [ ] 0.5( 1) .B BN N −−  After 

this rescaling, we obtain the following equation  

 (6)                                     , 1 , 1,w w w w w
it i t it it i ty y u u∆ β∆ ∆ε ∆ β∆− −= + + −                                      

where 

[ ] 0.5( 1) /w d
it B B ity N N y∆ ∆−= +  for i B∈ and [ ] 0.5( 1) /w d

it B B ity N N y∆ ∆−= −  for .i B∈  The 

other symbols in Eq. (6) are defined by analogous expressions. Note that , 1
w
i ty −∆  is correlated 
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with the composite error term, , 1
w w w
it it i tu uε β −∆ + ∆ − ∆ . The same is true for , 2

w
i ty −∆ , since this 

lagged difference is correlated with , 1
w
i tuβ −∆ . Hence, we employ the variable , 3

w
i ty −∆ , which is 

not correlated with the composite error term, as an identifying instrument. The IV estimate 

obtained for β is referred to as .IVβ  

Let the composite error term in Eq. (6) be defined by:  

, 1.
w w w

it it it i tu uξ ∆ε ∆ β∆ −= + −  

It follows from our assumptions that the following holds true: 

( )2 2 2( ) 2 (1 ) ,= = + + +iitt
it uuVar ξξ εεξ σ σ β β σ  

( ), 1 2 2 2
, 1( , ) (1 ) ,ξξ εεξ ξ σ σ β σ−
− = = − + +iit t

it i t uuCov  

, 2 2
, 2( , ) −
− = =iit t

it i t uuCov ξξξ ξ σ βσ  

and 

,( , ) 0 3.it i t sCov sξ ξ − = ∀ ≥  

The transformation undertaken introduces some correlation between the observational units. 

There are three different cases. If , ,∈i j B we obtain  

( )2 2 22( , ) (1 ) ,
1ξξ εεσ ξ ξ σ β β σ= = + + +

+
ijttB

it jt uu
B

Cov
N

 

( ), 1 2 2 2
, 1

1( , ) (1 ) ,
1ξξ εεσ ξ ξ σ β σ−

−= = − + +
+

ijt t B
it j t uu

B
Cov

N
 

2
, 2

, 2( , )
1ξξ

βσσ ξ ξ−
−= =

+
ijt t B uu

it j t
B

Cov
N
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and            

,
,( , ) 0 3.ξξσ ξ ξ−
−= = ∀ ≥ijt t sB

it j t sCov s  

Second, if both observational units are within the reference group, i.e., , ,i j B∈  we have 

( )2 2 22( , ) (1 ) ,
1ξξ εεσ ξ ξ σ β β σ= = + + +

−
ijttB

it jt uu
B

Cov
N

 

( ), 1 2 2 2
, 1

1( , ) (1 ) ,
1ξξ εεσ ξ ξ σ β σ−

−= = − + +
−

ijt t B
it j t uu

B
Cov

N
 

2
, 2

, 2( , )
1ξξ

βσσ ξ ξ−
−= =

−
ijt t B uu

it j t
B

Cov
N

 

and            

,
,( , ) 0 3.ξξσ ξ ξ−
−= = ∀ ≥ijt t sB

it j t sCov s  

Third, if observational unit i B∈  and observational unit ∈j B  we have 

,( , ) 0 .it j t sCov sξ ξ − = ∀  

The variance and autocovariances of the composite error term may be estimated from the 

residuals. Furthermore, in Appendix A we show how we estimate the covariances between the 

composite errors of different observational units. Let the estimates of , ,,− −iit t s ijt t sB
ξξ ξξσ σ  and 

, −ijt t sB
ξξσ  (s = 0, 1, 2) be , ,ˆ ˆ,− −iit t s ijt t sB

ξξ ξξσ σ  and ,ˆ −ijt t sB
ξξσ , respectively. Consider the following vector 

equation 
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(7)                

2

, 1 2

, 2

2

, 1

, 2

, 1

, 2

ˆ 2 2(1 )
ˆ 1 (1 )
ˆ 0
ˆ 2 / ( 1) [2 / ( 1)](1 )

ˆ 1/ ( 1)
ˆ
ˆ

ˆ
ˆ

−

−

−

−

−

−

  + +
 

− − + 
 
 

+ + + + 
  = − + − 
 
 
 
 
 
 

 





 

iitt
IV IV

iit t
IV

iit t
IV

ijttB
B B IV IV

ijt t B
B

ijt t B

ijttB

ijt t B

ijt t B

N N
N

ξξ

ξξ

ξξ

ξξ

ξξ

ξξ

ξξ

ξξ

ξξ

σ β β
σ β
σ β
σ β β
σ
σ
σ
σ
σ

0

1

2

02
2

12

2
2

0
2

1

2

[1/ ( 1)](1 )
0 [1/ ( 1)]

2 / ( 1) 2 / ( 1)](1 )
1/ ( 1) [1/ ( 1)](1 )

0 [1/ ( 1)]

   
   
   
   
   
       ++ +      +   
  − − + +  
 − − − − + 
  −   





 





B

B
B IV

Buu
B IV

B
B B IV IV

B
B B IV

B
B IV

r
r
r
r
rN
rN
rN N
rN N
rN

εεσ
β

σ
β

β β
β

β

,






                     

where the last vector on the right-hand side contains errors. We estimate the two second-order 

parameters, 2
εεσ and 2 ,uuσ by applying the OLS formula to Eq. (7). To assess estimation 

uncertainty related to the estimates of 2
εεσ  and 2

uuσ , we apply bootstrapping; see Appendix B. 

 In empirical work, attention is often devoted to the standard deviation of productivity 

less the mean productivity of the establishments that are present in a specific year. Within our 

(superpopulation) framework, this measure corresponds approximately to 2
yyσ and * *

2
y y

σ , 

where the former is the standard deviation of observed log-productivity and the latter a 

model-based measure after correction for measurement error.  Thus, our estimates of 2
yyσ

and * *
2
y yσ should produce numbers which are comparable to those reported elsewhere in the 

literature.   

 

3. EMPIRICAL APPLICATION 

We apply our framework using unbalanced panel data for manufacture of food products in 

Norway from the years 2000-2014. Our data on gross output are from the Central Register of 

Establishments and Enterprises and data for labor input from the State Register of Employers 
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and Employees.4  Table 1 provides information about the number of observations and about 

properties of the unbalanced panel data set for the industry, whereas Table 2 provides 

summary statistics on the (untransformed) productivity variable.  Nominal gross production is 

measured in 1,000s of NOK, whereas labor input is measured as number of man-hours. The 

mean value added per man hour worked over the sample period is NOK 1,410 per man hour, 

while the median is somewhat lower, at NOK 1,003 per man hour. In line with findings in 

other countries, there is also a wide labor productivity spread across establishments that 

manufacture food products in Norway. The standard deviation is about 85 per cent of the 

mean labor productivity level.   

 

 

[Table 1 here] 

 

[Table 2 here] 

    

We have looked at the time series properties of the observed (log-transformed) productivity 

variable to see whether trend stationarity is a reasonable assumption. To this end, we have 

employed the balanced part of the panel data set5 for the industry and considered the test 

provided by Harris and Tzavalis (1999).6 The test statistic is based on a first-order 

autoregressive regression augmented with establishment-specific fixed effects and 

establishment-specific linear trends and fixed-T asymptotics. Under the null hypothesis non-

stationarity prevails. We find that the null-hypothesis is firmly rejected. The significance 

probability is for practical reasons equal to zero.       

                                                           
4 See https://www.nav.no/en/Home/Employers/NAV+State+Register+of+Employers+and+Employees  
5 See Table 1. 
6 This part of the calculations has been carried out using Stata version 15.1. TSP version 5.1 was used for all other 
calculations. 

https://www.nav.no/en/Home/Employers/NAV+State+Register+of+Employers+and+Employees
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 Besides showing estimation results based on the full data set, we also present, in Table 

3, results from two sub-periods, 2005-2014 and 2000-2009. These two periods are considered 

for reasons of robustness. Using the full sample, the autoregressive slope parameter, ,β  is 

estimated to be 0.794. The estimate is clearly significant, with a t-value (based on a robust 

estimate of the standard error) of about 4.3. Table 3 also reports the estimates of the two 

variance parameters. When the full sample is used, the estimates of productivity shock 

variance, 2 ,εεσ  and of measurement error variance, 2 ,uuσ are 0.136 and 0.018, respectively. The 

corresponding results using data for the two sub-periods are not very far from those obtained 

using all data. In Appendix B, we report the results of an exercise in which we used 

bootstrapping in the full data case to generate standard errors of the estimates of 2
uuσ and 2

εεσ . 

The t-value of the estimate of measurement error variance, 2 ,uuσ is about 2.4. In a one-sided 

test, this corresponds to a p-value of about 0.009. Thus, the estimate of the measurement error 

variance is significant. As mentioned in Appendix B, some of the replications needed to be 

disregarded because of a negative estimate of the measurement error variance or because the 

estimate of the autoregressive parameter, ,β exceeded 1. The occurrence of negative estimates 

of error component variances under unconstrained estimation is a well-known problem in 

panel data econometrics; see for instance Maddala (1971) and more recently Bun et al. 

(2017). Thus, the quality of the obtained standard errors must be evaluated in view of this 

feature. 

[Table 3 here] 

 

It is possible to estimate the two variance parameters, 2
εεσ  and 2

uuσ , without involving cross-

moments of residuals between different observational units. This option corresponds to 

omitting the last six rows of Eq. (7). The estimation results using this simplified procedure are 

very similar to those reported in Table 3. The reason is that all moments related to different 
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observational units are very small, as are the corresponding values in the 9×2 matrix 

multiplied by the vector consisting of the two variances in Eq. (7). 

From the estimates of the two variance parameters we can derive the proportion of the 

variation of the composite error terms stemming from productivity shock and measurement 

error, respectively. The results are reported in Table 4. We carry out the decomposition both 

for the full sample and for the two subperiods. The last column of Table 4 shows the results 

for the full sample covering the years 2000-2014. When this period is considered, about 18 

per cent of the variation of the composite error can be attributed to measurement error, 

whereas the remaining 82 per cent can be attributed to productivity shocks. Thus, 

measurement error captures a substantial part of the variation in composite error. 

[Table 4 here] 

 

To relate our results to the applied literature on productivity dispersion, we focus in 

Table 5 on the standard deviation of productivity. We report results showing the difference 

between the observed standard deviation, 2
yys , and the estimated standard deviation of latent 

productivity, operationalized as * *
2 2 2ˆ ˆyy uuy y

sσ σ= − . The observed variance of log 

productivity based on data from all years, i.e., 2
yys is taken as the estimator of 2

yyσ . The results 

reported in Table 5 provide information about the positive bias caused by neglecting 

measurement error when reporting figures on productivity dispersion. The effect is fairly 

small, amounting to about 1 per cent for the full sample, nor is it very far from 1 per cent 

when the two sub-periods are considered. 

[Table 5 here] 
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A 1 per cent contribution from measurement error to productivity dispersion is 

relatively small. By way of comparison, it should be noted that the contribution from 

measurement error in Norway may be lower than in many other countries. The reason is the 

long-standing tradition in Scandinavian countries of using administrative data for research 

purposes and in the construction of the National Accounts. As pointed out by Barth (2012), 

administrative data are accurate, because they are entered for purposes such as accounting, tax 

reporting etc. that are subject to strict control and auditing rules. In addition, and in contrast to 

survey data, many of the administrative registers contain the entire population, which 

eliminates the problem of sampling error. In this article, we have used data on gross output 

from the Central Register of Establishments and Enterprises and data on labor input from the 

State Register of Employers and Employees, which is a matched employer-employee data set. 

Given that data based on administrative registers are less prone to measurement error, the 

contribution of measurement error to productivity dispersion may be larger in countries where 

productivity data are based on surveys. The empirical framework we have outlined in this 

article can be used to test the merit of this hypothesis, or to analyze the extent to which 

measurement error can explain the size of productivity dispersion in other countries, but this 

is an area we leave open for future research.   

 

4. CONCLUSION 

In this article, we have outlined a novel procedure for identifying the role of measurement 

error in explaining empirical productivity dispersion across establishments. The starting point 

of our framework is the classical errors-in-variable model consisting of a measurement 

equation and a structural equation for latent productivity. The key idea in our identification 

strategy has been to estimate measurement error variance in order to deduce the variance of 

the latent productivity variable. Specifically, we have estimated a differenced demeaned 
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dynamic panel data model where establishment-specific productivity is modelled as a first-

order autoregressive process. Using the case of manufacture of food products in Norway as an 

illustrative example, we found that about 1 per cent of the measured dispersion is due to 

measurement error.  

A topic that deserves more attention in further work is the presence of negative 

estimates of error component variances, see e.g. Bun et al. (2017). In this article, this feature 

emerged when obtaining standard errors of the estimate of measurement error variance by 

means of non-parametric bootstrapping. Some of the replications had to be disregarded. 
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Appendix A. Estimation of covariances between the composite errors of different 

observational units 

We distinguish between two types of establishments: those that are observed for the entire 

period and those that are observed for some of the years. We can estimate ijttB
ξξσ as 

(A1)                    
1

01 0

1 1
1 1 2

t
ijttB B B' B B'

t t t t
t t B B

ˆ w vech( ) tr( ) ,
t t N ( N ) /ξξσ ξ ξ ξ ξ

=
 = × −∑  − + × −

                  

where B
tξ denotes the NB×1 vector of composite residuals of those establishments observed in 

all years in period t, vech denotes the half-vectorization operator, tr denotes the trace-operator 

and w is a row-vector with NB× (NB-1)/2 columns where all elements are 1. Furthermore, t0 

and t1 denote, the first and last year, respectively, for which composite residuals are available. 

The corresponding formula when the distance between the two composite errors is 1 or 2 is 

(A2)                       
1

01 0

1 1
1 1

t
ijt ,t sB B B' B B'

t t s t t s
t t s B B

ˆ u vec( ) tr( )
t t s N ( N )ξξσ ξ ξ ξ ξ−

− −
= +

 = × −∑  − + − × −
     ,            

where s= 1, 2. In Eq. (A2), vec denotes the vectorization operator and u is a row vector with  

1B BN ( N )× − columns. 

Let us also consider the observational units that are not observed in all years. Instead of (A1) we now 

have 

 

(A3)                        
1

1
0

0

1

1 2
t t t t

t
B B ' B B 'ijttB

t t t t tt
t t

Bt Bt
t t

ˆ p vech( ) tr( )
N ( N ) /

ξξσ ξ ξ ξ ξ
=

=

 = × −∑  
× −∑

     ,                   

where NBt is the number of units observed in year t among those that are not observed in all 

years. The symbol  tB
tξ denotes a vector with composite residuals from year t for 

establishments not observed in all years. Lastly, pt is a row vector with  1 2Bt BtN ( N ) /× −

columns where all values are equal to one. 
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Let − t ,t sB
tξ denote the vector with composite residuals in year t for units not observed in all 

years that are present in both years t and t-s (s=1, 2). Let Bt ,t sN − denote the number of such 

establishments present in both years t and t-s.  Analogous to (A2), we have 

 

(A4)   
1

1
0

0

1

1
t ,t s t ,t s t ,t s t ,t s

t B B ' B B 'ijt ,t sB
t ,t s t t s t t st

t t s
Bt ,t s Bt ,t s

t t s

ˆ p vec( ) tr( )
N ( N )

ξξσ ξ ξ ξ ξ− − − −−
− − −

= +
− −

= +

 = × −∑  
× −∑

     ,        

where s=1, 2 and pt,t-s  denotes a row vector with 1Bt ,t s Bt ,t sN ( N )− −× − columns in which all 

values equal 1. 

 

 

 

 

Appendix B. Estimation of standard errors of second order parameters by means of 

bootstrapping 

We obtain the standard errors of the estimates of the different variances by means of non-

parametric bootstrapping. Synthetic samples are obtained by drawing with replacement from 

the empirical distribution. In each draw, each observational unit has an equal probability of 

being drawn. If a unit is drawn it is represented by all its data. From the outset we generated 

4,000 replications. However, a substantial part of the replications proved to yield either 

negative estimates of the measurement error variance or an estimate of the slope parameter, 

,β outside the interval <0,1>.7 When calculating the standard error (by calculating the 

standard deviations of the replicated estimates), we disregard such replications. The results 

                                                           
 
7 In 3 of the replications, a negative estimate of productivity shock variance was obtained. 
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reported in Table B1 are then based on the remaining 2,403 replications. Besides the standard 

deviations, we also include mean values. 

[Table B1 here] 
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Tables: 

 

Table 1. Properties of the unbalanced panel data sets 

No. of obs. No. of obs. units No. of obs. units 
present in all years 

No. of obs. units without 
contiguous time series  

25,953 3,875 600 668 
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Table 2. Summary statistics based on establishment-specific means of untransformed labor 
productivitya  

No. of 
obs. units 

Mean Std. dev. First 
quartile 

Median Third 
quartile 

Min. Max. 

3,875 1.410 1.203 0.574 1.003 1.848 0.103 10.098 
a The total number of observations is 25,953. 
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Table 3. Estimates of first and second order parametersa 

 β   2
εεσ  2

uuσ  
Time period Estimate t-valueb Estimate Estimate 
2000-2014 0.794 4.274 0.136 0.018 
2005-2014 0.626 3.529 0.120 0.025 
2000-2009 0.671 2.622 0.125 0.013 

a Using data for the full-time period 2000-2014, the number of observations used to estimate β and the two 
variance parameters are 12,635 and 8,831, respectively. Using data for the period 2005-2014, the number of 
observations used to estimate β and the two variance parameters are 6,290 and 3,592, respectively. Using data 
for the period 2000-2009, the numbers of observations used to estimate β and the two variance parameters are 
7,483 and 4,282, respectively.                                                                                                                                     
b Based on analytical formula for robust standard errors. 
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Table 4. Decomposition of the estimated variance of the composite error 

Time period Variance of 
composite 
errora 

Contribution of variance of 
composite error stemming from 
productivity shocks (in %)b 

Contribution of variance of 
composite error stemming from 
measurement error (in %)c 

2000-2014 0.165 82.251 17.749 
2005-2014 0.155 77.411 22.589 
2000-2009 0.143 86.674 13.326 

aRecall that 2 2 2 2(1 )ηη εεσ σ β σ= + + uu .                                                                                                                                                                                 

bThe contribution is given by 2 2100 .εε ηησ σ×                                                                                                             
cThe contribution is given by 2 2 2100 (1 ) .ηηβ σ σ× + uu  
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Table 5. Spread in observed and latent productivity. Per cent  

 Period 
Spread 2000-2014 2005-2014 2000-2009 

2
yys   84.6a 88.2b 81.3c 

* *
2 2 2

yy uuy y
sσ σ= −  83.5 86.8 80.5 

a Empirical standard deviation based on 25,953 observations.                                                                                                                                
b Empirical standard deviation based on 16,151 observations.                                                                                    
c Empirical standard deviation based on 18,476 observations. 
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Table B1. Empirical distribution of estimates of the different variance components obtained through 
bootstrappinga 

Parameter Mean Standard deviation 
2
εεσ   0.1460 0.0087 
2
uuσ   0.0159 0.0076 

a The results are based on 2,403 replications. 
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