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1. INTRODUCTION

Virtually all criminal legislation is pervaded by the belief that punishment has a

deterrent effect on crime. This belief was strengthened by a study of Becker (1968)

where, in an economic model of crime, it was assumed that crime is a risky

business and that people act as rational utility maximizers. When a person

considers all benefits and costs of a possible crime, the expected utility of the crime

will be reduced when either the probability of being caught and punished or the

severity of punishment is increased. Not surprisingly, a reduction in the expected

utility of crime will lead to a reduction in the number of crimes..

In the last 20 years the hypothesis of a deterrent effect of punishment has been

confirmed by several empirical studies of total crime and of various types of crime,

but not by all of them. (See reviews in Blumstein, Cohen and Nagin (1978),

Heineke (1978), Bleyleveld (1980), Schmidt and Witte (1984), and Cameron (1988)).

Furthermore, methodological problems in the common empirical studies of crime

cast doubt on a substantial part of this literature.

Most empirical studies are plagued by substantial underregistration of crime.

Registration depends on the attitude of those who discover a crime, on the access

to telephone, on insurance, on police routines, etc. If recording differs between

police districts (in cross section studies) or over the years (in time series studies),

a spurious negative correlation will appear between the crime rate and the

proportion of crimes that are cleared up (see e.g. Blumstein et al., 1978): If, on the

other hand, an increase in the number of policemen increases the number of crimes

that are formally recorded, but not cleared up, there will be a spurious negative

correlation between the number of policemen and clear-up proportion. Thus,

underreporting and changes in recording will usually introduce a bias in favour of

deterrence, but against the hypothesis that the police produces it (Cameron 1988).

These spurious correlations impede the evaluation of criminometric studies, that

most often confirm that crime increases with a decrease in the clear-up proportion,

but that more police does not increase the clear-up proportion. This difficulty has

inspired us to deal more explicitly with measurement errors. Especially, we

introduce latent variables and employ the maximum likelihood method in

estimating the structural relations of a simultaneous model.
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Fisher and Nagin (1978) have discussed the serious problem of identification of

models of crime. They are reluctant to accept the commonly used procedure in

empirical crime studies of identifying models by excluding various socioeconomic

variables from the equations. Using panel data we have succeeded in identifying

our model by showing that the structural parameters are explicit functions of the

theoretical 2. order moments of the crime and clear-up rates.

This paper is meant to be the first step in a more comprehensive crirninometric

study. When designing the model, we have emphasized simplicity in order to focus

on some basic theoretical and empirical issues. In particular, we have not included

sociodemographic variables explicitly. We include, however, latent police districts

effects which summarize the effects of socioeconomic variables on crimes and on

clear-ups, and we model the distributions of these latent variables across police

districts and over time. The strength of sentences is not included as a variable,

because no perceptible difference in this factor seems to exist between police

districts and over time in the period studied.

The paper is organized as follows: In section 2 the criminometric model is

derived by combining an equilibrium model of the latent number of crimes and

clear-ups, based on behavioural relations of the offenders and the police, and

measurement relations allowing for random and systematic measurement errors

in the registered crimes and clear-ups. Furthermore, submodels and hypotheses

are classified. Section 3 presents detailed and subtle identification results within

this model class for panel data. Data and inference procedures are presented in

section 4, and the empirical results in section 5. The main conclusions are

summarized in section 6.

2. MODEL AND HYPOTHESES

The criminometric model is designed to describe and explain crime and clear-up

rates for I (i=1,2,...I) police districts in T (t=1,2,...,T) years. Section 2.1 presents the

equilibrium model of crimes and clear-ups based on behavioural relations between

the true latent variables. In section 2.2 we introduce measurement relations

connecting the true latent variables with the observed crimes and clear-ups. The

criminometric model in final form, derived from the submodels in 2.1 and 2.2, is
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given in section 2.3, and in section 2.4 we define submodels and present

hypotheses to be tested. Note that the equations below hold for all relevant i and

t.

2.1. An equilibrium model of crimes and clear-ups

The equilibrium model consists of the following three equations:

Pit =

Xit =

Yit =

Xit is the (true) crime rate, i.e. the number of crimes per 1000 inhabitants, in police

district i in year t. Yit is the clear-up rate defined as the number of clear-ups per

1000 inhabitants. Pit is the clear-up proportion defined in (la), i.e. the number of

clear-ups as a share of the number of crimes. (In the literature this concept (Pit)

is sometimes denoted "clear-up rate", while. we prefer to use this term to denote

the concept symbolized by Yit, treating crimes and clear-ups "symmetrically"

throughout the analysis.)

The crime function (1.b) says that the crime rate (Xi ) is a simple power function

of the clear-up proportion (Pit). It can be interpreted as a behavioural relation for

an average offender with rational expectations on the probability of being caught.

Furthermore, it can be derived from a utility maximizing model in the tradition of

Becker (1968), keeping the severity of punishment constant. For convenience we

will call the parameter b the deterrence elasticity and the variable C.  the crime

tendency in police district i in year t. The crime tendency (Cit) summarizes the

effect of the socioeconomic environment and other variables not explicitly modelled.

The distribution of these latent crime tendencies across districts and over time will

be modelled below.

The clear-up function (1c) says that the clear-up rate (Yi) is a simple power

function of the crime rate (Xi ). It can be interpreted as a behavioural relation of
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the police. One may also interpret it as a combined relation of the behaviour of the

police and the political authorities financing the police force. For convenience we

will call the parameter r the clear-up elasticity, and the variable Uit the clear-up

tendency.

We will below interpret, exploit, and/or test the following hypotheses on the

deterrence elasticity (b) and the clear-up elasticity (r):

(a) b<0, (b) r>0, (c) r<1, (d) c1=---1+b(1-r)>0.	 (2)

The theory of Becker (1968) implies (2a). Relation (2b) seems reasonable because

more crimes make it possible to get more cases cleared up. With more crimes,

however, less police force would be available per case, thus (2c) seems plausible.

Restriction (2d) secures that there will exist a meaningful and stable solution to

our equilibrium model. (The significance of the sign of the "stability parameter" d

is discussed below.) Assuming (2c), the restriction (2d) is equivalent to b>-1/(1-r),

i.e. the deterrence elasticity must not, for a fixed value of r, be too negative.

Furthermore, from (2a), .(2c), and (2d) it follows that

0<d<1.	 (2e)

The system of equations (1) has three endogenous variables (Pd, Xit, Yit), and

two exogenous variables (C Uit), with the following solution:

r, (r -1)/dTPit -= « it 	'ait

Xit	 it 
duibt/d

r/dT T (1 +bYdYit 	4.-1 it gia it	 .

Assuming (2), we obtain clear-cut sign results in five out of six cases: Increased

crime tendency (C i ) decreases the clear-up proportion (Pit), increases the crime

rate (Xit) and increases the clear-up rate (Yi ). Increased clear-up tendency (Uit)

(3a)

(3b)

(3c)
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increases the clear-up proportion (Pa), and reduces the crime rate (Xi ), whereas

the sign effect on the clear-up rate depends on the magnitude of the deterrence

effect:

EluitYit = (1 +b)c1.7.0 if 14-1. (4)

Thus, if the deterrence elasticity is less than -1, an increased clear-up tendency

(Ui ) reduces the number of clear-ups (Yid due to the strong reduction in the

number of crimes.

The question of stability of the equilibrium solution (3) can most easily be

discussed by help of Fig. 1, where the crime rate is measured along the horizontal

axis, and the clear-up proportion along the vertical one. (For convenience, the

subscripts i and t are here dropped.) The crime curves illustrate relation (lb) when

b<0, cf (2a). The crime control curves are obtained by eliminating the clear-up rate

through substitution of (lc) into (la):

Pit = xirt- y yit
, or

1■••■• 	 611.

)ÇpT4 UlT

Relation (lc') can be interpreted as the crime control function of the so-ciety

(including the police). The clear-up activity represented by (lc) has been

transformed into a function determining the clear-up probability (which again, in

interaction with the crime function, determines the equilibrium values of the

model).

In Fig. 1 we assume that there exist positive equilibrium values P* and and X*

of the clear-up proportions and crime rates, respectively, and that (2a) and (2c) are

satisfied. In Fig. 1 (a) the crime curve is steeper than the crime control curve,

which means, cf (lb) and (lc"), that 1/(r-1) < b , or 1+b(1-r) > 0, which is the same

as restriction (2d). Considering, according to the correspondence-principle of

Samuelson (1945), our equilibrium to be the stationary solution to a corresponding

dynamic model, where the society (including the police) determines the clear-up

probability (cf (lc')) and the potential offenders thereafter determines the number
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p.

P2

PI

P's

X. 	X2 X1	 X X3 X4

P9

P4

(a) Stable, d>0
	

(b) Unstable, d<0

Fig. 1 Stability of equilibrium

of crimes (cf (lb)), the following mechanism is obtained: If we start out with a

hypothetical crime rate Xl, the society's crime control (cf (lc')) will result in a

clear-up rate Pl, a rate at which crime (cf (lb)) will be reduced to X2, which again

will result in a higher clear-up rate P2, etc. The crime rate and the clear-up

proportion will move towards the equilibrium solution. A similar move towards

equilibrium will obtain if we start from a crime rate below its equilibrium value.

Thus, restriction (2d) is sufficient for a stable equilibrium under the stated

conditions. If d < 0, we have the situation in Fig. 1 (b). Here, the society's crime

control activity will produce, from a hypothetical crime rate X3, say, a clear-up

proportion P3, that will result in a higher crime rate X4, which again will produce

a lower clear-up Proportion P4, etc. The crime rate will explode. Starting with any

crime rate below X*, the clear-up proportion will increase and the crime rate

decrease. With our assumptions, we thus find that (2d) is also a necessary

condition for the equilibrium solution to be stable. (If d=0 the two curves merge,
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and no single equilibrium solution is obtained.) It is straightforward to formally

prove stability by analyzing an appropriate difference equation.

The model determines an equilibrium for each police district in every year. By

specifying a distribution on the crime and clear-up tendencies (C Uit) across

police districts, and how it varies over time, we obtain a corresponding distribution

of crimes and clear-ups (X.it, Yid through the reduced form model (3). We will give

a full specification later. As for now, we introduce the following decomposition:

lnCt = c°0t	 t(a)2i,	 (5a)

lnUiL = Xot	 tX2i,	 (5b)

where (Do't and Xot are deterministic (police district invariant) time trends, and the

remaining cos and Xs are time invariant latent district effects. This structure allows

for a restricted evolution over time in the distribution of the crime and clear-up

tendencies across police districts.

2.2. Measurement relations

Let xit and yit be the logs of the registered crime and clear-up rates, respectively.

These are related to the true rates by the following equations:

xit = Eit + et + s it,	 (6a)

yit = lnYit + ft + (pit •	 (6b)

Here, exp(ed and exp(f) represent systematic, multiplicative measurement errors

in exp(xit) and exp(yit), respectively. The terms et and ft are police district

invariant, but may change over time. The term et takes account of the problem of

systematic underreporting (dark number) of crime. The variables e it and (pit can

be interpreted as random measurement errors.

For convenience we define the following transformed variables:

xit = lnXit + et,	 (7a)

wit = lnYit + ft ,	 (7b)



Int = Wit Xit
(14-b)et - bft ,at = (Dot +

kt Xot ret + ft.

In (7a) we define the log of the latent crime rate (xit) as the sum of the log of the

true crime rate (Xit) and the systematic measurement error (e t). The log of the

latent clear-up rate (v it), and the log of the latent clear-up proportion (irit) are

defined in (7b) and (7c). The parameters at and kt are introduced in order to

simplify the criminometric model below. Note that at and kt are composed of the

deterministic time trends of (5) and (6). We do not try to identify and estimate

these components separately.

2.3. The criminometric model in fmal form

From (1), (5), (6), and (7) we can now derive the following criminometric model:

xit Xit	it

Yit = Wit +

Rit = Wit Xit ,

Xit = blrit + at + 0)1i t()2,

Wit = rXit kt Xii

We assume the following stochastic specification:

Ee it=E9 it=Eco li =Eco2i =EXE =E?■.2i =0,

Eei2t=al ee , 2
(Pit=uqup, Eeieht=aeq) ,

E(02ii=awkoi , E4= to2o)2) Ea) li(D2i=acolo)2 ,

EX21i=aX1jL1 EX22i=c7X2X2 , EXlik2i=axix2 ,

10

(7c)

(7d)

(7e)

(8a)

(8b)

(8c)

(8d)

(8e)

(9a)

(9b)

(9c)

(9d)

and all other covariances between the exogenous variables (e,9, co, .and X) are

assumed to be zero. Note that the assumptions of (9a) are innocent because of the
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constant terms defined in (5) and (6). Note, too, that the random measurement

errors (e it and it  are allowed to be correlated . We expect this correlation to be

positive: If, in a police district, registration is particularly sloppy, some crimes that

elsewhere normally would have resulted in separate files, are only informally

recorded. As formal files, including eventual clear-ups, constitute the basis for the

production of statistics, both the registered numbers of crimes and the registered

number of clear-ups will be lower than in a similar police district with better

registration procedures. This underregistration results in a positive correlation

between the random measurement errors. The same will happen if some files are

forgotten when statistics are produced by the end of the year.

2.4. Hypotheses and model specifications

Various specifications of the model (8)-(9) can be estimated by use of our panel

data. A classification of assumptions which may be combined in various manners

in order to obtain different models, is found in Table 1. Each assumption is given

a label, and each model will be denoted by the corresponding combination of labels.

(See Aasness, Biørn, and Skjerpen (1988) for a similar framework.) The

assumptions correspond to some of the hypotheses we are interested in testing,

especially hypotheses about the correlation of measurement errors, and about the

distributions oflatent police district effects. On the basis of the model classification

of Table 1 it is possible to specify 2x4x4=32 different models defined by different

assumptions in the M-, W- and L-dimensions, where these dimensions refer to

correlations of measurement errors (M), correlations of police district effects on

crimes (W), and correlations of police district effects on clear-ups (L). All these

specific models are estimated and/or tested in the empirical analysis. We could, of

course, introduce other specifications, e.g. time trends in the police district

invariant terms at and kt, but this is not carried out in the present paper.

3. IDENTIFICATION

Identification of most of the submodels are proven by showing that the structural

parameters are explicit functions of the theoretical 2. order moments of the crime

and clear-up rates, see Appendix B. The results of our investigation of
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identification are summarized in Table 2. Here Wi* (i=0,1,2,3) denotes the same

assumptions as Wi in Table 1, except that all parameters assumed to be free in

Table 1 now are assumed not to be zero. Lj * is defined similarly, and we have, for

instance, that W1*L0 corresponds to W1LO, the difference being that ;Awl can be

zero in the latter, but not in the former. Table 2 thus contains a complete set of

submodels of W3L3.

Table 1
Classification of hypotheses and modelsa

Assumptions with respect to correlations of measurement errors

Label Parameter restriction	Interpretation
ae(p

MO
	

No correlation of measurement errors
M1	 free
	

Measurement errors correlated

Assumptions with respect to correlations of police district effects on crimes

Label Parameter restriction 	 Interpretation
a(awl aco2w2 acolco2

WO	 0	 0	 0	 No district effect in crime
W1 free	 0	 0	 • Time invariant district effect in crime
W2 free	 free	 0	 Trend in distribution of district effect in crime
W3 free • free	 free	 Time invariant and trend effects correlated

Assumptions with respect to correlations of police district effects on clear-ups

	Label Parameter restriction	 Interpretaion
aX1)L1 ak2X2	 aX,1k2

LO	 0	 0	 0	 No district effect in clear-ups
Li	free	 0	 0	 Time invariant district effect in clear-up
L2	 free	 free	 0	 Trend in distribution of district effect in clear-up
L3 free	 free	 free	 Time invariant and trend effects correlated

a A model is specified by a combination of 3 labels: e.g. model MOW1L1 is a model where there is no
correlation of measurement errors, and no trends in the police district effects on crimes and clear-ups.
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A particular problem arises in models W3 L3* and W2*L2* . Here identification

of r (or b) requires the solution of a second order equation in this parameter, and

we will in general have two different roots, corresponding to two observationally

equivalent structures. The model can nevertheless be identified if only one of the

two solutions satisfy a priori restrictions on the set of parameter values. The

simplest case is to assume (2e), i.e. 0<d<1, since we have shown (Appendix B.10)

that only one of the two solutions can satisfy this restriction.

If one is not willing to use (2e) as a maintained assumption, for example because

one is interested in testing this hypothesis, or the hypothesis of 1:10, there are still

possibilities for discriminating between the two observationally equivalent

structures, combining a priori and empirical information. We will give an example

of this. Consider the following set of restrictions, cf (2b) and (2d):

Table 2

Identification of submodels of W3L3 ab

W3* 	W2*	 W1*	 WO*

L3* 	Identified if	 Identified	 Identified	 Not identifiedc

assuming (2e)

or #A=1

L2* 	Identified	 Identified if	 Identified	 Not ideirtifiedc

assuming (26)

or #A=I

Ll* 	Identified	 Identified	 Not identifiede Not identifiedc

LO* 	Not identifiedd Not identifiedd 	Not identifiedd Not identified

a See section 2.4 and Table 1 for definitions of models. The results hold for both MO and Ml.

b 	avg„ and cr., are identified for W3L3 (and for all submodels).

b is identified.

d r is identified.

e If one of the 4 non-identified parameters is given a fixed value, the remaining ones are identified.
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0.103e Rn 	1900 and Zo are all positive semidefinit, r>0, d>01, 	 (10)

where O are the unknown 'parameters of our model, and

Let /(0) denote the theoretical covariance matrix of the observed variables as a

function of the unknown parameters O of our model. Let

A = 10e Rn II(0)=ZI n e

for an arbitrary value of the covariance matrix E If, for a given model, the number

of elements in A is equal to one (#A=1), we consider the corresponding solution the

only one that can be accepted. The number of elements in A can depend on /, and

the question ofidentification ofW3 *L3* and W2*L2* thus involves empirical issues.

In the empirical analysis below we argue that only one of the two solutions of

W3*L3* is relevant in our case.

It is demonstrated in Appendix B (Section B.9) that, Wi*Lj* is observationally

equivalent to Wj *Li* for i*j and ij=0,1,2,3. Restriction (10) will in some of these

cases determine which of two "symmetric" models is relevant or acceptable.

Furthermore, it is shown that assuming (2e) for one such model, the symmetric one

is unstable, i.e. d<0. That is, within the set of two symmetric models fWi *Lj* ,

Wj *Li*1 (i*j, ij=1,2,3), we can identify the correct model under assumption (2e).

The parameters ae ., aw, and a identified for W3L3 as a whole. Six of the

submodels are completely identified. Identification of b is further obtained in the

three first models of the last column, whereas identification of the remaining

parameters here requires one supplementary piece of information (e.g. fixing the

value of one of them). Similarly, r is identified in the three first models of the last

line, and here too one more piece of information is necessary in order to identify

the remaining parameters.
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4. DATA AND ESTIMATION

The model is estimated by use of data on the number of crimes and clear-ups for

53 police districts in Norway for the period 1970-78, (cf Central Bureau of

Statistics, annual). Our main reasons for choosing this period is the absence of

substantial changes in legal rules or registration practices, and the wish to make

comparisons with Eide (1987). These data are transformed into crime rates and

clear-up rates (Tables A3 and A5) and further into logs of these rates (Tables A7

and A8). Finally, the logs are used to calculate a covariance matrix of the log

numbers-of crime and clear-up rates for the nine years. This covariance matrix (see

Appendix A) is all the data we use in our econometric analysis.

Let S be this sample covariance matrix of our observed variables, and

Frs, in I 1(0) I + tr(S1(0) -1) - in I S I - 2T, (11)

where "tr" is the trace operator, i.e. the sum of the diagonal elements of the

matrix.

Minimization of F w.r.t. O is equivalent to maximization of the likelihood

function when assuming that all the observed vitriables (i.e. the lnx's and lny's) are

multinormally distributed. (All the first order moments are used to estimate the

constant terms at and kt.) We have used the computer program LISREL 7 by

Jöreskog and Sörbom (1988) to perform the numerical analysis.

A standard measure of the goodness of fit of the entire model in LISREL is

GFI = 1 - tr[(r ls - I)2]/tr[(1-1S)2], where I is the identity matrix; GFI = 1 indicates

perfect fit. Standard asymptotic t-values and 2c2- statistics are utilized. We use a

significance level of 0.01 as a standard in our test, but report also significance

probabilities.

We will test a specific model 0 (the null hypothesis) against a more general

model 1 (the maintained hypothesis) by a likelihood ratio test. Let F0 and F1 be

the minimum of F under model 0 and model 1, respectively, and let s • be the

difference in the number of parameters of the two models. It can bd shown that

minus twice the logarithm of the likelihood ratio is equal to I(F0 - F1), where I is

the number of police districts. According to standard theory this statistic is
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approximately x2 distributed with s degrees of freedom. The X2 value for each

model, given in Table 3, is defined as IF0, which can be interpreted as the test

statistic above when the alternative hypothesis is an exactly identified model,

giving a perfect fit to the sample covariance matrix and accordingly F1=0. The test

statistic I(F0 - F1) for an arbitrary pair of models may thus be computed by simply

subtracting the corresponding pair of x2 values. The significance probability

corresponding to the value of a test statistic, i.e. the probability of getting a )c

value greater than the value actually obtained given that the null hypothesis is

true, is reported in Table 4.

LISREL 7 minimizes the function F without imposing any constraints on the

admissible values of the parameter vector O. Thus the LISREL estimate of a

parameter which we interpret as a variance, may well turn out to be negative. This

may be considered as a drawback of this computer program. However, if our model

and its interpretation is correct, the LISREL estimates should turn out to have the

expected signs, apart from sampling errors. Thus, if for a given model all the

estimated variances are positive, and all the estimates of the covariance matrices

and EEG, are positive semidefinite, we will take this as a confirmation

that the model has passed an important tegt. This in fact happened in our

empirical analysis.

If one is unwilling to assume normality of the observed variables, the estimators

derived from minimizing F above can be labelled quasi maximum likelihood

estimators. These estimators will be consistent, but their efficiency and the

properties of the test procedures are not so obvious. A large literature on the

robustness of these types of estimators and test procedures for departure from

normality prevails, see e.g. thireskog and Sørbom (1988) for an extensive list of

references, with quite different results depending on the assumptions and methods

used. A recent and growing literature shows, however, that the estimators and test

statistics derived under normality assumptions within LISREL type of models

retain their asymptotic properties for wide departures from normality, exploiting

assumptions on independently distributed nonnormal latent varialides, see e.g.

Anderson and Amemiya (1988), Amemiya and Anderson (1990), Browne (1987),

and Browne and Shapiro (1988).
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The assumption of normality can be tested by use of the (moment coefficient of)

skewness m3/4m23 and the (moment coefficient of) kurtosis mim22 . In a normal

distribution the skewness is equal to zero, and the kurtosis is equal to three. Given

that the distribution is normal, the observed skewness and kurtosis are

asymptotically independent, and can thus be used for two asymptotically

independent tests of normality. Skewness and kurtosis for our samples have been

calculated (by SPSS) for the crime and clear-up rates, and for their logs, and are

included in Tables A3-A8. In 98% of all samples of size 50 from a normal

population we have that the absolute value of skewness is less than 0.787, and the

value of kurtosis is within the iliterval [1.95, 4.8812. We find that normality is

rejected for the crime rate (Table A3) by the skewness test for all years, and by the

kurtosis test for two years. As for the clear-up rate (Table A5), normality is

rejected by both tests for all years. The log of crime rates (Table A7) passes the

skewness test for all years, but the kurtosis test for none, whereas the log of clear-

up rates (Table A8) passes the skewness test in three years, and the kurtosis test

also in three years. Obviously, a logarithmic specification of our model is to be

preferred to a linear one. The values of the observed kurtosis are low, indicating

platykurtic or "flat" distributions. This departure from normality is considered in

the x2 tests below.

As the distribution of the logs of the crime and clear-up rates are found—to be

platykurtic this x2 test may not be satisfactory. However, the test can easily be

corrected by dividing the difference of the corresponding pairs of x2 values by the

relative multivatiate kurtosis when performing the significance test. As the

relative multivariate kurtosis for our covariance matrix is very close to one (1.06),

the results of the likelihood ratio tests are not changed by this adjustment, and we

find it unneccessary to present details.

5. EMPIRICAL RESULTS

5.1. Likelihood ratio tests

All 32 models classified in Table 1 have been fitted. Table 3 contains for all models

2The critical values of skewness and kurtosis can be found in Pearson (1965). A discussion of the
present tests of normality is found in White and MacDonald (1980).
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Table 3
Overview of fitted models

M1-modelt

District	 District effects on crime
effects on
clear-ups	 W3	 W2	 W1	 WO

df	 160	 161	 162 	163'
L3	 X

2	 283.12	 283.71	 296.02	 496.79
GF! 	0.647	 0.645	 0.638	 0.397

df	 161	 162	 163 	164'
L2	 X2	 283.71	 296.96	 300.83	 506.16

GFI	 0.645	 0.636	 0.634	 0.391

df	 162	 163	 164	 165c
Li 	X2	 296.02	 300.83	 405.46	 605.96

GF! 	0.638	 0.634	 0.513	 0.333

df	 163b	 164b	 165b	 1661'
LO	 X

2	 496.79	 506.16	 605.96	 1469.3
GFI	 0.3970.391	 0.333	 0.186

MO-modelsa

District	 District effects on crime
effects on
clear-ups	 W3	 W2	 W1	 WO

df	 161	 162	 163	 164c
L3	 X2	 585.37	 589.11	 589.19	 688.05

GFI	 0.471	 0.464	 0.464	 0.431

df	 162	 163	 164	 165c
X2	 589.11	 607.51	 607.53	 701.24
GF! 	0.464	 0.462	 0.461	 0.427

df	 163	 164	 165	 166e
Li 	X2	 589.19	 607.53	 727.16	 798.44

GFI	 0.464	 0.461	 0.401	 0.389

df	 164b	 165b	 166b	 167bc
LO	 2c2	 688.05	 701.24	 798.44	 2037

GFI	 0.431	 0.427	 0.389	 0.090

a See section 3 regarding the symmetry between WiLj and WjLi (i*j; i.0,1,2,3).
b The model is estimated for a fixed value of b, any b would give the same 2e.

The model is estimated for a fixed value of r, any r would give the same X •

the degrees of freedom (df), the goodness of fit (GFI), and the likelihood ratio x2

test statistic for each model against a model with no restriction on the covariance
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matrix.

First, we have studied the presence of correlation of measurement errors by

testing MO against Ml. For all (16) possible combinations of maintained

assumptions in the W- and L-dimensions MO is rejected, even at a level of

significance of 10-6.

Table 4.1 presents significance probabilities for tests of each of the hypotheses

in the W-dimension against a more general hypothesis of the same dimension.

These tests are performed for each of the alternative maintained assumptions in

the L-dimension. Table 4.2 contains similar tests of the L-dimension. From Tables

4.1 and 4.2 we conclude that the hypotheses of WO, LO, W1, and 1,1 are rejected.

We have further found (not included in Table 4) that WOLO is rejected against

W1L1, W1L1 against W2L2, and W21,2 against W3L3. This leaves us with the

general model M1W3L3 and the two non-rejected models M1W3L2 and M1W2L3.

The choice between them can be made on the basis of parsimony, and of the

acceptability of the estimated parameters. It will be argued below that M1W3L2

is the model to be preferred.

5.2. Evaluation of models not rejected by likelihood ratio tests

As identification of certain parameters in some of our models depends on the

solution of a second order equation, there will in general exist two observationally

equivalent structures, and correspondingly two global minima to the fit function

in (11). Depending on the starting values, LISREL will find one or the other of

these two solutions. The second one, which has the same F-value as the first, can

be located by choosing appropriate starting values. This is done for the model

M1W3L3, where we obtain the solutions I and II, the parameter estimates of which

are given in Table 5. The two solutions are further characterized in Fig. 2, where

the minimum value of F is plotted for various given values of r. The two global

minima of F are obtained for those values of r that correspond to the solutions I

and II. As a check of our conclusions, the minimum value of F has been calculated

for a series of values of r in the interval [-200, 200]. F is decreasing for values of

r to the left of the lower solution. For values of r higher than 1.7, F is decreasing,

but very slowly, and does not reach lower than 2.752 in the interval' studied.
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Table 4

Significance probabilities in likelihood ratio testsa

1. Tests of district effects on crimes

Maintained	 Null and alternative hypotheses

assumptions WO against W1 against W2 against W1 against

W1	 W2	 W3	 .W3

M1L3	 0.000000	 0.000451	 0.442419 . 0.001581

M1L2	 0.000000	 0.049156	 0.000273	 0.000192

M1L1	 0.000000	 0.000000	 0.028295	 0.000000

M110	 0.000000	 0.000000	 0.002206	 0.000000

2. Tests of district effects on clear-ups

Maintained	 Null and alternative hypotheses

assumptions	 LO against	 Li against	 L2 against	 Li against

Li	 L2	 L3	 L3

M1W3	 0.000000	 0.000451	 0.442419	 0.001581

M1W2	 0.000000	 0.049156	 0.000273	 0.000192

M1W1	 • 0.000000	 0.000000	 0.028295	 0.000000

M1WO	 0.000000	 0.000000	 0.002206	 0.000000

a The equality of the significance probabilities between Tablet 4.1 and 4.2 is due to the symmetry

between the models WiLtj and WjLi, cf Table 3.



21

Fig. 2. F-values of M1W3L3 with two solutions

Solution II violat6s restrictions (2b) and (2d), cf (10), whereas all the estimates in

solution I seem sensible. Thus, we prefer solution I.

We observe that the estimates of M1W3L3 I and M1W3L3 11 are almost identical

with those of M1W3L2 and M1W2L3, respectively. Furthermore, from the

estimates of b and r we calculate the value of the stability parameter d to be 0.83

in M1W3L2 and -4.99 in M1W2L3. Thus we prefer the former model to the latter,

cf section 3. The final choice is then between M1W3L3 I and M1W3L2. The latter

being more parsimonious, we consider this model to be the preferred one. We focus

on this model in sections 5.3 to 5.5, and discuss robustness of results across models

in section 5.6.

5.3. The deterrence and clear-up elasticities

The estimate of the deterrence elasticity (b) is significantly negative in our

preferred model, and close to -1. The estimate of the clear-up elasticity (r) is about

0.8 in our preferred model, and the confidence interval is clearly within the

boundaries argued a priori, cf (2). These estimates of b and r imply that the

estimate- of the stability parameter d is 0.8, and the corresponding confidence

interval is clearly within the boundaries (0,1), in agreement with our hypothesis

(2e).
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Table 5
Estimates of non-rejected modelsab

Parameter M1W3L3 I 	M1W3L2	 M1W2L3	 M1W3L311

b	 -.844	 -0.864	 -5.175	 -5.260

(0.357)	 (0.311)	 (2.237)	 (2.646)

r	 0.810	 0.807	 -0.158	 -0.185

(0.096)	 (0.084)	 (0.417).	 (0.501)

a(01(01	 0.269	 0.267	 1.065	 1.202

(0.069)	 (0.065)	 (1.179)	 (1.634)

)2(02	 0.0010	 0.0009	 0.0093	 0.0112a0
(0.0004)	 (0.0003)	 (0.0095)	 (0.0133)

a(010)2	 -0.0094	 -0.0094	 Oc	 -0.0198

(0.0036)	 (0.0035)	 (0.0385)

aXik1	 0.043	 0.040	 0.357	 0.377

(0.015)	 (0.013)	 (0.310)	 (0.381)

ak2X2	 0.0004	 0.0003	 0.0013	 0.0013

(0.0002)	 (0.0001)	 (0.0012)	 (0.0015)

ax,a2	 -0.0007	 Oc	 -0.0126	 -0.0132

(0.0010)	 (0.0110)	 (0.0136)

0.028	 0.028	 0.028	 0.028

(0.002)	 (0.002)	 (0.002)	 (0.002)

0.067	 0.067	 0.067	 0.067

(0.005)	 (0.005)	 (0.005)	 (0.005)

0.032	 0.032	 0.032	 0.032

(0.003)	 (0.003)	 (0.003)	 (0.003)

d
	

0.839	 0.833	 -4.992	 -5.233

(0.045)	 (0.045) •	 (1.631)	 (1.764)

a See Table 1 for definitions of models. Solutions I and II correspond to the two solutions
of a second order equation obtained in identifying the model.

b Standard errors in parentheses.
A priori restriction.
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5.4. Distribution of crime and clear-up tendencies

The estimates of the distribution parameters of the district effects on crime are

also given in Table 5. Straightforward calculation shows that for our preferred

model the variance of the crime tendency, var 1nCit = acolog t2ac02o02 2taco1co2)

is estimated to be positive for all years, i.e. for t=1,2,...,9. As this estimate is not

restricted to positive values by LISREL, we take the result as a confirmation that

our model, and our interpretation of it, has passed an interesting test.

We note that cs0)1(02 is significantly negative. Furthermore, the estimates indicate

a decrease in the variance of the district effects over time. Denoting the first

difference operator by A, we see in fact that Avar lne it = 2(t-1)4;02(02 + 2;310,2 is

negative for the whole period. The estimate of var InCit is, in this period, reduced

from 0.250 to 0.186. The estimate of the variance of the crime tendency is thus

substantially reduced during the period.

The estimates of the variances of the district effects on clear-ups (a and

ax2x2) are positive, as expected, and significantly different from zero in our

preferred model. The change over time in the variance of the clear-up tendency is

negligible.

5.5. Measurement errors

The estimates of the variances and the covariance of the errors of measurement

are positive and highly significant. This confirms our hypothesis in section 2.4 of

a positive aecp .

5.6. Robustness of results

Table 6 show the estimates of all models with two global maxima (solutions I and

II). We observe that for all four solutions II the estimates of both r and d are

negative. These models are thus rejected according to (10).

Tables 7 and 8 contain the estimates of all identified Ml- and M07models,

respectively (solutions II not included). The MO-models are strongly rejected

against the corresponding M1-models, and we may thus expect that at least some

of the estimators of the structural parameters are biased in the MO-models. But

no clear-cut results emerge by comparing Tables 7 and 8. For example the
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estimates of b and r are rather close to each other for M1W3L3 and MOW3L3. For

the latter, however, the estimate of the variance of X2 is negative, thus modelling

measurement errors correctly can be important for estimating the other

parameters.

Just like in our preferred model, the estimate of b is found to be negative in all

but 2 of the 16 estimated models in Tables 7 and 8. The two models in question,

M1W2L1 and M1W3L1 have not significant estimates of b. They are strongly

rejected by the likelihood ratio tests, and have some quite nonsensical estimates.

Thus, we do not give them weight as evidence on bt We conclude that the

estimated sign of b is robust across models, although the value varies

substantially. This result suggests that misspecification in modelling may not

hinder the sign of the deterrence elasticity to be correctly determined, but that a

reliable estimate of its value requires thorough empirical analysis.

The estimate of r is, as expected, and just as in our preferred model, located in

the interval [0,1] for all 11 models where the estimate is significant. The estimate

is positive in 3 of the remaining models, and negative in two, i.e. in MOW1L2 and

M1W2L3. Of these, model MOW1L2 is firmly rejected. According to Tablie 4,

M1W2L3 is not rejected against M1W3L3. We nevertheless disregard the former

model, because the estimated value of d is significantly negative, and because its

symmetric counterpart M1W3L2 is perfectly acceptable. Thus, none of the more

interesting models have estimates of r that are outside the assumed interval.

For all models the variance of the crime tendency (var lneit) is found to be

positive in all years. We note that a(01(02 is significantly negative for the fitted

models where this parameter is not zero a priori (i.e. for the W3-models).

Furthermore, the estimates indicate a decrease in the variance of the district

effects over time for most models.

The estimates of the variances of the district effects on clear-ups (a  and ax2x2

are positive in all models, but one. Here, in MOW3L3, the estimate of . akai is

negative, but not significant.

The estimates of the variances and the covariance of the errors of measurement

are very robust with respect to model specifications.



-0.844	 -5.260	 -0.916	 -4.526	 -0.919	 -4.889

(2.548)	 (0.298)	 (1.602)

-0.092	 0.795	 -0.088

(0.661)	 (0.067)	 (0.353)

0.763	 0.271	 0.457

(1.126)	 (0.063)	 (0.565)

0.0074	 0.0014 -.0067

(0.0093)	 (0.0003) (0.0047)

Oc 	-0.0114	 0.0647

(0.0034) (0.0423)

0.260	 0.0191	 0.320

(0.394)	 (0.0138) (0.251)

0.0007	 -0.00028 0.0016

(0.0049)	 (0.00017 (0.0011)

Oc 	0.0027 -0.0134

(0.0011) (0.0095)

0.028	 0.028	 0.028

(0.002)	 (0.002)	 (0.002)

0.0.68	 0.065	 0.065

(0.005)	 (0.005)	 (0.005)

0.033	 Oc	 Oc

(0.003)

	

(0.357)	 (2.646)	 (0.554)

	

0.810	 -0.185	 0.779

	

(0.096)	 (0.501)	 (0.124)

	

aca 031 0.269	 1.202	 0.218

	

(0.069)	 (1.534)	 (0.078)

	Cro)2œ2 0.0010	 0.0112	 0.0006

	

(0:0004)	 (0.0133) (0.0004)

	aco1co2 -0.0094	 -0.0198	 Oc

	

(0.0036)	 (0.0385)

crxm	 0.043	 0.377	 0.037

	

(0.015)	 (0.381)	 (0.015)

ak2 2	 0.0004	 0.0013	 0.0004

	

(0.0002)	 (0.0015)	 (0.0001)

	°mu -0.0007	 -0.0132	 Oc

	

(0.0010)	 (0.0136)

aBB	 0.028	 0.028	 0.028

	

(0.002)	 (0.002)	 (0.002)

	

0.067	 0.067	 0.068

	

(0.005)	 (0.005)	 (0.005)

aal	 0.032	 0.032	 0.033p

	(0.003)	 (0.003)	 (0.003)
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Table
Estimates of models with two global maximaab

Para-
meter M1W3L3I M1W3L311 M1W2L21 M1W2L211 M0W3L3I M0W3L3II M0W2L2 M0W2L2 II

-0.127	 -3.488

(1.000)
	

(1.020)

0.713	 -6.887

(0.084)
	

(62.18)

0.377
	

0.432

(0.236)
	

(0.291)

0.0017	 -0.00031

(0.0011) (0.0020)

Oc 	Oc

0.0355 23.43

(0.0096) (383.4)

-0.0000 0.104

(0.0002) (1.703)

Oc Oc

0.027	 0.027

(0.002)	 (0.002)

0.065	 0.065

(0.005)	 (0.005)

Oc 	Oc

d	 0.839	 -5.232	 0.798	 -3.943	 0.812	 -4.318
	

0.964	 -26.510

(0.045)	 (1.764)	 (0.048)	 (1.177)	 (0.053)	 (1.493)
	

(0.277)	 (209.9)

a See Table 1 for definitions of models. Solutions I and H correspond to the two solutions of a second
order equation obtained in identifying the model.
b Standard errors in parentheses.
c A priori restriction.
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Table 7
Estimates of Ml-modelsab

Para- M1W3L3 M1W3L2 M1W3L1 M1W2L3 M1W2L2 M1W2L1 M1W1L3 M1W1L2
meter

b	 -.844	 -0.864	 1.405	 -5.175	 -0.916	 86.198	 -2.193	 -1.692

(0.357)	 (0.311)	 (2.119)	 (2.237)	 (0.554)	 (1281)	 (0.476)	 (0.278)

0.810	 0.807	 0.544	 -0.158	 0.779	 0.409	 1.712	 1.012

(0.096)	 (0.084)	 (0.099)	 (0.417)	 (0.124)	 (0.097)	 (1.073)	 (0.172)

awl col	 0.269	 0.267	 0.953	 1.065	 0.218	 604.5	 0.207	 0.171

(0.069)	 (0.065)	 (1.146)	 (1.179)	 (0.078)	 (0.071)	 (0.036)

°c2w	 0.0010	 0.0009	 0.0046	 0.0093	 0.0006	 3.832	 Oc	 Oc

(0.0004) (0.0003) (0.0058) 	 (0.0095) (0.0004) (112.4)

ao 1co2	 -0.0094	 -0.0094	 -0.026	 Oc	 .0c	 Oc	 Oc

(0.0036) (0.0035) (0.0034)

auAi 	0.043	 0.040	 0.043	 0.357	 0.037	 0.060	 0.483	 0.081

(0.015)	 (0.013)	 (0.012)	 (0.310)	 (0.015)	 (0.023)	 (0.888)	 (0.051)

aux2 	0.0004	 0.0003	 Oc 	0.0013	 0.0004	 Oc 	0.0023	 0.0005

(0.0002) (0.0001)	 (0.0012) (0.0001) 	 (0.0041) (0.0002)

axix2	 -0.0007	 Oc 	Oc	 -0.0126	 Oc 	Oc	 -0.013	 Oc

(0.0010)	 (0.0110)	 (0.024)

a11	 0.028	 0.028	 0.028	 0.028	 0.028	 0.029	 0.028	 0.029

(0.002)	 (0.002)	 (0.002)	 (0.002)	 (0.002)	 (0.002)	 (0.002)	 (0.002)

aqxP	 0.067	 0.067	 0.071	 0.067	 0.068	 0.072	 0.071	 0.072

(0.005)	 (0.005)	 (0.005)	 (0.005)	 (0.005)	 (0.005)	 (0.005)	 (0.005)

a119	 0.032	 0.032	 0.034	 0.032	 0.033	 0.035	 0.034	 0.035

(0.003)	 (0.003)	 (0.0029	 (0.003)	 (0.0029) (0.0029) (0.0029) (0.0029)

d	 0.839	 0.833	 1.641	 -4.992	 0.798	 51.950	 2.561	 1.020

(0.045)	 (0.045)	 (1.089)	 (1.631)	 (0.048)	 (764.2)	 (2.653) • (0.294)

a See Table 1 for definitions of models. Only solutions I are included; see Table 6 for solutions II.
b Standard errors in parentheses.
c A priori restriction.
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Table 8
Estimates of MO-modelsab

Para- MOW3L3 MOW3L2 - MOW3L1 MOW2L3 MOW2L2 MOW2L1 MOW1L3 MOW1L2
meter

b	 -.919	 -1.442	 -1.429 	46.097	 -0.127	 -0.085	 -14.278	 -3.449

(0.298)	 (0.407)	 (0.395)	 (34.83)	 (1.000)	 (1.226)	 (25.11)	 (1.169)

r	 0.795	 0.938	 0.930	 0.307	 0.713	 0.710	 0.300	 -10.71

(0.067)	 (0.134)	 (0.123)	 (0.196)	 (0.084)	 (0.098)	 (0.193)	 (168.1)

Cr co 1 co1 	 0.271	 0.248	 0.249	 14.678	 0.377	 0.386	 11.537	 0.413

(0.063)	 (0.056)	 (0.055)	 (69.75)	 (0.236)	 (0.291)	 (45.17)	 (0.304)

(702032 	 0.0014	 .0.0014	 0.0014	 0.009	 0.0017	 0.0017	 Oc	 Oc

(0.0003) (0.0005)	 (0.0005)	 (0.061)	 (0.0011)	 (0.0014)

°t'Axa 	- 0.0114 	-0.0116	 -0.0121	 Oc	 Oc	 Oc	 •	 Oc	 Oc

(0.0034) (0.0044)	 (0.0043)

axai	 0.0191	 0.0567	 0.0566	 0.119	 0.0355	 0.0347	 0.122	 52.93

(0.0138) (0.0273)	 (0.0257)	 (0.072)	 (0.0096)	 (0.0085)	 (0.073)	 (1558)

ax2x2	 -0.00028 0.00004	 Oc 	.0.0006	 -0.0000	 Oc	 0.0007	 0.235

(0.00017 (0.00013)	 (0.0003)	 (0.0002)	 (0.0003) (6.930)

aux2 • 0.0027	 Oc 	Oc	 -0.006	 Oc	 Oc	 -0.006	 Oc

(0.0011)	 (0.003)	 (0.003)

aBi	 0.028	 0.027	 0.027	 0.027	 0.027	 0.027	 0.027	 0.027

(0.002)	 (0.002)	 (0.002)	 (0.002)	 (0.002)	 (0.002)	 (0.002)	 (0.002)

aqxp	0.065	 0.064	 0.064	 0.064	 0.065	 0.066	 0.064	 0.065

(0.005)	 (0.005)	 (0.005)	 (0.005)	 (0.005)	 (0.006)	 (0.005)	 (0.005)

a	 Oc	 Oc	 oc	 oc	 Oc	 oc	 Oc	 Oc

a See Table 1 for definitions of models. Only solutions I are included; see Table 6 for solutions IL
b Standard errors in parentheses.
c A priori restriction.

5.7. Estimate of MOW1L1

As shown in Table 2, model W1L1 cannot be identified without further restrictions.

In Table 9 we present the results when a constant value of r is introduced as such

a restriction. The table illustrates the effect of choosing various values of this

parameter. We see that an increase in r causes a strong decrease in the estimate
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Table 9a

Estimate of MOW1L1 with r constant

0.5	 0.6	 0.7	 0.82	 0.85 •	 0.90

b	 4.284	 1.017	 -0.241	 -1.004	 -1.135	 -1.319

(3.924)	 (0.967)	 (0.439)	 (0.285)	 (0.271)	 (0.258)

at:010)1	 2.502	 0.623	 0.284	 0.188	 0.174	 0.165

(3.077)	 (0.351)	 (0.098)	 (0.046)	 (0.042)	 (0.038)

akm	 0.043	 0.034	 0.033	 0.039	 0.043	 0.049

(0.010)	 (0.009)	 (0.009)	 (0.010)	 (0.011)	 (0.012)

at, 	 0.041	 0.041	 0.041	 0.041	 0.041	 0.041

(0.003)	 (0.003)	 (0.003)	 (0.003)	 (0.003)	 (0.003)

a	 0.074	 0.074	 0.074	 0.074	 0.074	 0.074qxP

(0.005)	 (0.005)	 (b.005)	 (0.005)	 (0.005)	 (0.005)

x
2	 727.16	 727.16	 727.16	 727.16	 727.16	 727.16

GF! 	0.401	 0.401	 0.401	 0.401	 0.401	 0.401

a Standard errors in parentheses.

of b. The estimates of the measurement errors do not depend on the value of r.

Observe that the 2c2-value, as expected, is independent of r.

6. CONCLUSIONS

A new criminometric model is derived from a theory of criminal and police

behaviour, and measurement relations with random and systematic registration

errors. The effects of the socioeconomic environment are summarized by the latent

district effects in the crime and clear-up functions, and the distribution of these

latent variables across police districts and over time is modelled.

The model is not identified if the latent district effects are constant over time.

If the latent district effects vary over time, many submodels are identified. In the
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general model there will be two observationally equivalent structures, and

correspondingly two global maxima in the likelihood function, due to the two

solutions of a 2. order equation. However, by reasonable a priori restrictions in the

parameter space, only one of the two solutions come out as empirically relevant.

The model was applied successfully on panel data on the number of crimes and

clear-ups for the 53 police districts in Norway for 1970-78, confirming the

hypothesis that our approach is fruitful. The model and the theoretical and

empirical analysis can be extended in various ways. The present paper may thus

be used as a starting point for further research in aiminometrics.

The deterrence elasticity was found to be significantly negative and close to -1.

The estimate of this elasticity varies considerably between submodels, and

illustrates the importance of our systematic approach to classifying, estimating,

testing, and evaluating submodels.

The variance of the latent district effects in the crime function decreased during

the period. The estimates of the variances and the covariance of the measurement

errors were significantly positive and very robust with respect to model

specifications.
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APPENDDC A: DATA

Data on the number of crimes in Table 2 is found in Central Bureau of Statistics

(annual): Crime Statistics. Data on the number of clear-ups are unpublished

statistics from the Central Bureau of Statistics.

A crime is registered by the police for statistical purposes in the year when

the investigation is closed. Accordingly, the statistics give information on

investigated cases and not about crimes committed in the statistical year. The

average period of investigation has for the country as a whole and for all crimes

taken together increased from 4 months in 1970-1972 to 4.9 months in the period

1980-1982. Cases shelved for observation are considered closed, but if such cases

are subsequently cleared up, a new statistical report is submitted. If this happens

the same year, the first report is not included in the statistics, but if it happens

in a subsequent year, the crime is registered as a separate crime and clear-up that

year.

The only noticeable legal change of some importance to the number of crimes

during the studied period, was the decriminalizing of "naskeri" (petty larceny of

less than about 50 kr.) by the end of 1972. Until then this crime was included in

the group of petty larceny, which accounted for about 30 per cent of total crimes.

The number of crimes in this group did not decline from 1972 to 1973.
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Table A.1
Covariance matrix of logs of crime rates

Crimes

Crimes

1970 1971 1972 1973 	 1974 1975 1976 1977 1978

1970 .4019
1971 .3614 .3695
1972 .3693 .3673 .3947
1973 .3714 .3718 .3912 .4187
1974 .3411 .3367 .3476 .3645 	 .3660
1975 .3390 .3402 .3524 .3689 	 .3505 .3836
1976 .3107 .3149 .3209 .3390 	 .3311 .3551 .3475
1977 .3001 .3070 .3143 .3324 	 .3151 .3351 .3240 .3331
1978 .2942 .2894 .2990 .3074 	 .2973 .3162 .2956 .3017 .3449

Table A.2
Covariance matrix of logs of crime and clear-up rates

Clear- Crimes
ups

1970 1971 1972 1973 	 1974 1975 1976 1977 1978

1970 .2931 .2590 .2524 .2444 	 .2302 .2217 .2093 .1957 .1859
1971 .2525 .2622 .2430 .2441 	 .2144 .2143 .2010 .1918 .1727
1972 .2577 .2670 .2834 .2684 	 .2386 .2283 .2123 .2053 .1897
1973 .2506 .2713 .2762 .2962 	 .2458 .2526 .2344 .2242 .1931
1974 .2204 .2334 .2388 .2445 	 .2533 .2334 .2231 .1993 .1734
1975 .2117 .2205 .2313 .2374 	 .2222 .2539 .2321 .2056 .1827
1976 .2147 .2286 .2376 .2428 	 .2366 .2586 .2658 .2250 .1788
1977 .1882 .2062 .2135 .2231 	 .1911 .2075 .2085 .2231 .1758
1978 .1980 .1998 .2069 .1978 	 .1883 .1879 .1775 .1803 .2110

Table A.3
Covariance matrix of logs of clear-up rates

Clear-
ups

Clear-ups

1970 1971 1972 1973 1974 1975 1976 1977

1970 .2746
1971 .2279 .2522
1972 .2165 .2219 .2834
1973 .1996 .2181 .2350 .2864
1974 .1796 .1850 .2117 .2210 .2512
1975 .1642 •.1634 .1819 .1997 .1920 .2380
1976 .1766 .1706 .1969 .2074 .2031 .2060 .2837
1977 .1499 .1591 .1712 .1903 .1566 .1638 .1830 .2284
1978 .1672 .1554 .1872 .1605 .1440 .1387 .1582 .1529

1978

M44
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Table A2
Number of crimes, police districts, 1970-78

No 1970 1971 1972 1973 1974 1975 1976 1977 1978 Mean St.dev.

1 21395 23550 23559 26966 28648 31616 26411 29299 32836 27142.22 1210.51
2 378 521 512 503 551 632 528 546 625 532.89 23.38
3 1066 1143 1291 1386 1879 1760 1658 1516 1901 1511.11 97.41
4 • 1090 1513 1836 2036 1234 2335 2238 1818 1580 1742.22 134.28
5 514 620 636 667 808 966 1123 1288 1535 906.33 109.28
6 904 1129 1245 1233 1230 1382 1236 1327 1293 1219.89 43.36
7 1933 2177 2333 3017 3687 3420 3523 3758 4015 3095.89 241.01
8 346 480 413 343 484 383 598 682 599 480.89 38.41
9 304 686 660 938 811 1077 1063 1071 1009 846.56 81.75

10 412 510 565 571 723 489 563 569 537 548.78 26.21
11 369 392 549 566 468 629 691 622 617 544.78 35.18
12 768 1240 1073 1244 1607 1729 1680 1162 1365 1318.67 98.39
13 748 1144 1294 1544 1951 1783 1798 1564 1583 1489.89 117.53
14 3271 2688 4315 5609 4066 4725 3581 3440 3715 3934.44 272.22
15 1821 2019 2215 2719 2652 3154 2879 3285 3628 2708.00 189.71
16 541 559 588 659 636 806 674 639 711 645.89 25.55
17 650 692 770 902 1230 849 929 1058 1243 924.78 67.78
18 962 1329 1759 1920 1506 2220 1918 1876 2516 1778.44 146.19 	 .
19 522 710 869 815 985 1081 1151 952 1286 930.11 73.17
20 432 400 531 576 801 1183 1175 860 988 771.78 95.39
21 606 1048 1149 1081 1533 1407 1448 1596 1547 1268.33 102.03
22 628 1172 1073 1088 1170 1986 2157 1863 2100 1470.78 175.01
23 240 335 373 376 473 426 490 550 400 407.00 28.82
24 88 100 114 111 102 142 133 159 114 118.11 7.06
25 154 211 199 297 224 194 158 217 226 208.89 13.28
26 775 682 1024 890 1069 1261 1203 1131 1729 1084.89 97.01
27 2293 2814 2511 2689 2652 3420 2969 2486 3964 2866.44 164.87
28 190 259 184 217 338 356 395 435 426 311.11 31.57
29 812 954 891 1249 1101 1070 1251 1217 1397 1104.67 60.40
30 2023 2429 2370 2327 2426 2522 2529 2182 2703 2390.11 62.84
31 813 851 872 743 769 1137 1262 1590 2042 1119.89 139.88
32 357 374 420 227 317 354 272 178 211 301.11 26.11
33 1421 1575 1037 903 1189 1334 1301 1278 1523 1284.56 68.37
34 4721 4462 6668 6986 7921 7065 6684 6263 7371 6460.11 364.40
35 78 69 67 86 180 166 168 130 254 133.11 20.14
36 170 196 183 161 125 168 144 194 645 220.67 50.52
37 807 941 957 1235 1156 825 1077 876 731 956.11 53.18
38 265 456 441 425 483 486 490 497 481 447.11 22.78
39 471 479 678 665 473 476 431 566 391 514.44 31.55
40 494 596 749 670 778 943 958 1108 1062 817.56 66.79
41 3862 4093 4205 3707 3898 3349 3260 3235 4097 3745.11 119.01
42 371 703 704 690 764 881 1032 1086 976 800.78 69.32
43 178 234 237 220 228 280 270 230 235 234.67 9.16
44 871 822 910 737 777 758 848 912 920 839.44 21.98
45 815 932 1140 1005 1231 1141 878 917 1077 1015.11 44.08
46 451 463 486 532 512 524 462 476 460 485.11 9.52
47 325 323 488 503 547 491 527 546 603 483.67 30.52
48 418 399 486 516 445 480 505 479 683 490.11 25.79
49 1088 1311 1608 1574 1785 1411 1808 1189 2368 1571.33 122.27
50 396 357 258 372 396 598 694 652 478 466.78 46.87
51 151 191 163 231 166 187 194 140 108 170.11 * 11.22
52 89 102 100 109 140 187 218 139 94 130.89 14.17
53 233 163 152 156 258 234 292 237 253 219.78 15.85

1228 1389 1508 1641 1728 1858 1734 1737 1986 1645.44 78.45
2971 3238 3307 3777 3995 4361 3649 4018 4527 3760.33 174.17

42.68 44.20 39.63 40.55 41.47 43.69 42.04 44.63 43.43 42.48 .56
6.28 6.42 6.00 6.09 6.18 6.37 6.21- 6.46 6.35 6.26 .05

Police
district

Oslo
Halden
Sarpsborg
Fredrikstad
Moss
Follo
Romerike
.Kongsvinger
Hamar
østerdal
Gudbrandsd.
Vest-Oppl.
Ringerike
Asker & B.
Drammen
Kongsberg
N.-Jarlsb.
Tønsberg
Sandefjord
Larvik
Skien
Telemark
Notodden
Rjukan
Krager0
Arendal
Kristians.
Vest-Agder
Rogaland
Stavanger
Haugesund
Hardanger
Hordaland
Bergen
Sogn
Fjordane
Sunnmøre
Romsdal
Nordmøre
Ut-Trønd.
Trondheim
Inn-Trond.
Namdal
Helgeland
Bodo
Narvik
Lof. & Ves.
Senja
Troms
Vest-Finnm.
Vardø
Vads0
Sør-Var.

Mean
St.dev
Kurtosis
Skewness
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Table A3
Crime rates, police districts, 1970-78

Police
district

No 1970 1971 1972 1973 1974 1975 1976 1977 1978 Mean St.dev.

Oslo 1 43.90 48.90 49.54 57.06 61.15 67.94 57.04 63.35 71.32 57.80 2.87
Halden 2 11.02 15.21 14.77 14.48 15.71 18.03 15.08 15.59 17.85 15.30 .64
Sarpsborg 3 14.77 15.56 17.35 18.51 24.83 23.10 21.76 19.79 24.57 20.03 1.18
Fredrikstad 4 17.35 23.84 28.67 31.42 19.06 36.05 34.64 28.23 24.62 27.10 2.04
Moss 5 10.44 12.34 12.49 13.04 15.72 18.59 21.32 24.11 28.41 17.38 1.93
Follo 6 15.75 18.50 19.77 19.12 18.59 20.50 17.81 18.71 17.86 18.51 .42
Romerike 7 12.86 14.04 14.74 18.61 22.33 20.42 20.75 21.94 23.21 18.77 1.23
Kongsvinger 8 6.53 9.07 7.74 6.38 8.95 7.04 10.88 12.34 10.77 8.86 .67
Hamar 9 4.01 8.91 8.51 12.04 10.36 13.73 13.48 13.57 12.73 10.82 1.02
østerdal 10 8.27 10.35 11.50 11.62 14.68 9.88 11.35 11.38 10.63 11.07 .54
Gudbrandsd. 11 5.50 5.86 8.15 8.31 6.83 9.16 10.02 8.99 8.89 7.97 .49
Vest-Oppl. 12 7.33 11.74 10.06 11.57 14.83 15.88 15.38 10.62 12.44 12.21 .88
Ringerike 13 11.72 17.83 19.98 23.67 29.72 26.95 27.04 23.36 23.54 22.65 1.72
Asker & B. 14 31.30 24.82 38.73 49.35 35.45 40.88 30.92 29.74 32.07 34.81 2.29
Drammen 15 19.25 20.95 22.68 27.54 26.48 30.92 27.96 31.67 34.89 26.93 1.63
Kongsberg 16 14.28 14.60 15.11 16.80 16.11 20.20 16.77 15.72 17.40 16.33 .56
N.-Jarlsb. 17 14.06 14.72 16.04 18.42 24.81 16.97 18.49 20.92 24.46 18.77 1.23
Tønsberg 18 17.25 23.64 31.04 33.74 26.45 38.89 33.45 32.45 43.37 31.14 2.47
Sandefjord 19 14.79 19.86 23.99 22.24 26.60 29.14 30.88 25.39 33.98 25.21 1.84
Larvik 20 11.97 10.99 14.48 15.67 21.63 31.67 31.31 22.93 26.22 20.76 2.49
Skien 21 11.19 19.28 20.93 19.67 27.93 25.33 25.83 28.33 27.31 22.87 1.77
Telemark 22 11.68 21.82 19.84 20.12 21.67 36.81 39.78 33.87 37.73 27.04 3.16
Notodden 23 9.26 13.03 14.55 14.64 18.44 16.53 18.95 21.15 15.31 15.76 1.11
Rjukan 24 10.31 11.96 14.06 13.99 13.05 18.23 17.33 20.81 14.85 14.95 1.03,
Krager0 25 10.56 14.39 13.48 20.03 15.02 12.93 10.52 14.36 14.92 14.02 .89
Arendal 26 10.61 9.25 13.72 11.77 13.97 16.21 15.27 14.21 21.48 14.05 1.12
Kristians. 27 28.37 34.31 30.07 31.83 31.00 39.64 34.05 28.19 44.51 33.55 1.70
Vest-Agder 28 3.85 5.25 '3.69 4.32 6.65 6.93 7.62 8.34 8.08 6.08 .58
Rogaland 29. 10.27 11.78 10.77 14.80 12.85 12.23 14.07 13.47 15.19 12.83 .54
Stavanger 30 18.11 21.65 20.90 20.27 20.85 2137 21.12 18.03 22.06 20.48 .46
Haugesund 31 10.77 11.27 11.42 9.67 9.92 14.54 15.96 19.95 25.37 14.32 1.68
Hardanger 32 12.95 13.69 15.39 8.39 11.70 13.14 10.07 6.61 7.86 11.09 .94
Hordaland 33 6.24 6.75 7.52 6.50 8.43 9.26 8.91 8.61 10.11 8.04 .42
Bergen 34 40.79 39.36 31.46 32.69 36.91 33.01 31.29 29.44 34.79 34.42 • 1.22
Sogn 35 1.94 1.71 1.65 2.14 4.51 4.18 4.24 3.28 6.41 3.34 .51
Fjordane 36 2.79 3.24 2.99 2.61 2.01 2.67 2.27 3.03 10.02 3.51 .78
Sunnmøre 37 7.29 8.48 8.52 10.86 10.09 7.14 9.29 7.52 6.24 8.38 .47
Romsdal 38 5.29 9.00 8.61 8.21 9.26 9.21 9.19 9.26 8.93 8.55 .40

Nordmøre 39 7.53 7.72 10.90 10.69 7.55 7.59 6.87 8.96 6.23 8.23 .51
Ut-Trond. 40 4.76 5.74 7.22 6.47 7.52 9.12 9.26 10.67 10.22 7.89 .64
Trondheim 41 30.11 31.44 31.90 27.60 28.66 24.47 23.66 23.34 29.62 27.87 1.04
Inn-Trønd. 42 4.54 8.58 8.49 8.25 8.98 10.22 11.88 12.45 11.12 9.39 .75
Namdal 43 4.89 6.49 6.57 6.10 6.32 7.76 7.50 6.38 6.49 6.50 .26
Helgeland 44 10.75 10.24 11.38 9.19 9.70 9.47 10.56 11.37 11.50 10.46 .27
Bodo 45 12.57 14.35 17.48 15.29* 18.56 17.08 13.05 13.59 15.91 15.32 .66
Narvik 46 12.58 13.09 13.71 15.07 14.48 14.88 13.18 13.68 13.29 13.77 .27

Lof. & Ves. 47 5.29 5.35 8.11 8.30 9.00 8.06 8.70 9.06 10.02 7.99 .51

Senja 48 8.89 8.55 10.37 10.94 9.36 10.05 10.57 10.03 14.31 10.34 .53
Tromso 49 12.15 14.55 17.66 16.94 18.92 14.78 18.77 12.32 24.42 16.72 1.21
Vest-Finnm. 50 9.73 8.76 6.30 8.89 9.32 13.90 16.12 15.16 11.13 11.03 1.04

Vard0 51 14.68 18.32 15.62 22.37 15.80 17.97 18.93 13.59 10.54 16.42 1.08

Vads0 52 6.01 6.96 6.77 7.30 9.30 12.35 14.37 9.21 6.25 8.72 .92

Sør-Var. 53 22.05 15.55 14.29 14.64 23.90 21.55 26.81 21.70 23.50 20.44 1.42

Mean 12.66 14.60 15.50 16.42 17.21 18.77 18.35 17.56 19.53 16.73 .73

St. dey. 8.67 8.97 9.30 10.68 10.30 11.91 10.36 10.20 12.36 10.31 .42
Kurtosis 4.17 3.88 2.71 4.09 5.05 4.34 2.41 6.45 4.69 4.20 .40
Skewness 1.91 1.71 1.45 1.74 1.69 1.69 1_28 1.86 1.74 1.67 .07
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Table A4
Number of clear-ups, police districts, 1970-78

Police
district

No 1970 1971 1972 1973 1974 1975 1976 1977 1978 Mean St.dev.

Oslo 1 4870 5085 4942 5627 5088 5131 4540 4455 5597 5037.22 126.59
Halden 2 233 264 231 244 267 253 209 214 211 236.22 7.00
Sarpsborg 3 367 382 477 447 837 538 608 543 759 550.89 50.58
Fredrikstad 4 466 620 728 882 459 1142 895 746 607 727.22 69.44
Moss 5 238 257 228 250 273 255 368 409 400 297.56 22.93
Follo 6 247 344 266 313 265 276 325 366 297 299.89 12.60
Romerike 7 836 757 602 892 1274 862 969 977 877 894.00 57.27
Kongsvinger 8 267 310 225 122 179 101 266 284 292 227.33 24.01
Hamar 9 212 370 312 422 374 451 545 480 464 403.33 31.26
østerdal 10 213 165 198 167 198 148 206 238 196 192.11 8.70
Gudbrandsd. 11 102 88 144 127 122 166 271 199 130 149.89 17.64
Vest-Oppl. 12 321 655 451 454 689 721 698 341 375 522.78 52.19
Ringerike 13 304 356 453 57.5 705 619 682 421 451 507.33 45.06
Asker & B. 14 603 619 555 791 636 957 684 662 689 688.44 37.85
Drammen 15 754 682 680 766 626 669 777 831 764 727.67 20.71
Kongsberg 16 166 193 169 153 144 222 238 159 205 183.22 10.31
N.-Jarlsb. 17 192 276 354 251 344 223 301 276 343 284.44 17.80
Tønsberg 18 307 331 455 456 263 442 435 430 424 393.67 22.89
Sandefjord 19 239 305 341 318 357 336 487 425 452 362.22 24.63
Larvik 20 158 117 202 145 213 362 327 146 160 203.33 26.91
Skien 21 196 259 358 476 497 371 443 368 322 365.56 30.95
Telemark 22 189 336 240 446 301 317 545 409 373 350.67 33.88
Notodden 23 72 119 144 104 198 138 97 210 93 130.56 14.87
Rjukan 24 38 37 26 40 44 80 35 92 17 45.44 7.71
Krager0 25 58 86 68 124 64 46 32 79 57 68.22 8.31
Arendal 26 354 352 454 328 447 455 533 504 641 452.00 31.43
Kristians. 27 784 1000 883 887 879 959 884 959 1055 921.11 25.24
Vest-Agder 28 103 124 93 93 91 212 110 162 174 129.11 13.65
Rogaland 29 489 590 550 681 506 593 603 535 625 574.67 19.07
Stavanger 30 804 1107 1006 789 911 809 978 787 856 894.11 35.92
Haugesund 31 417 468 470 446 304 309 333 426 395 396.44 20.64
Hardanger 32 248 192 225 111 165 166 144 63 129 160.33 17.94
Hordaland 33 629 487 369 378 422 498 624 583 708 522.00 37.86
Bergen 34 1591 1233 2185 1834 2196 1609 1594 1322 1715 1697.67 104.92
Sogn 35 48 46 33 42 88 62 45 32 48 49.33 5.34
Fjordane 36 90 114 80 91 62 95 46 103 243 102.67 17.76
Sunnmøre 37 438 462 523 696 585 360 574 439 382 495.44 34.06
Romsdal 38 127 262 257 216 246 233 211 227 180 217.67 13..30
Nordmøre 39 260 302 425 380 232 205 233 353 218 289.78 24.93
Ut-Trønd. 40 232 307 343 220 294 362 423 533 531 360.56 36.27
Trondheim 41 1384 1577 1120 793 840 899 721 628 694 961.78 103.65
Inn-Trønd. 42 233 363 441 447 505 536 612 664 511 479.11 40.57
Namdal 43 102 159 122 124 117 132 132 117 116 124.56 4.97
Helgeland 44 489 393 477 .336 328 316 424 328 401 388.00 20.70
Bodo 45 472 504 592 516 673 607 307 433 505 512.11 33.58
Narvik 46 221 239 190 215 203 183 163 168 173 195.00 8.23
Lof. & Ves. 47 177 164 239 257 257 249 263 262 280 238.67 12.67
Senja 48 19.4 176 215 213 180 217 225 254 299 219.22 12.02
Troms 49 502 564 587 519 546 513 598 441 631 544.56 18.15
Vest-Finnm. 50 247 278 97 125 114 182 240 272 135 187.78 22.75
vardo 51 65 102 71 133 92 61 80 66 38 78.67 8.64
Vads0 52 50 54 37 78 85 95 151 56 30 70.67 11.66
Scar-Var. 53 138 70 54 65 71 82 107 101 114 89.11 8.63

Mean 425 466 471 483 488 487 497 464 498 475.44 7.55
St. dev. 694 717 717 788 741 723 643 619 778 713.33 18.58
Kurtosis 33.49 34.29 30.19 36.25 29.60 33.77 30.91 34.30 36.89 33.30 .86
Skewness 5.38 5.43 5.09 5.63 5.02 5.36 5.03 5.38 5.68 5.33 .08
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Table A5
Clear-up rates, police districts, 1970-78

Police
district

No 	 1970 1971 1972 1973 1974 1975 1976 1977 1978 Mean

Oslo 1 	 9.99 10.56 10.39 11.91 10.86 11.03 9.81 9.63 12.16 10.70
Halden 2 	 6.79 7.71 6.66 7.02 7.61 7.22 5.97 6.11 6.03 6.79
Sarpsborg 3 	 5.08 5.20 6.41 5.97 11.06 7.06 7.98 7.09 9.81 7.30
Fredrikstad 4 	 7.42 9.77 11.37 13.61 7.09 17.63 13.85 11.58 9.46 11.31
Moss 5 	 4.83 5.12 4.48 4.89 5.31 4.91 6.99 7.66 7.40 5.73
Follo 6 	 4.30 5.64 4.22 4.85 4.01 4.09 4.68 5.16 4.10 4.56
Romerike 7 	 5.56 4.88 3.80 5.50 7.72 5.15 5.71 5.70 5.07 5.45
Kongsvinger 8 	 5.04 5.86 4.22 2.27 3.31 1.86 4.84 5.14 5.25 4.20
Hamar 9 	 2.80 4.81 4.02 5.42 4.78 5.75 6.91 6.08 5.85 5.16
østerdal 10 	 4.28 3.35 4.03 3.40 4.02 2.99 4.15 4.76 3.88 3.87
Gudbrandsd. 11 	 1.52 1.32 2.14 1.86 1.78 2.42 3.93 2.88 1.87 2.19
Vest -Oppi. 12 	 3.06 6.20 4.23 4.22 6.36 6.62 6.39 3.12 3.42 4.85
Ringerike 13 	 4.76 5.55 6.99 8%81 10.74 9.36 10.26 6.29 6.71 7.72
Asker & B. 14 	 5.77 5.72 4.98 6.96 5.55 8.28 5.91 5.72 5.95 6.09
Drammen 15 	 7.97 7.08 6.96 7.76 6.25 6.56 7.55 8.01 7.35 7.28
Kongsberg 16 	 4.38 5.04 4.34 3.90 3.65 5.56 5.92 3.91 5.02 4.64
N.-Jarlsb. 17 	 4.15 5.87 7.37 5.13 6.94 4.46 5.99 5.46 6.75 5.79
Tønsberg 18 	 5.50 5.89 8.03 8.01 4.62 7.74 7.59 7.44 7.31 6.90
Sandefjord 19 	 6.77 8.53 9.41 8.68 9.64 9.06 13.07 11.33 11.94 9.83
Larvik 20 	 4.38 3.21 5.51 3.94 5.75 9.69 8.71 3.89 4.25 5.48
Skien 21 	 3.62 4.76 6.52 8.66 9.05 6.68 7.90 6.53 5.68 6.60
Telemark 22 	 3.52 6.26 4.44 8.25 5.57 5.88 .10.05 7.44 6.70 6.45
Notodden 23 	 2.78 4.63 • 5.62 4.05 7.72 5.35 3.75 8.08 3.56 5.06
Rjukan 24 	 4.45 4.43 3.21 5.04 5.63 10.27 4.56 12.04 2.21 5.76
Krager0 25 	 3.98 5.87 4.61 8.36 4.29 3.07 2.13 5.23 3.76 4.59
Arendal 26 	 4.85 4.77 6.08 4.34 5.84 5.85 6.77 6.33 7.96 5.87
Kristians. 27 	 9.70 12.19 10.57 10.50 10.27 11.12 10.14 10.87 11.85 10.80
Vest-Agder 28 	 2.09 2.51 1.87 1.85 1.79 4.13 2.12 3.11 3.30 2.53
Rogaland 29 	 6.18 7.29 6.65 8.07 5.91 6.78 6.78 5.92 6.80 6.71
Stavanger 30 	 7.20 9.87 8.87 6.87 	 • 7.83 6.86 8.17 6..50 6.99 7.68
Haugesund 31 	 5.52 6.20 6.16 5.80 3.92 3.95 4.21 5.35 4.91 5.11
Hardanger 32 	 9.00 7.03 8.24 4.10 6.09 6.16 5.33 2.34 4.81 5.90
Hordaland 33 	 2.76 2.09 2.68 2.72 2.99 3.46 4.27 3.93 4.70 -- 3.29
Bergen 34 	 3.75 10.88 10.31 8.58 10.23 7.52 7.46 6.21 8.09 9.23
Sogn 35 	 1.19 1.14 .81 1.05 2.20 1.56 1.14 .81 1.21 1.23
Fjordane 36 	 1.48 1.88 1.31 1.48 1.00 1.51 .73 1.61 3.77 1..64
Sunnmøre 37 	 3.96 4.16 4.66 6.12 5.11 3.12 4.95 3.77 3.26 4.34
Romsdal 38 	 2.54 5.17 5.02 4.17 4.72 4.42 3.96 4.23 3.34 4.17
Nordmøre 39 	 4.16 4.87 6.83 6.11 3.70 3.27 3.71 5.59 3.47 4.63
Ut-Trond. 40 	 2.24 2.96 3.31 2.12 2.84 3.50 4.09 5.13 5.11 3.48
Trondheim 41 10.79 12.11 8.50 5.90 6.18 6.57 5.23 4.53 5.02 7.20
Inn-Trønd. 42 	 2.85 4.43 5.32 5.34 5.94 6.22 7.05 7.61 5.82 5.62
Namdal 43 	 2.80 4.41 3.38 3.44 3.24 3.66 3.67 3.25 3.20 3.45
Helgeland 44 	 6.04 4.90 5.97 4.19 4.09 3.95 5.28 4.09 5.01 4.83
Bodo 45 	 7.28 7.76 9.08 7.85 10.15 9.09 4.56 6.42 7.46 7.74
Narvik 46 	 6.16 6.76 5.36 6.09 5.74 5.20 4.65 4.83 5.00 5.53
Lof. & Ves. 47 	 2.88 2.72 3.97 4.24 4.23 4.09 4.34 4.35 4.65 3.94
Senja 48 	 4.13 3.77 4.59 4.52 3.79 4.54 4.71 5.32 6.26 4.62
Troms 49 	 5.61 6.26 6.45 5.59 5.79 5.37 6.21 4.57 6.51 5.82
Vest -Finnin. 50 	 6.07 6.82 2.37 2.99 2.68 4.23 5.57 6.32 3.14 4.47
Vardø 51 	 6.32 9:78 6.80 12.88 8.76 5.86 7.81 6.41 3.71 7.59
Vadsø 52 	 3.38 3.68 2.50 5.22 5.65 6.27 9.95 3.71 1.99 4.71
Sør-Var. 53 	 13.06 6.68 5.08 6.10 6.58 7.55 9.82 9.25 10.59 8.30

Mean 5.22 5.78 5.60 5.79 5.78 5.93 6.17 5.82 5.65 5.75
St.dev. 2.71 2.55 2.45 2.76 2.53 2.85 2.69 2.40 •2.53 2.61
Kurtosis 1.79 .41 - 	 .21 .75 - 	 .37 4.27 .73 .73 .62 1.10
Skewness 1.91 1.71 1.41 1.74 1.69 1.69 1.28 1.86 1.74 1.67
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Table A6
Clear-up proportions, police districts, 1970-78

Police No 1970 1971 1972 1973 1974 1975 1976 1977 1978 Mean St.
district dey.

Oslo 1 .23 .22 .21 .21 .18 .16 .17 .15 .17 .19 .01
Halden 2 .62 .51 .45 .49 .48 .40 .40 .39 .34 .45 .03
Sarpsborg 3 .34 .33 .37 .32 .45 .31 .37 .36 .40 .36 .01
Fredrikstad 4 .43 .41 .40 .43 .37 .49 .40 .41 .38 .41 .01
Moss 5 .46 .41 .36 .37 .34 .26 .33 .32 .26 .35 .02
Follo 6 .27 .30 .21 .25 .22 .20 .26 .28 ,23 .25 .01
Romerike 7 .43 .35 .26 .30 .35 .25 .28 .26 .22 .30 .02
Kongsvinger 8 .77 .65 .54 .36 .37 .26 .44 .42 .49 .48 .05
Hamar 9 .70 .54 .47 .45 .46 .42 .51 .45 .46 .50 .03
østerdal 10 .52 .32 .35 .29 .27 .30 .37 .42 .36 .36 .02
Gudbrandsd. 11 .28 .22 .26 .22 .26 .26 .39 .32 .21 .27 .02
Vest-Oppl. 12 .42 .53 .42 .36 .43 .42 .42 .29 .27 .40 .02
Ringerike 13 .41 .31 .35 .37 .36 .35 .38 .27 .28 .34 .01
Asker & B. 14 .18 .23 .13 .14 .16 .20 .19 .19 .19 .18 .01
Drammen 15 .41 .34 .31 .28 .24 .21 .27 .25 .21 .28 .02
Kongsberg 16 .31 .35 .29 .23 .23 .28 .35 .25 .29 .28 .01
N.-Jarlsb. 17 .30 .40 .46 .28 .28 .26 .32 .26 .28 .32 .02
Tønsberg 18 .32 .25 .26 .24 .17 .20 .23 .23 .17 .23 .01
Sandefjord 19 .46 .43 .39 .39 .36 .31 .42 .45 .35 .40 .02
Larvik 20 .37 .29 .38 .25 .27 .31 .28 .17 .16 .27 .02
Skien 21 .32 .25 .31 .44 .32 .26 .31 .23 .21 .30 .02
Telemark 22 .30 .29 .22 .41 .26 .16 .25 .22 .18 .25 .02
Notodden 23 .30 .36 .39 .28 .42 .32 .20 .38 .23 .32 .02
Rjukan 24 .43 .37 .23 .36 .43 .56 .26 .58 .15 .38 .05
Krager0 25 .38 .41 .34 .42 .29 .24 .20 .36 .25 .32 .02
Arendal 26 .46 .52 .44 .37 .42 .36 .44 .45 .37 .42 .02
Kristians. 27 .34 .36 .35 .33 .33 .28 .30 .39 .27 .33 .01
Vest-Agder 28 .54 .48 .51 .43 .27 .60 .28 .37 .41 .43 .04
Rogaland 29 .60 .62 .62 .55 .46 .55 .48 .44 .45 .53 .02
Stavanger 30 .40 .46 .42 .34 .38 .32 .39 .36 .32 .38 .01
Haugesund 31 .51 .55 .54 .60 .40 .27 .26 .27 .19 .40 .05
Hardanger 32 .69 .51 .54 .49 .52 .47 .53 .35 .61 .52 .03
Hordaland 33 .44 .31 .36 .42 .35 .37 .48 .46 .46 .41 .02
Bergen 34 .34 .28 .33 .26 .28 .23 .24 .21 .23 .27 .01
Sogn 35 .62 .67 .49 .49 .49 .37 .27 .25 .19 .43 .05
Fjordane 36 .53 .58 .44 .57 .50 .57 .32 .53 .38 .49 .03
Sunnmøre 37 .54 .49 .55 .56 .51 .44 .53 .50 .52 .52 .01
Romsdal 38 .48 .57 .58 .51 .51 .48 .43 .46 .37 .49 .02
Nordmøre 39 .55 .63 .63 .57 .49 .43 .54 .62 .56 .56 .02
Ut-Trønd. 40 .47 .52 .46 .33 .38 .38 .44 .48 .50 .44 .02
Trondheim 41 .36 .39 .27 .21 .22 .27 .22 .19 .17 .25 .02
Inn-Trond. 42 .63 .52 .63 .65 .66 .61 .59 .61 .52 .60 .02
Namdal 43 .57 .68 .51 .56 .51 .47 .49 .51 .49 .53 .02
Helgeland 44 .56 .48 .52 .46 .42 .42 .50 .36 .44 .46 .02
Bodo 45 .58 .54 .52 .51 .55 .53 .35 .47 .47 .50 .02
Narvik 46 .49 .52 .39 .40 .40 .35 .35 .35 .38 .40 .02
Lof. & Ves. 47 .54 .51 .49 .51 .47 .51 .50 .48 .46 .50 .01
Senja 48 .46 .44 .44 .41 .40 .45 .45 .53 .44 .45 .01
Tromso 49 .46 .43 .37 .33 .31 .36 .33 .37 .27 .36 .02
Vest-Finnm. 50 .62 .78 .38 .34 .29 .30 .35 .42 .28 .42 .05
Vardø 51 .43 .53 .44 .58 .55 .33 .41 .47 .35 .45 .03
Vadsø 52 .56 .53 .37 .72 .61 .51 .69 .40 .32 .52 .04
Sør-Var. 53 .59 .43 .36 .42 .28 .35 .37 .43 .45 .41 .03

Mean .46 .44 .40 .40 .38 .36 .37 .37 .33 .39 .01

St.dev. .13 .13 .12 .13 .12 .12 .11 .12 .12 .12 .00
Kurtosis -.41 -.43 -.41 .-.37 -.52 -.70 -.03 -.63 -.97 -.50 .09
Skewness 1.91 1.71 1.45 1.74 1.69 1.69 1.28 1.86 1.74 1.67 .07
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Table A7
Log of crime rates, police districts, 	 1970-78

Police
district

No X70 X71 X72 X73 X74 X75 X76 X77 X78 Mean St.dev

Oslo 1 3.78 3.89 3.90 4.04 4.11 4.22 4.04 4.15 4.27 4.05 .05
Halden 2 2.40 2.72 2.69 2.67 2.75 2.89 2.71 2.75 2.88 2.72 .04
Sarpsborg 3 2.69 2.74 2.85 2.92 3.21 3.14 3.08 2.99 3.20 2.98 .06
Fredrikstad 4 2.85 3.17 3.36 3.45 2.95 3.58 3.55 3.34 3.20 3.27 .08
Moss 5 2.35 2.51 2.52 2.57 2.75 2.92 3.06 3.18 3.35 2.80 .11
Follo 6 2.76 2.92 2.98 2.95 2.92 3.02 2.88 2.93 2.88 2.92 .02
Romerike 7 2.55 2.64 2.69 2.92 3.11 3.02 3.03 3.09 3.14 2.91 .07
Kongsvinger 8 1.88 2.20 2.05 1.85 2.19 1.95 2.39 2.51 2.38 2.16 .08
Hamar 9 1.39 2.19 2.14 2.49 2.34 2.62 2.60 2.61 2.54 2.32 .12
Osterdal 10 2.11 2.34 2.44 2.45 2.69 2.29 2.43 2.43 2.36 2.39 .05
Gudbrandsd. 11 1.70 1.77 2.10 2.12 1.92 2.21 2.30 2.20 2.18 2.06 .07
Vest-Oppl. 12 1.99 2.46 2.31 2.45 2.70 2.77 2.73 2.36 '2.52 2.48 .08
Ringerike 13 2.46 2.88 2.99 3.16 3.39 3.29 3.30 3.15 3.16 3.09 .09
Asker & B. 14 3.44 3.21 3.66 3.90 3.57 3.71 3.43 3.39 3.47 3.53 .06
Drammen 15 2.96 3.04 3.12 3.32 3.28 3.43 3.33 3.46 3.55 3.28 .06
Kongsberg 16 2.66 2.68 2.72 2.82 2.78 3.01 2.82 2.75 2.86 2.79 .03
N.-Jarlsb. 17 2.64 2.69 2.78 2.91 3.21 2.83 2.92 3.04 3.20 2.91 .06
Tønsberg 18 2.85 3.16 3.44 3.52 3.28 3.66 3.51 3.48 3.77 3.41 .09
Sandefjord 19 2.69 2.99 3.18 3.10 3.28 3.37 3.43 3.23 3.53 3.20 .08
Larvik 20 2.48 2.40 2.67 2.75 3.07 3.46 3.44 3.13 3.27 2.96 .13
Skien 21 2.42 2.96 3.04 2.98 3.33 3.23 3.25 3.34 3.31 3.10 .09
Telemark 22 2.46 3.08 2.99 3.00 3.08 3.61 3.68 3.52 3.63 3.23 .13
Notodden 23 2.23 2.57 2.68 2.68 2.91 2.81 2.94 3.05 2.73 2.73 .08
Rjukan 24 2.33 2.48 2.64 2.64 2.57 2.90 2.85 3.04 2.70 2.68 .07
Krager0 25 2.36 2.67 2.60 3.00 2.71 2.56 2.35 2.66 2.70 2.62 .06
Arendal 26 2.36 2.22 2.62 2.47 2.64 2.79 2.73 2.65 3.07 2.62 .08
Kristians. 27 3.35 3.54 3.40 3.46 3.43 3.68 3.53 3.34 3.80 3.50 .05
Vest-Agder 28 1.35 1.66 1.31 1.46 1.89 1.94 2.03 2.12 2.09 1.76 .10
Rogaland 29 2.33 2.47 2.38 2.69 2.55 2.50 2.64 2.60 2.72 2.54 .04
Stavanger 30 2.90 3.08 3.04 3.01 3.04 3.06 3.05 2.89 3.09 3.02 .02
Haugesund 31 2.38 2.42 2.44 2.27 2.29 2.68 2.77 2.99 3.23 2.61 .11
Hardanger 32 2.56 2.62 2.73 2.13 2.46 2.58 2.31 1.89 2.06 2.37 .09
Hordaland 33 1.83 1.91 2.02 1.87 2.13 2.23 2.19 2.15 2.31 2.07 .05
Bergen 34 3.71 3.67 3.45 3.49 3.61 3.50 3.44 3.38 3.55 3.53 .03
Sogn 35 .66 .54 .50 .76 1.51 1.43 1.44 1.19 1.86 1.10 .16
Fjordane 36 1.03 1.18 1.10 .96 .70 .98 .82 1.11 2.30 1.13 .15
Sunnmøre 37 1.99 2.14 2.14 2.39 2.31 1.97 2.23 2.02 1.83 2.11 .06
Romsdal 38 1.67 2.20 2.15 2.11 2.23 2.22 2.22 2.23 2.19 2.13 .06
Nordmøre 39 2.02 2.04 2.39 2.37 2.02 2.03 1.93 2.19 1.83 2.09 .06
Ut-Trønd. 40 1.56 1.75 1.98 1.87 2.02 2.21 2.23 2.37 2.32 2.03 .09
Trondheim 41 3.40 3.45 3.46 3.32 3.36 3.20 3.16 3.15 3.39 3.32 .04
Inn-Trond. 42 1.51 2.15 2.14 2.11 2.19 2.32 2.47 2.52 2.41 2.20 .09
Namdal 43 1.59 1.87 1.88 1.81 1.84 2.05 2.01 1.85 1.87 1.86 .04
Helgeland 44 2.37 2.33 2.43 2.22 2.27 2.25 2.36 2.43 2.44 2.34 .03
Bodo, 45 2.53 2.66 2.86 2.73 2.92 2.84 2.57 2.61 2.77 2.72 .04
Narvik 46 2.53 2.57 2.62 2.71 2.67 2.70 2.58 2.62 2.59 2.62 .02
Lof. & Ves. 47 1.67 1.68 2.09 2.12 2.20 2.09 2.16 2.20 2.30 2.06 .07
Senja 48 2.18 2.15 2.34 2.39 2.24 2.31 2.36 2.31 2.66 2.33 .05
Troms 49 2.50 2.68 2.87 2.83 2.94 2.69 2.93 2.51 3.20 2.79 .07
Vest-Finnm. 50 2.28 2.17 1.84 2.18 2.23 2.63 2.78 2.72 2.41 2.36 .10
Vardø 51 2.69 2.91 2.75 3.11 2.76 2.89 2.94 2.61 2.36 2.78 .07
Vads0 52 1.79 1.94 1.91 1.99 2.23 2.51 2.67 2.22 1.83 2.12 .10
Sør-Var. 53 3.09 2.74 2.66 2.68 3.17 3.07 3.29 3.08 3.16 2.99 .07

Mean 2.34 2.51 2.57 2.61 2.68 2.75 2.75 2.71 2.80 2.64 .05
St. dey. .63 .61 .63 .65 .60 .62 .59 .58 .59 .61 .01
Kurtosis .44 1.40 1.58 . 	 .85 1.11 .40 1.19 .79 - 	 .64 .93 .14
Skewness - 	 .11 - 	 .47 - 	 .67 - 	 .42 - 	 .48 - 	 .23 - 	 .55 - 	 .41 .17. .39 .06
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Table A8
Log of clear-up rates, police districts, 1970-78

Police
district

No Y70 Y71 • Y72 Y73 Y74 Y75 Y76 Y77 Y78 Mean St.dev.

Oslo 1 2.30 2.36 2.34 2.48 2.39 2.40 2.28 2.27 2.50 2.37 .03
Halden 2 1.92 2.04 1.90 1.95 2.03 1.98 1.79 1.81 1.80 1.91 .03
Sarpsborg 3 1.63 1.65 1.86 1.79 2.40 1.95 2.08 1.96 2.28 1.96 .08
Fredrikstad 4 2.00 2.28 2.43 2.61 1.96 2.87 2.63 2.45 2.25 2.39 .09
Moss 5 1.58 1.63 1.50 1.59 1.67 1.59 1.94 2.04 2.00 1.73 .07
Follo 6 1.46 1.73 1.44 1.58 1.39 1.41 1.54 1.64 1.41 1.51 .04
Romerike 7 1.72 1.59 1.34 1.71 2.04 1.64 1.74 1.74 1.62 1.68 .06
Kongsvinger 8 1.62 1.77 1.44 .82 1.20 .62 1.58 1.64 1.66 1.37 .13
Hamar 9 1.03 1.57 1.39 1.69 1.56 1.75 1.93 1.81 1.77 1.61 .08
østerdal 10 1.45 1.21 1.39 1.22 1.39 1.10 1.42 1.56 1.36 1.35 .05
Gudbrandsd. 11 .42 .27 .76 .62 .58 .88 1.37 1.06 .63 .73 .10
Vest-Oppl. 12 1.12 1.82 1.44 1.44 1.85 1.89 1.85 1.14 "1.23 1.53 .10
Ringerike 13 1.56 1.71 1.95 2.18 2.37 2.24 2.33 1.84 1.90 2.01 .09
Asker & B. 14 1.75 1.74 1.61 1.94 1.71 2.11 1.78 1.74 1.78 1.80 .05
Drammen 15 2.08 1.96 1.94 2.05 1.83 1.88 2.02 2.08 1.99 1.98 .03
Kongsberg 16 1.48 1.62 1.47 1.36 1.29 1.72 1.78 1.36 1.61 1.52 .05
N.-Jarlsb. 17 1.42 1.77 2.00 1.63 1.94 1.49 1.79 1.70 1.91 1.74 .06
Tønsberg 18 1.71 1.77 2.08 2.08 1.53 2.05 2.03 2.01 1.99 1.92 .06
Sandefjord 19 1.91 2.14 2.24 2.16 2.27 2.20 2.57 2.43 2.48 2.27 .06
Larvik 20 1.48 1.17 1.71 1.37 1.75 2.27 2.16 1.36 1.45 1.63 .12
Skien 21 1.29 1.56 1.88 2.16 2.20 1.90 2.07 1.88 1.74 1.85 .09
Telemark 22 1.26 1.83 1.49 2.11 1.72 1.77 2.31 2.01 1.90 1.82 .10
Notodden 23 1.02 X.53 1.73 1.40 2.04 1.68 1.32 2.09 1.27 1.56 .11
Rjukan 24 1.49 1.49 1.17 1.62 1.73 2.33 1.52 2.49 .80 1.62 .16
Krager0 25 1.38 1.77 1.53 2.12 1.46 1.12 .76 1.65 1.33 1.46 .12
Arendal 26 1.58 1.56 1.81 1.47 1.76 1.77 1.91 1.85 2.07 1.75 .06
Kristians. 27 2.27 2.50 2.36 2.35 2.33 2.41 2.32 2.39 2.47 2.38 .02
Vest-Agder 28 .74 .92 .62 .62 .58 1.42 .75 1.13 1.19 .89 .09
Rogaland 29 1.82 1.99 1.89 2.09 1.78 1.91 1.91 1.78 1.92 1.90 .03
Stavanger 30 1.97 2.29 2.18 1.93 2.06 1.92 2.10 1.87 1.94 2.03 .04
Haugesund 31 1.71 1.82 1.82 1.76 1.37 1.37 1.44 1.68 1.59 1.62 .06
Hardanger 32 2.20 1.95 2.11 1.41 1.81 1.82 1.67 .85 1.57 1.71 .13
Hordaland 33 1.02 .74 .98 1.00 1.10 1.24 1.45 1.37 1.55 1.16 .08
Bergen 34 2.62 2.39 2.33 2.15 2.33 2.02 2.01 1.83 2.09 2.20 .08
Sogn 35 .18 .13 -.21 .04 .79 .45 .13 -.21 .19 .17 .10
Fjordane 36 ..39 .63 .27 .39 -.00 .41 -.32 .48 1.33 .40 .14
Sunnmøre 37 1.38 1.43 1.54 1.81 1.63 1.14 1.60 1.33 1.18 1.45 .07
Romsdal 38 .93 1.64 1.61 1.43 1.55 1.49 1.38 1.44 1.21 1.41 .07
Nordmøre 39 1.42 1.58 1.92 1.81 1.31 1.18 1.31 1.72 1.25 1.50 .08
Ut-Trønd. 40 .80 1.08 1.20 .75 1.04 1.25 1.41 1.64 1.63 1.20 .10
Trondheim 41 2.38 2.49 2.14 1.78 1.82 1.88 1.65 1.51 1.61 1.92 .11
Inn-Trond. 42 1.05 1.49 1.67 1.68 1.78 1.83 1.95 2.03 1.76 1.69 .09
Namdal 43 1.03 1.48 1.22 1.23 1.18 1.30 1.30 1.18 1.16 1.23 .04
Helgeland 44 1.80 1.59 1.79 1.43 1.41 1.37 1.66 1.41 1.61 1.56 .05
Bodo 45 1.99 2.05 2.21 2.06 2.32 2.21 1.52 1.86 2.01 2.02 .07
Narvik 46 1.82 1.91 1.68 1.81 1.75 1.65 1.54 1.57 1.61 1.70 .04
Lof. & Ves. 47 1.06 1.00 1.38 1.44 1.44 1.41 1.47 1.47 1.54 1.36 .06
Senja 48 1.42 1.33 1.52 1.51 1.33 1.51 1.55 1.67 1.83 1.52 .05
Troms 49 1.72 1.83 1.86 1.72 1.76 1.68 1.83 1.52 1.87 1.76 .04
Vest-Finnm. 50 1.80 1.92 .86 1.09 .99 1.44 1.72 1.84 1.15 1.42 .13
Vardø 51 1.84 2.28 1.92 2.56 2.17 1.77 2.05 1.86 1.31 1.97 .11
Vadsø 52 1.22 1.30 .92 1.65 1.73 1.84 2.30 1.31 .69 1.44 .15
Sør-Var. 53 2.57 1.90 1.62 1.81 •1.88 2.02 2.28 2.22 2.36 2.08 .10

Mean 1.52 1.65 1.61 1.63 1.65 1.67 1.71 1.67 1.63 1.64 .02
St. • dey. .63 .61 .63 .65 .60 .62 .59 .58 .59 .61 .01
Kurtosis .25 1.39 2.05 .82 1.29 .70 4.10 3.93 .79 1.70 .47
Skewness - 	 .30 - 	 .91 -1.12 - 	 .76 - 	 .88 - 	 .44 - 1.49 - 1.30 .53 - .01 .33
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APPENDIX B: IDENTIFICATION

B.1. Introduction

Identification is proved by showing that the structural parameters are explicit

functions of the theoretical 2. order moments of the crime and clear-up rates. It

turns out to be suitable to first deduce differences of the 2. order moments, and

general 2. order differences of the 2. order moments of the crime and clear-up

rates. Identification of ae., aqxp, and a proved for our most general model

under investigation (M1W3L3), and for all its submodels. Then, identification of

r, b and the remaining variances and covariances is considered for various

submodels. For two of these there exist two observationally equivalent structures.

They may still be identified if one is willing to make restrictions in the parameter

space as discussed in section 3, and empirically analyzed in section 5. It is further

proved that full identification is not obtainable for some of the submodels. The 1.

order moments aresused to identify at and k, whereas our assumption of normality

excludes the possibility of obtaining supplementary information from moments of

higher order than two.

B.2. Derivation of 2. order moments

Omitting subscript i for all variables we have for all t

(B1) xt = xt + e t ,

(B2) Yt "I"	 S't

(B3) xt = at + bn t +	 + tca2 ,

(B4) nt	 Xt

(B5) 4rt = kt 	rXt "1- 1 1	 t12-

Defining	 = Xt - Ext, etc., we obtain

(BO i = + C,

(B2) 5't =	 ,t
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(B31) ;It = bitt	 (0 1	 tw2

(BO

(B51) 4rt "="	 + t12-

Substitution of (B4') and (B5') into (B3') gives

(B3*)	 = co l +toa2 +b(1 1 +0.2),

where d=1+b(1-r) as defined in (2d).

Assuming d * 0, we have

( 3311)	 = -1(coi+ta9+ 41(11+t1) , .

which substituted into (B5') gives

(B5") IT't i(4)046)2)+---d--14-1).0.1+t1)-

Substitution of (B3") into (B1'), and (B5") into (B2') gives

(131") j = --1d-(co i +tco2) + 1(1 1 +0,2) + et,

and

(B2") ÿ = —r (co +to)	 -1b (1 +0. ) +d 1	 2) + +
d	1	 2

For convenience we define

K = (-92 .
d

Note that it follows from (2d) that K>0.

From (B1") and (B2") we obtain, with the stochastic specifications assumed in

2.3, the following second order moments for t,s=1,2,...,T:

(B6) cov(xt,x) = K[a. ,01 +(t+s)a. ,02 +tso.2.2 +b2aiiii +b2(t+s)al +b2tsakk1	 te 9

(137) cov(yey.) = Kfr2a. i. , +r2(t s)00
1

-.2 +r2tsa f.,

+(1 +b)2 4:7	 +b)2(t+s)a .+(1 +b)2tscr
1 11 1	 A212
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(B8) cov(xt,y) = Kfraoi. i +r(t+s)a. ,02+rtsa 02,02

+ (1 +b)ba kili 	+b)b(t +s)a l,12 	+b)btsa 1212]

where Sts are Kronecker deltas.

B.3. Differences of 2. order moments

We define, for all possible combinations of i, j, t, and s, the differences of 2. order

moments

(B9) Alicov(xt,x) = cov(xt,x)-cov(xt4,;_j),

and similarly for cov(yt,ys) and cov(xt,ys). With these definitions we obtain from

(B6)-(B8):

(310) A licov(xt,;) = K[(i+D•3 0,02 +(is+jt-iDo.202 +b2Ri+Daxix + is+jt-iDax2121]

(861 -8t-i,s-j)ate ,

(811) Atov(yey) = KRIM +Da . i.2 +(is +jt -iDo .24 +(1 +b)2[(i +j) lit, +(is +jt -ipo ]]

(8 01 -8t4.3-Paygo

(B12) Atov(xt,y) = Kfr[(i+Da. ,02 +(is +jt-ij)0 02.2]	 +b)b[(i +Da l,12 +(is +jt-ij)01212]]

(8 ,2-8t-i,s-Plev

For notational convenience we define, by the first equation in each of the following

expressions

(1313) D. = Acov(xt,xt) = K[a.202 +b2ax20 + ace

( 314) Dyy = ii i, _ icov(yeyt) = M1.200202 +(1 +b)2ax2x2] + ay,

(B15) Diy = A t_ icov(xt,yt) = K[ro m 	+b)ba,
- 

+
-2-2	 -22

( 316) E. = A ncov(xt,x) = K[2a0
1
02 +(s+t-1)00202 +b2[201 +(s+t-1)0 1212]],

( 317)	 = A noov(yt,y) = Kfr2[20 0102 +(si+t- 1)o.24+(1+b) [2o1 +(s+t-1)0À212]],
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(B18) Exy = A icov(xey) = K[42 a +t - 1) c ,A,202] +(l+b)b[2a 1,12 +(s +t -1) (7 242]].

B.4. General 2. order differences of 2. order moments

We define, for all possible combinations of k, 1, m, n, i, j, t, and s, the following

general 2. order differences of 2. order moments:

(1319) Åcov(xex) =cov(xt,x3)-cov(xt_ex) - [cov(xt_ex.4)-cov(xt_k_ziox.4_,)],

and similarly for cov(yt,ys) and cov(xt,ys). From (B10)-(B12) we then obtain

(1320) A idninAkicov(xex.) = K[Ki(a.i.2 +b201,12) +1C2(a.202 +b2o1212)] +Ma e.,

(B21) A idinnAucov(yey) = W1(r20.102+(1  +b)201,12) +K2(r20.202.
(1 +

b)20 2)] +Mayo,

(B22) AkhnnAucov(xt,y) = ICLICi(ra	 +b)ba. 1,12) +1(2(ra 02.2 +(1 +b)bold] +Ma

where

= i+j-m-n,

K2 = (i-m)s+(j-n)t-ij+ml+kn+mn,

M =
Note that M can take the following values: 2, -1, 0, 1, 2. For the purpose of

generating some of the identification results we define

(B23) F= f(t,s,ij,k,l,m,n) I K1=0, Ke0),

(B24) G = {(t,s,i,j,k,l,m,n) I ly0, K2=0}.

These sets are non-empty: all elements satisfying i=m, j=n, and il+kjA constitute

a subset of F ; an example of an element in G is t=4, s=3, i=2, j=-1, k=1=m=n=1.

From (B20)-(B23) it then follows:

Ati A cov(xex.)	 ,	 b
(B25) FP2I 	

khnn 	 140020)2+2 °LA/
IC2

(B26) Fyy
Aid,„„iiiicov(yey)

IC2
IC[r2a	 +(1+b)2o

4)26)2 	 s'2

(B27) Fxy
AkhnnAijCOV(Xt,ye)

K2
Kfra.2.2 +(1 +b)ba
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where the Fs are defined by the first equation in these formulas.

Similarly, it follows from (B20)-(B22) and (B24):

A iicov(xt,x)
(B28) G. 	  = K[a 014,2 +b2a1112 ,

(1329) Gyy
Akh.Aitov(yeys)
	  = K[r2a..	 +b)20

K1
	12 1112

A,,,„,,tisfov(xt,y.)
(B30) Gry 	"	 K[ra+(l+b)ba,-.	 .0102	 1-2K1

We note that the Ds, Es, Fs, and Gs are observables. Viewed as sample statistics

these expressions will depend on k, 1, m, n, i, j, t, and s, (the Ds and Es only on t

and s), but viewed as population parameters they will, according to our model, be

independent of these values. '(In fact, any weighted average of any possible set of

Aid Aticov(xt,xs)/K2 will be a consistent estimate of the population parameter F.,

and similarly for F» and Fv, and for all the Ds, Es, and Gs.) The equations

defining the Ds, Es, Fs, and Gs can be used for various tests. In this appendix they

are used only to study identification.

B.5. Identification of age , ow, and (7.9 for all models

From (B25)4B27) and (B13)4B15) we obtain

(B31) a e. = D. - F.

(1332) a = D - F4119	 YY

(B33) at, = Dxy - Fxy

which identify the variances and covariances of the errors of measurement for

M1W3L3 and for all its submodels. Note that the parameter ;9 is not involved

in the identification of aet and a99' and neither in the identification of the other

parameters below. Our identification results are thus equally valid for MOW3L3,

where avp=0, and for M1W3L3, where this covariance is not restrict&I.
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B.6. Identification of r and b

Relationship between b and r

From (B7) and (B8) we obtain, for t * s

(B37) cov(yt,y) -rcov(xey.) = K(1 +b)d[a l,A, +(t+s)alii.+tsa l,Ä,

From (B8) and (B6) we obtain, also for . t * s

(B38) cov(xt,y)-rcov(xt,x) = Kbd[alili +(t +s)o +tsa1,12].

Assuming crXixi*°, (which for t*s secures that the square bracket in (B38) is not

zero), we divide (B37) by (B38) to iobtain

(B39) b - 	
cov(xt,y.)-rcov(xt,x.)

cov(yey.)-cov(xey.) +r(cov(xt,x)-cov(xt,ya))'

which identifies b in all models where r already has been identified, with the

exception of the four submodels in W3L0 (when axix1=0, and the denominator in

(B39) also is zero). In gection B.7 below it is demonstrated thafb is not identifiable

in W3LO.

Solving (B39) with respect to r gives, if the denominator is different from zero,

(1 +b)cov(xey.) -bcov(yey.) •

which identifies r if b already has been identified. In model WOL3 the denominator

(and also the numerator) is zero, and (B40) cannot be used to identify r in this case

(including four submodels). It can be demonstrated, analogously to the proof in

section B.7 of the non-identifiabilify of b in W3LO, that r cannot be identified in

WOL3.

We will now first identify r in those models where this is easily done by help of

Fs and Gs. Equation (B39) can in these cases be used to identify b. Similarly, we

will identify b in some of the remaining models, and use (B40) to identify r.

Finally, identification of these two parameters in two of the models will be

obtained by a more comprehensive analysis. The number of the equations used to

identify each parameter in the various models are given in Table Bl. The first four

rows of this table show the results for the four submodels of W3413, the next four

(1340) r= 
 (1 +b)cov(xt,x)-bcov(xt,y)'
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Table Bl

Overview of equations used to identify the parameters in the different models'

Model	 Parameter

r	 b	 acolo.)2	 aco2co2	 a010)1	 aX1X2	 (YÄ.2)62	 crAni

W3*Leb 856 839 13281829 B251826	 B6/88	 8281829	 B25/826 86/138

W3*L2* B41 B39 B281B29 B251826	 86/B8	 0	 825/826 B61B8

W3*L1* 	B42 839 B281B29 825/B26	 B6188	 0	 0	 B61138

W3*L0* 	B42 NI	 Nr1	 ,NId	 Nid	 0	 0	 0

W2*L3* 	B40 B47	 0	 B25/826	 B6/B8	 B281B29	 825/826 B6/118

W2*L2*b B61 839	 0	 825/1326	 B61B8	 0	 B251B26 B6/B8

W2*L1* 	B42 839	 0	 B25/B26	 B6/138	 0	 0	 B6/B8

W2*L0* 	842 NI - 0 	NId	 NId	 0	 0	 0

W1*L3* 	B40 B48	 0	 0	 B61B8	 132811329	 B25/1326 136/138

W1*L2* 	840 B48	 0	 0	 B6188	 0	 B25/B26 B61138

W1*L1* 	NId NIe	 0	 0Tif	 0	 0 	NIf

W1*L0* 846 NI	 0	 0	 0	 0	 0

WO*L3* 	NI B48	 0	 0	 0 	NIe 	NIe

WO*L2* 	NI B48	 0	 0	 0	 0	 Me

WO*L1* 	NI B49	 0	 0	 0	 0	 0

WO*L0* 	NI NI	 0	 0	 0	 0	 0	 0

a The numbers refer to the equations used for identification. NI=not identifiable.

b Identified assuming 0<d<1 or #A=1, cf section 3.
C The parameters age , ow, and agq, are identified by (B31), (832), and (B33), respectively.

d Identified if b is given a fixed value.

e Identified if r is given a fixed value.
f Identified if either b or r is given a fixed value.
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those of W2*L3, etc.

WeL2*

For model W3*L2* identification ofr is obtained by dividing (B30) by (B29), which

gives

G
(1341) r =

xx

WeLl*, WeL0*, W2411*, and WeL0*
For these models identification of r is obtained by dividing (B27) by (B25), which

gives

(B42) r = xY
F.

F
•

W1 411*, W1 410*, W1 411*, and W1*L0*
For model W1L1 (including the four above mentioned submodels) the differences

of the 2. order moments, (B10)-(B12), and the differences of these differences,

(B20)-(B22) are zero, and one is left with the simple covariances for identification.

(B6)-(B8) are now simplified to

(B43) cov(xt,;) = K[0.10, 	+ 8 ati ge 9

(B44) cov(yt,y) = K[1.2001. 1 +(1 +b)2aiii ] + 8a4140 '

(B45) cov(xt,y) = K[ra
0

101 +(1 +b)ba lili] + 81,04 
•

For submodel W1*L1*, for which 00,10e0 and crwa*O, we thus, for t*s, have only

three equations, independent of time, in the four parameters b, r, awkoi, and aka' .

They cannot all be identified without further information. If, for instance, r is

given a fixed value, the remaining parameters are easily identified, cf section 5.7.

For submodel W1 *L0* identification is obtained by dividing, for t * s, (B45) by

(B43), which in this case, when aux1 =0, gives
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cov(xt,y.)
(13445) r= 	

cov(x.exi)

For submodel WO*L0* , r cannot be identified even if b is given a fixed value, and

vice versa.

W2*L3*

Identification of b in model W2*L3* is obtained by dividing (B28) by (B30) which

gives

(B47) b=G.

WeL3*, W1 *L2*, WO*L3*, and WO*L2*

Identification of b in these four models is obtained by dividing (B25) by (B27),

which gives, after some ordeiing

(B4•11) b
F. 

WO*L/*

Identification of b in WO*L1* is obtained by dividing (B43) by (B45), which gives

cov(xex.)
(1349) b=

WAY'
Multiplying (B25) by r and subtracting (B27) from the resulting equation gives

(1350)	 = K[62 -(1+b)1:]a 1212 = - Kbda 1/212 .

cov(xt,y) -cov(xt,x) •

Multiplying (B27) by r, and subtracting the resulting equation from (B26) gives
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(1351) Fyy -Fivr = KR1 +b)2 -r(1 +b)1)] 0 121/2 = K(1 +b)da l,À2 .

Assuming aux2 * 0 and b * -1 (identification when b = -1 is demonstrated below),

we divide (B50) by (B51) to obtain

(B52) Fr-Fxy

Multiplying, for i=j=1, (B16) by r and subtracting (B18) from the resulting equation

gives:

(1353) rEzi -Em, = - Kbd[2a1,12 +(t+s-1)•3 120.

Multiplying, also here for i=j=1, (B16) by r, and subtracting the resulting equation

from (B17) gives

(B54) En TrExy =	 +b)(1[2010,2 +(t+s -1)(7 1 ].

Observing that, for at least some t and s, 2ax1x2+(t+s-1)%	 0, we divide (B53)

by (B54) to obtain •

rE -E	 b
(355) xx xY = -	 •Eyy -rExy 	1 +b

From equations (B52) and (B55) then follows

(356) • r2[FvEx.-F.E„y] + r[Fjyy -FyyEj + [FyyExy-F.),Eyy] = O.

This equation cannot be used to identify r if the first two square brackets are zero.

Inserting from equations (B16)-(B18) and (B25)-(B27) into (B56) gives

(1157) r2[2K2bdox,x2c. i.] +42K2(r2b2 -(1+b)2)431212c. i.2] +[2K2r(1+b)cla1212a0,4 = 0,

where the three square brackets are equal to those of (B56), respectively. Equation

(B57) shows that all three square brackets in (B56) are equal to zero except for

W3*L2* and W3*L3*. Identification of b and r in the former model is already

proved. For the latter model, (B56) is a second order equation in r that in general

has two different solutions. This problem of two roots is discussed in Sections 3

and B.10, where additional assumptions are introduced in order to choose between

the two. If r is identified by this procedure, identification of b follows from (B39).

Fyy-Fr	 (1+b)
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W2*L2*

Observing that we in model W2*L2* have awiw2
=1" aX1X2 = 0, multiplication of (B6)

by r and subtraction of (B8) from the resulting equation gives, for t*s

( 358) rcov(xt,;) -cov(xt,y) = -Kbc1(0 1,1, +tsa121 ).

Multiplying (B8) by r and subtracting the resulting equation from (B7) gives

(B59) cov(yt,y) -rcov(xt,y) = K(1 +b)d(axili +tsa i ).

Dividing the former by the latter gives

(B60)
rcov(xex.)-cov(xt,y,)

From (B52) (which is valid also for the present model) and (B60) follows

(361) r2[Fxycov(xt,;) -F.cov(xt,y)]

+ r[F.cov(yeys) -Fyycovaxex.)]

+ [Fyycov(xt,y) -Fvcov(yt,y)] = O.

Here, too, identification ofr is not possible if the square brackets are equal to zero.

Inserting (B6)-(B8) (for t*s, and a(01032 = axa2 = 0) and (B25)-(B27) into (B61) gives

(1362) r2[-K2bd(alikaw202-0121206),0,)]

+ r[K2(b2r2 -(1 +b)2)(aa.202-a1 ,Ø)]

+ [K2r(1 +b)d(a
ilk a	 -a a )] = O. 6)202	 0101 1212

The three brackets in (B62), corresponding to those of (B61), are in general not

zero, and equation (B61) can be used to identify r and b by the same procedure as

for W3*L3* .

Identification of r when b = -1

Discussing identification of W3*L3* and W2*L2* we used the assumption b * -

When b = -1, it follows from (340) that

cov(yt,y)
(363) r= 	

cov(xt,y)'

cov(yey.) -rcov(xt,y.)	 1 +b
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which identifies r. Identification of the remaining parameters does not depend on

the value of b, cf section B.8.

B.7. Proof of non-identifiability of b in W3L0

If akin = 0, which then gives model W3LO, full identification of all parameters are

not possible. Additional information, for instance a fixed value of one of the

parameters, is needed to obtain complete identification.

Rewriting (B6)-(B8)

(1369) cov(xt,;) - Boa.. = K[a (0101	 -
+(t+s)a_ 

-

+tsa_ 
-

],
12	 -22

(B70) cov(yt,y11) - Baas. = Kr2[000, +(t+s)a0,02 +tsa 02.],

(1371) cov(xt,y) %co = Kr[00,0i +(t+s)00,02+tsa 0202],

we remark that ae., ow, avp, and r are already identified in W3*L0*, W2*L0* ,

and Wl*LO*, cf Table Bl. (In submodel WO LO  r cannot be identified, and the

proof below is irrelevant.)

Assume that t, œ2.2, and 1•40)10,2 satisfy (B69)-(B71) for given values ofa
and r. Then it can be shown that the same must be true for

4(1 +6 -fir) -1 
b* -

1 -r
a* 

= ha	 a *
=woo,	 calcoi	

hã
'	 0102	 0102 026)2 = h802,02

where h is a positive scalar. For the above assertion to hold we must have

hK(b*,r) = K(8,r), where

K(b*,r) = 	1 	and K(6,r) - 	
1+61-rfif1 +b *-rb *12,

Inserting for b* we obtain
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hiqb*,0 =
1 +b *1-rb *12   

1 -r	
i  AU +6 -

1 -r

fir) -1 1 +  Al +fi -fir) -1     

vii

1 + 
 (1 -0[/Ii(1 -fir) - 1] 

1 -r

+:_fir = Kko,r)

This means that b, a(01(01, a(02(02 , and aco1(02 cannot be identified. If, for instince,- 
b is given a fixed value, the three remaining parameters can be obtained from

(B69)-(B71).

A similar proof, not given in this paper, will show that r is not identifiable in

WOL3.

B.8. Identification of amuoi, a , aco2c029 ax2x29 acoloo and axix2
For the submodels where b and r have been identified, the parameters a(02(02 and

ax2x2 are identified by (B25) and (B26), which are two linear equations in these

parameters. Thereafter we identify the parameters %Ica and %a by (B28) and

(B29), and finally we determine crwkoi and axixi from (B6) and (B8).

B.9. Observational equivalence between WeLe and Wfti s

The demonstration of identification above needs a qualification. The models Wi*Lj*

and Wj*Li* for i*j and ij=0,1,2,3 can be shown to be pairwise observationally

equivalent. Here we restrict ourselves to prove this proposition for the most

general pair of models, i.e. W2*L3* and W3*L2*. The proof for other pairs is

analogous, but somewhat simpler.

Let b', r', d brCO1C01% aco2co2% axixi', ax212 , ae.', Ow% and aeq; be the values of

b, r, d, a- 1 co 1 aœ2œ2) aX1X1, a 2x2, au , C599, and avp, respectively, in W3L2, and

b", r", d" , acouoi" , $5032032 2 aX1X1"' aX212"/ ae .", cr99", and ae; the values of the

same parameters in W2L3. For W3L2 to be observationally equivalent to W2L3

they have to imply the same theoretical moments of the observable variables. This

means that the following identities must hold for all possible combinations oft and

s (cf (B6)-(B8)):
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(B72) [K(b i,r)[0 1 +b40 	 - K(bu,r")[0 11 +Wad' x l0101	 -1-1	 0101

+ [K(bi,r)a i 02 - K(b",e)b u24 1 1(t+s)2.1

[ICOIX)Ea 	 Kl +bad	 - alil lly ll
4'202	 1212	 4. Law202 40/120 01ts + 8 [a l —ts et

(B73) [K(W,r)fraa'.101 +(1 +b)2a l, I - K(1)",r")[r iaa ll
101

 +(1 4020111410

+ [K(bi,r)r 120 10i02 - K(b",r 11)(1+b")20 14,21(t+s)

+ [KO i,r)[rna' +(1+102a 11212] - K(b",r")[r4a ll +(l+b 11)2a ll fits0202	 0202	 12-r

I 	 IF = 0 ,

(B74) [K(14r)fr ia'	 +b )1) / ' KO/14[1.11(31,1) +0+1:111)b"a ll
1 1

]]0101	 101

+ [K( 1,r)ria l. 16)2 — K(b",,r")(1+10b"a"(t+s)

+ [K(b i,r)[r i06,1 202 +(1 +W)Wa'1212] - K(b",r")fr ila ll 0 +(1+1)1)"420its
4)2 2

• 8ts[a lop -a '4] = 0.

For (B72)-(B74) to hold as identities the following relations must apply:

(B75) K(140[00101' +baa'
-

,	 = K(b 11,0[0 1
101

01 +1) 1120'1' 1 ]-11 

(1376) K(W,r)0'	 = K(b ll,e)ba À •0,02	 2

(1377) K(b l,r)[0 1 +b4a',20 K(b",0[00112.2 +1) /401211 12]0202

( 378) a:. = o a, ,

(B79) K(b i,r)[raa' +(l+b)20 11,0 = K(b",r")[r if20 11 +(l+b i0101	 (0,6),

(B80) Kat i,r	 =)r /20,I., „ 	 K(b",r 11)(1+b ilfa llwiw2	 1112

(1381) IC(b i,r)[raa'	 +b)201,212] = K(b",r")[r 40 11 +0 4024212] ,402% 	0202
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( 382) 099 = 0 11
99

(1383) K(13 /9/1r /aL +(1+14b la
-
i

-
,	 - K(b/Y[rla 11 +(1 +b")13"0 /,/11

(BM) K(1)/e)r io,,/ 0 = K(b",r"Xl +1) 1% 114
1x2

.
-12

(B85) K(b/,r 1)[r io f 	+1)/b/a/	 = K([r"o ll 	VW/012%2]6,202	 121-2	 b"	 0202 + 1

0380 a = a -

From (B75)-(B86) it is now possible to solve for

//a.. ,	 , 0 e , b" , r0e, , 	, o.202 ,	 ,	 , and 01212 as functions of

fi a 	r/ a m/ 	, a / 0121,2 •
Cl ee 	a lluP 9 a-- 9 	9	 9 -1-1	 (1)1Ø2 9

 OØ
 9 alixi 9 

and

From (B78), (B82), and (B86) we have

n 	//	 /	 //	 /	 II 	 /
kal 099 = 099 	 co, = gv°St 	 aig

Dividing (B84) by (B76) we obtain

(n) b" = 1
r /-1 •

Multiplying (B75) by r', and subtracting the resulting equation from (B83) we have

(1387) 1C /(140[(1+b /)b /-	 = K(b",r //)[r" libll]o ll
b" "' I •

Multiplying (B83) by r', and subtracting the resulting equation from (B79) we have

( 388) ICAb l,e)[(1+b/)2- /(1+1) /)blo il = K(b",r")[r //2 -r" 14=]o /./ 0 •
b"

Dividing (B88) by (B87), assuming aaliog and %xi 0, and thus excluding the

pair of models (W1*L0* , WO*L1*) from the proof, we obtain

r" - (1+1:02-1Al+b)bi 	1.+13/

(1 +1V)W-r/13/2

From (B76) we obtain



from which we obtain

MO a i/
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From (B87) we obtain

(V) all(4 1(4 1

K(b i,r) 	 (1 +b)b i-rta  0 /
MVO /VI/00] rual) 1 +b"(r) 1111

ll(r)

1	 /
A,0 x

1 -02

From (B85) and (V) we obtain

//

(w) a111,
K(b ;r) 

KV) Ar /WO )lib
La I +b 12 a /016, 1	 110

' li-a
b	 4)101(3 110)2

Multiplication of (B77) by r', and subtraction of the resulting equation from (B85)

gives

(B89) IC kb fx )[(1 +1)% i-ri) a] a /1212 = IC(b",e)fr i
1 +bill 1,

b"

From (B77) and (VII) we, finally, obtain

K(b 	 1 
(VilD 01212	[a. +b

IC[b"(0,11b /A 	r')ý 	2 2

a /
(h /

a6)2(42v" 

/r/ a
 1111)

(b ikr /D2

li= _a
b	 2(42 •

Thus we have proved that given an arbitrary set of parameters in W2*L3* we

can find a corresponding set of parameters in W3*L2* which makes the models

observationally equivalent.

From II and III we obtain the following relation between the stability

parameters d' and d" (cf (2d)) in W31,2 and W2L3, respectively:



5 6

(IX) d" = 1 +b"(1 -r") 1+ 	  _

or

	

(rJ-1)b'	 d'-1 

(DO	 = dll
d"-1

Note that (M) implies that if 0<d"<1, then d'<0, and vice versa. Thus assuming

(2e), i.e. 0<d<1, only one of the symmetric models is relevant. That is, within the

set of two symmetric models fWi*Lj*, Wj *Li*) we can identify the correct model

under assumption (2e).

B.10. Observational equivalence between WiLii and WiLin, 1=2,3.

A pairwise observational equivalence analogous to that between Wi *Lj* and Wj *Li*

exists between the two solutions of model WiLi, i=2,3, i.e. between WiLiI and

WiLiII. Here we restrict ourselves to demonstrate that the parameters of W3L3 II

are functions of those of W3L3I. The proof for the two solutions of W2L2 is

analogous, but somewhat simpler. Observational equivalence between the two

solutions of W3L3 requires that identities analogous to (B72)-(B74) hold. Let bI, rI ,

etc. denote the values of the parameters in W3L3I , and bll , rII those in W3L3II . For

all possible combinations of t and s we must now have

(B92) [KO I,r 1)[ai 4b 'o] _	 nun
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6)2(42 
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	(B94) [Ka) 1,r Ivrr 	+( 1 +b 	_

	

n-	 0101	 /1"

+ [K(b ')[i, '002+(1 +b i)b 11 12] _

+ [Rb )D.1010,02+0 +b IA) law _

+ litjalop -01:9] = O.

For (B92)-(B94) to hold as identities relations analogous to (B75)-(B86) must apply.

In three of these relations, those corresponding to (B76), (B80), and (B84), some

additional terms have to be included. The three enlarged relations are:

(B95) K(b 1,r 1) rai + oi	 =	 ,r Nan + 2 _11
/L. 01(0b 

p
	2 	 1112'	

n	
(01(0b liu2	 xix)

(B96) Ko)	 [r 1201)	 +b= v. ob 11; rr wan	 +b
uÂtY "	 W1Ø2	 ullkj

(B97) K() ][)[r 	+(1 +b I))
1 1121 =	 n,r	 nall. 4.(1 +b n) ) lion

2 1

In the remaining equations it suffices to substitute the model notations I and H for

the apostrophes used to designate the two models in (B75)-(B86). It can now easily

be shown that when substituting solutions analogous to (1)-WIT), i.e.

(110	 = a99 = 094
	u. 	I
	Cr itql = 	 .agg

(Ha) b 11 =

(ifih) r 11 = 1 +I)

b

"a) a l112
1= 

b
4,14,2

1 	I
(Va)	 =a

(1 -r	
011 )4 1 •0101

• (via)
1=
b (" 1

(Vila) an6)2°2

1 	Ia,	 .
1 -r	 "22 •
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IEW	 1 I(V - _a
1212	

b
r2 0202

and in addition

1 
(Xa) 0 1,101( )

2 a I_r 	'

into these relations, in each of them the left hand side turns out to be equal to the

right hand side. The two solutions are thus observationally equivalent.

From (Ila) and (lila) we obtain, analogous to (IX) and (IX')

(DCa) d li =

(DCa)	 = dll .
d

Note that (IXa) implies that if 0<cl11<1, then cli<O, and vice versa. Thus

assuming (2e), i.e. 0<d<1, only one of the two solutions is relevant, which means

that the model is identified. This is empirically illustrated in Table 6.
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