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Sammendrag 

Vektede gjennomsnitt brukes på flere statistiske områder, blant annet for å beskrive prisutvikling. 

Slike gjennomsnitt gir et godt mål på prisutviklingen når produktene man sammenligner er like 

(homogene). Vektede gjennomsnitt gir derimot ikke et godt bilde på prisutviklingen når man 

sammenligner produkter som er av forskjellig typer. En endring i gjennomsnittet vil da ikke bare 

kunne oppstå som følge av at prisene på produktene endres, men også som følge av at 

sammensetningen av produkter endrer seg. I litteraturen er det utviklet flere ulike mål på slike 

sammensetningseffekter, men disse målene kan vise sammensetningseffekter også for produkter med 

uendret volum. I denne artikkelen utledes en formel som eksakt dekomponerer endringen i det vektede 

gjennomsnittet som en sum av en priskomponent og en sammensetningskomponent. Metoden 

identifiserer bidraget til den samlede sammensetningskomponenten fra hvert enkelt produkt og, i 

motsetning til rammeverkene brukt i litteraturen, gir metoden kun sammensetningseffekter for 

produkter med endret volum.   

 

Et godt eksempel på bruken av vektede gjennomsnitt er i produksjon av kvartalsvis statistikk for lønn. 

Vi anvender metoden for å dekomponere endringen i det vektede gjennomsnittet for gjennomsnittlig 

avtalt månedslønn fra 1. kvartal 2020 til 1. kvartal 2021. Dekomponeringen gjøres med hensyn på 

næringer, og viser at vår dekomponering avviker fra de vanlige dekomponeringene brukt i litteraturen.  
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1. Introduction 
What are the driving forces underlying aggregate productivity growth? Why has the labour force 

participation rate changed during the last two decades? What has driven the change in annual 

earnings over the last year and why have import prices changed? All these questions have a 

common feature in that statistics for productivity, the labour force participation rate, earnings 

and import prices are often constructed using a weighted arithmetic mean formula.   

 

A natural starting point for answering these questions is to decompose the change in the 

weighted mean. A frequently used decomposition is the Bennet (1920) decomposition, often also 

referred to as shift-share analysis. This decomposition enables within-group growth effects to be 

distinguished from between-group compositional effects. For example, when examining 

productivity dynamics in U.S. manufacturing plants between 1972 and 1987, Baily et al. (1992) 

find a positive contribution to growth due to increasing output shares among high-productivity 

plants and decreasing output shares among low-productivity plants. Daly & Hobijn (2017) show 

that compositional effects due to labour market status flows are important in explaining 

aggregate real wage growth in the U.S. Analysing the fall in the U.S. labour force participation 

rate, Krueger (2017) finds that the population composition has shifted toward groups with lower 

participation rates, and that this accounts for well over half of the decline in the labour force 

participation rate between 1997 and 2017. Moreover, a large body of literature has identified the 

deflationary effects of international trade resulting from increased import shares from low-price 

countries, such as China; see e.g., Kamin et al. (2006), Thomas and Marquez (2009) and 

Benedictow and Boug (2017, 2021). 

 

Although the Bennet decomposition is useful for identifying the overall contribution from 

compositional effects, it does not identify how much of the change in overall compositional 

effects can be attributed to a particular group or subset. To overcome this shortcoming, the 

Bennet decomposition is often rewritten by subtracting a scalar 𝐴𝐴 from each group in the 

between effect, where the scalar 𝐴𝐴 typically represents some measure of the weighted mean. 

Huerga (2010) labelled this decomposition, when 𝐴𝐴 represents the average of the weighted 

means between two consecutive time periods, the Marshall-Edgeworth-type decomposition with 

extended weight effect. Foster et al. (2001) analyzes productivity developments and measures 

the between effect as the product of changes in the plant-level output share and the deviation of 

average plant-level productivity from the overall industry average. If the composition of firms 

changes such that the output share of a low-productivity plant increases, this would lower the 
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aggregate weighted mean productivity level and thus contribute negatively to the compositional 

effect. Note that in these decompositions a plant may contribute negatively to the compositional 

effect even if there is no change in the output of that plant. The reason is that it is the output 

share, and not the output of the plant, that enters the decomposition, and the output share of a 

given plant may change because the output of all the other plants changes. Moreover, as pointed 

out by Balk (2003), the choice of scalar 𝐴𝐴 is arbitrary. Since any scalar may be subtracted from the 

Bennet decomposition, an infinite number of possible decompositions are available, and it is 

therefore an open question which of the possible decompositions should be applied.   

 

In this paper, we derive a decomposition of the weighted mean that is rooted in functional 

analysis. Following the lines of the index number literature, our key idea is to apply the quadratic 

approximation lemma (QAL) to the weighted mean. The QAL provides an exact decomposition of 

a quadratic function, where each component represents the contribution of a change in a single 

independent variable to the overall change in the dependent variable. This lemma dates at least 

back to Theil (1967, p. 222) and has been used extensively to decompose price and volume 

indices; see e.g. Diewert (2002) and references therein.  

 

In our proposed decomposition, the weighted mean is regarded as a two-stage function: first, as 

a function of weights and indicators and second, as a function of weights being non-linear in the 

underlying volume variable. For example, in terms of the productivity decomposition referred to 

above, the weight is the output share of a given plant and the underlying volume variable is the 

output of that plant. The weighted mean productivity level is thus a composite function of plant-

specific output (volume variable) and productivity level (indicator). Applying QAL to both stages of 

the weighted mean yields our proposed decomposition. In this decomposition, all the terms 

related to the within effects are identical to those in the Bennet decomposition. Also, the overall 

between effect, or compositional effect, is identical to the overall between effect in the Bennet 

decomposition. The group-specific between effects, however, differ from those in the Bennet 

decomposition. In our proposed decomposition, the group-specific between effect is a function 

of the change in the underlying volume variable. The decomposition captures the intuitive 

property that the weighted mean increases if a group whose volume variable is growing has a 

level that is above the weighted mean level. There are two ways in which compositional effects 

for a group will be zero: either the group-specific indicator equals the weighted mean level, 

and/or there is no change in the volume variable of that group. The proposed decomposition is 

easy to employ and interpret and furthermore gives a better platform for comparing groups. 
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Moreover, we show that the decomposition is invariant with respect to treatment of time and 

that it therefore satisfies the difference counterpart to the index number time reversal test; see 

ILO et al. (2004, p. 411). 

 

Closely related to our analysis is the literature studying the unit value bias; see e.g. Párniczky 

(1974), Silver (2009) and Diewert and Lippe (2010). This literature decomposes the ratio between 

the unit value index, which is based on the weighted mean formula, and some well-known price 

indices, such as the Laspeyres, Paasche, and Fisher indices. In contrast to our proposed 

decomposition, which identifies the group-specific contribution to the overall compositional 

effect, this literature is concerned with identifying the overall compositional effect, referred to as 

the “unit value bias”. These decompositions are moreover multiplicative, i.e. the unit value index is 

written as the product of a standard price index and the derived bias term for compositional 

effects. Our proposed decomposition is additive.  

 

To illustrate our proposed decomposition, we use data on aggregate earnings growth in Norway 

between 2020Q1 and 2021Q1. We find that the wedge between the identified compositional 

effects from our decomposition and the Bennet decomposition is substantial, and for some 

industries, the compositional effects are of opposite signs. 

 

The paper proceeds as follows: Section 2 outlines the weighted mean formula, some of the most 

standard decompositions applied in the literature and our proposed decomposition. Section 3 

contrasts and compares empirically our proposed decomposition with those used in the 

literature, using the case of earnings growth in Norway. Section 4 provides a conclusion.  

2. Decomposing the weighted mean  
Our point of departure is the weighted mean of indicators 𝑃𝑃𝑖𝑖𝑖𝑖 across units 𝑖𝑖 at time 𝑡𝑡 of the form:  

 
𝑃𝑃𝑖𝑖 = �𝑆𝑆𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖

𝑁𝑁

𝑖𝑖=1

,  (1) 

with weights 𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑋𝑋𝑖𝑖𝑖𝑖
∑𝑗𝑗=1
𝑁𝑁 𝑋𝑋𝑗𝑗𝑖𝑖

, where the volume variable 𝑋𝑋𝑖𝑖𝑖𝑖 ≥ 0 and ∑𝑗𝑗=1
𝑁𝑁 𝑋𝑋𝑗𝑗𝑖𝑖 > 0. Note that the 

weights sum to unity. The weighted mean in Equation (1) has numerous applications within the 

fields of economics and measurement theory. Although the weighted mean has been applied in a 

variety of fields, and the indicator and volume variables may refer to inter alia wages, hours 

worked, productivity, output prices etc., we will henceforth refer to 𝑃𝑃𝑖𝑖𝑖𝑖 and 𝑋𝑋𝑖𝑖𝑖𝑖 as representing 
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prices and quantities, respectively, and unit 𝑖𝑖 as product 𝑖𝑖. In the following we are concerned with 

identifying the contribution to the change in the weighted mean of a change in both prices and 

quantities. Before we present our proposed decomposition, we start by recapitulating the most 

widely utilized decompositions in the literature.   

The Bennet decomposition 

Bennet (1920) provided a decomposition of the nominal value change into the sum of a price 

change and a quantity change. This decomposition stands in contrast to traditional index theory, 

which focuses on decomposing a value ratio into the product of a price index and a quantity 

index. Diewert (2005) analyzed the axiomatic and economic properties of the Bennet 

decomposition. The Bennet decomposition applied to Equation (1) yields: 

  
Δ𝑃𝑃 = �𝑆𝑆�̅�𝑖Δ𝑃𝑃𝑖𝑖

𝑁𝑁

𝑖𝑖=1

+ �𝑃𝑃�𝑖𝑖Δ𝑆𝑆𝑖𝑖

𝑁𝑁

𝑖𝑖=1

, (2) 

where Δ is the difference operator and a bar over a variable represents the moving average 

operator between time 𝑡𝑡 and 𝑣𝑣, i.e. Δ𝑥𝑥 = 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑣𝑣 and �̅�𝑥 = 1/2(𝑥𝑥𝑖𝑖 + 𝑥𝑥𝑣𝑣), and the time subscript is 

dropped when it is superfluous, for notational convenience. The Bennet decomposition is 

standard in productivity and shift-share analysis, see e.g. Baily et al. (1992) and OECD (2018). The 

terms 𝑆𝑆�̅�𝑖Δ𝑃𝑃𝑖𝑖  and 𝑃𝑃�𝑖𝑖Δ𝑆𝑆𝑖𝑖  represent the contribution to the change in the weighted mean of a change 

in the price of product 𝑖𝑖, and the quantity of product 𝑖𝑖, respectively. In contrast to the case which 

Bennet studied, where 𝑆𝑆𝑖𝑖𝑖𝑖 represented quantities, the variable 𝑆𝑆𝑖𝑖𝑖𝑖 in Equation (1) is a weight and 

thus a non-linear function of quantities. This distinction is crucial for the interpretation of the 

contribution to the change in the weighted mean of a change in quantities. For example, when 

the quantity of a low-price product increases, one would intuitively think that this would lead to a 

lowering of the weighted mean price level, as shown in the case of the unit value bias; see e.g. 

Diewert and Lippe (2010). However, Equation (2) does not identify such an effect, since the term 

which shows the contribution of the increased share of product 𝑖𝑖, 𝑃𝑃�𝑖𝑖Δ𝑆𝑆𝑖𝑖, is always positive, 

regardless of the price level of product 𝑖𝑖.  

The Marshall-Edgeworth decomposition with extended weight effect 

To capture the fact that the weighted mean decreases when the quantity of a low-priced product 

increases, the decomposition in Equation (2) can be changed accordingly; see also Balk (2003). 

Since the weights sum to unity, we may subtract the term ∑ (𝐴𝐴 Δ𝑆𝑆𝑖𝑖𝑁𝑁
𝑖𝑖=1 ), for any given scalar 𝐴𝐴, such 

that: 

 
Δ𝑃𝑃 = �𝑆𝑆�̅�𝑖Δ𝑃𝑃𝑖𝑖

𝑁𝑁

𝑖𝑖=1

+ �(𝑃𝑃�𝑖𝑖 − 𝐴𝐴) Δ𝑆𝑆𝑖𝑖

𝑁𝑁

𝑖𝑖=1

. (3) 
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In this case, the contribution to the change in the weighted mean of a change in the quantity of 

product 𝑖𝑖 is given by the term (𝑃𝑃�𝑖𝑖 − 𝐴𝐴) Δ𝑆𝑆𝑖𝑖 . This term captures the fact that the weighted mean 

price level increases if products whose quantity shares are growing have an average price level 

for product 𝑖𝑖 between time 𝑣𝑣 and 𝑡𝑡 that is larger than the scalar 𝐴𝐴. Note that the quantity share of 

product 𝑖𝑖 (𝑆𝑆𝑖𝑖𝑖𝑖) may change even if there is no change in the quantity of product 𝑖𝑖 (𝑋𝑋𝑖𝑖𝑖𝑖), i.e. if there 

is a change in the sum of all the other products. That said, by choosing the scalar 𝐴𝐴 to represent 

some measure of the mean price level, the above framework provides the same qualitative 

contribution from compositional effects as identified in the case of the unit value bias; see e.g. 

Diewert & Lippe (2010). For example, the choice 𝐴𝐴 = 𝑃𝑃�, where 𝑃𝑃� = 1/2(𝑃𝑃𝑖𝑖 + 𝑃𝑃𝑣𝑣), yields the 

decomposition Huerga (2010) labelled the Marshall-Edgeworth-type decomposition with 

extended weight effect. The contribution to the change in the weighted mean of a change in the 

share of unit 𝑖𝑖 is then given by (𝑃𝑃�𝑖𝑖 − 𝑃𝑃�) Δ𝑆𝑆𝑖𝑖. The weighted mean price level will thus increase if 

products whose quantity shares are growing have a price level that is higher than the weighted 

mean price level.1 Conversely, the weighted mean price level will decrease if products whose 

quantity shares are growing have a price level that is lower than the weighted mean price level. 

Although such a choice of scalar 𝐴𝐴 yields a decomposition property that fits qualitatively well with 

the corresponding results for the unit value bias, the choice of scalar 𝐴𝐴 is completely arbitrary, as 

argued by Balk (2003).  

The Bennet decomposition and the quadratic approximation lemma 

A different way to interpret the Bennet decomposition in Equation (2) is through functional 

analysis. Consider a function 𝑦𝑦𝑖𝑖 = 𝐹𝐹(𝐱𝐱𝑖𝑖, 𝐳𝐳𝑖𝑖), where 𝐱𝐱𝑖𝑖 = (𝑥𝑥1𝑖𝑖 , 𝑥𝑥2𝑖𝑖 , … , 𝑥𝑥𝑁𝑁𝑖𝑖) and 𝒛𝒛𝑖𝑖 = (𝑧𝑧1𝑖𝑖 , 𝑧𝑧2𝑖𝑖 , … , 𝑧𝑧𝑁𝑁𝑖𝑖). In 

the following we are concerned with identifying the effect on the change in 𝑦𝑦 due to changes in 

𝐱𝐱𝑖𝑖  and 𝒛𝒛𝑖𝑖. To this end, we apply the quadratic approximation lemma (QAL). The QAL provides a 

second-order approximation to a non-linear function 𝐹𝐹, and according to Theil (1975), the 

quadratic approximation lemma provides an “approximation which is as simple as the linear 

approximation and as accurate as the quadratic approximation” (p. 38).2 Diewert (1976) showed 

that the QAL holds exactly for any two points (𝐱𝐱𝑖𝑖, 𝐳𝐳𝑖𝑖) and (𝐱𝐱𝑣𝑣, 𝐳𝐳𝑣𝑣) if, and only if, the function 𝐹𝐹 is 

quadratic. Let 𝑭𝑭𝒙𝒙,𝑖𝑖 denote the vector of first-order partial derivatives with respect to 𝐱𝐱 evaluated 

at (𝐱𝐱𝑖𝑖 , 𝐳𝐳𝑖𝑖), i.e. 𝑭𝑭𝒙𝒙,𝑖𝑖 = (𝜕𝜕𝐹𝐹/𝜕𝜕𝑥𝑥1𝑖𝑖 , … , 𝜕𝜕𝐹𝐹/𝜕𝜕𝑥𝑥𝑁𝑁𝑖𝑖), and 𝑭𝑭𝒛𝒛,𝑖𝑖 denote the vector of first-order partial 

derivatives with respect to 𝐳𝐳 evaluated at (𝐱𝐱𝑖𝑖, 𝐳𝐳𝑖𝑖), i.e. 𝑭𝑭𝒛𝒛,𝑖𝑖 = (𝜕𝜕𝐹𝐹/𝜕𝜕𝑧𝑧1𝑖𝑖 , … , 𝜕𝜕𝐹𝐹/𝜕𝜕𝑧𝑧𝑁𝑁𝑖𝑖). Furthermore, let 

                                                      
1 Note that when choosing 𝑃𝑃� = 𝐴𝐴, the framework above is invariant with respect to treatment of time, i.e. it 
satisfies the difference counterpart to the index number time reversal test, see Diewert and Fox (2010). 
2 Where the term “quadratic approximation” refers to a second-order Taylor approximation.  
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𝑭𝑭𝒙𝒙��� = 1/2�𝑭𝑭𝒙𝒙,𝑖𝑖 + 𝑭𝑭𝒙𝒙,𝑣𝑣� and 𝑭𝑭𝒛𝒛��� = 1/2�𝑭𝑭𝒛𝒛,𝑖𝑖 + 𝑭𝑭𝒛𝒛,𝑣𝑣�. If and only if the function 𝐹𝐹 is quadratic, the 

following identity holds:   

 Δ𝑦𝑦 = 𝑭𝑭𝒙𝒙��� Δ𝐱𝐱 + 𝑭𝑭𝒛𝒛��� Δ𝐳𝐳. (4) 

Henceforth we refer to the quadratic identity in Equation (4) as the quadratic approximation 

lemma (QAL). The QAL provides a decomposition of a quadratic function in which each 

component represents the contribution of a change in a single independent variable to the 

overall change in 𝑦𝑦𝑖𝑖.  

 

Now consider the weighted mean formula in Equation (1), which is quadratic in the variables 𝐒𝐒𝑖𝑖 =

(𝑆𝑆1𝑖𝑖 , 𝑆𝑆2𝑖𝑖 , … , 𝑆𝑆𝑁𝑁𝑖𝑖) and 𝐏𝐏𝑖𝑖 = (𝑃𝑃1𝑖𝑖 ,𝑃𝑃2𝑖𝑖 , … ,𝑃𝑃𝑁𝑁𝑖𝑖). Applying QAL to Equation (1) yields Equation (2). We may 

thus think of the Bennet decomposition as being the result of applying QAL to the quadratic 

function 𝑃𝑃 = 𝐹𝐹(𝐒𝐒𝑖𝑖 ,𝐏𝐏𝑖𝑖). However, since the variables in 𝐒𝐒𝑖𝑖 in Equation (1) are weights and thus a 

non-linear function of quantities, the case of the weighted mean in Equation (1) is somewhat 

more complex than the quadratic function 𝑃𝑃 = 𝐹𝐹(𝐒𝐒𝑖𝑖 ,𝐏𝐏𝑖𝑖).   

The weighted mean and the QAL 

Since Equation (4) holds as an identity for quadratic functions, it has been used extensively to 

decompose price and volume indices; see e.g. Diewert (2002) and references therein. Following 

the lines of the index number literature, the key idea in this paper is to apply the QAL to the 

weighted mean to identify the contributions from both price and quantity changes. As mentioned 

in the introduction, we represent the weighted mean as a two-stage function. First, the weighted 

mean is a function of prices and quantity shares, 𝑃𝑃𝑖𝑖 = 𝐹𝐹(𝐒𝐒𝑖𝑖 ,𝐏𝐏𝑖𝑖). Second, the quantity shares are 

functions of quantities, and of the sum of quantities, 𝐒𝐒𝑖𝑖 = 𝐆𝐆(𝐗𝐗𝑖𝑖 ,𝑄𝑄(𝐗𝐗𝑖𝑖)) =

(𝐺𝐺1(𝑋𝑋1𝑖𝑖 ,𝑄𝑄(𝐗𝐗𝑖𝑖)), … ,𝐺𝐺𝑁𝑁(𝑋𝑋𝑁𝑁𝑖𝑖 ,𝑄𝑄(𝐗𝐗𝑖𝑖))), where 𝐗𝐗𝑖𝑖 = (𝑋𝑋1𝑖𝑖 ,𝑋𝑋2𝑖𝑖 , … ,𝑋𝑋𝑁𝑁𝑖𝑖) represents the vector of quantities, 

the function 𝑄𝑄 represents the sum of quanties, i.e. 𝑄𝑄(𝐗𝐗𝑖𝑖) = ∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 , and the function 𝐺𝐺𝑖𝑖 is the 

quantity share of product 𝑖𝑖, i.e. 𝐺𝐺𝑖𝑖 = 𝑋𝑋𝑖𝑖/𝑄𝑄𝑖𝑖. The weighted mean is therefore a composite function 

of both quantities (𝐗𝐗𝑖𝑖) and prices (𝐏𝐏𝑖𝑖), i.e. 𝑃𝑃𝑖𝑖 = 𝐹𝐹(𝑮𝑮(𝐗𝐗𝑖𝑖 ,𝑄𝑄(𝐗𝐗𝑖𝑖)),𝐏𝐏𝑖𝑖). This two-stage setup shows 

what happens to the weighted mean when quantities change, giving rise to a “chain reaction” in 

two stages. First, the weights, 𝐒𝐒𝑖𝑖 = 𝐆𝐆(𝐗𝐗𝑖𝑖 ,𝑄𝑄(𝐗𝐗𝑖𝑖)), react directly to the change in quantities, owing 

both to changes in the quantity of product 𝑖𝑖 and of the aggregate 𝑄𝑄. Second, the weighted mean 

𝑃𝑃𝑖𝑖 reacts to the change in weights.  

 

To analytically decompose both steps of this “chain reaction”, we first consider the function of 

quantity shares for product 𝑖𝑖, 𝑆𝑆𝑖𝑖𝑖𝑖 = 𝐺𝐺𝑖𝑖(𝑋𝑋𝑖𝑖𝑖𝑖 ,𝑄𝑄(𝐗𝐗𝑖𝑖)) = 𝑋𝑋𝑖𝑖𝑖𝑖/𝑄𝑄(𝐗𝐗𝑖𝑖). We are interested in identifying how 
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much of the change in the share Δ𝑆𝑆𝑖𝑖 can be attributed to the change in 𝑋𝑋𝑖𝑖𝑖𝑖, and how much can be 

attributed to the change in the sum of quantities 𝑄𝑄. This question may be answered by 

considering the inverse function, i.e. 𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑖𝑖𝑖𝑖𝑄𝑄. Note that this inverse function (𝐺𝐺𝑖𝑖−1) conveys the 

same information as the 𝐺𝐺𝑖𝑖-function, since these functions represent a one-to-one relationship 

for the set of all non-negative numbers. Instead of considering how much of the change in 𝑆𝑆𝑖𝑖 can 

be attributed to changes in 𝑋𝑋𝑖𝑖 and 𝑄𝑄, we can therefore first consider the inverse function and 

decompose the change in 𝑋𝑋𝑖𝑖 that can be attributed to 𝑆𝑆𝑖𝑖 and 𝑄𝑄, and then back out how much 𝑋𝑋𝑖𝑖 

and 𝑄𝑄 contribute to the change in 𝑆𝑆𝑖𝑖. Applying the QAL to the quadratic function 𝑋𝑋𝑖𝑖 = 𝑆𝑆𝑖𝑖𝑄𝑄 yields 

the exact decomposition:  

 Δ𝑋𝑋𝑖𝑖 = 𝑄𝑄�Δ𝑆𝑆𝑖𝑖 + 𝑆𝑆𝚤𝚤�Δ𝑄𝑄.  (5) 

The terms 𝑄𝑄�Δ𝑆𝑆𝑖𝑖  and 𝑆𝑆𝚤𝚤�Δ𝑄𝑄 capture how much the variables 𝑆𝑆𝑖𝑖 and 𝑄𝑄 , respectively, contribute to the 

change in 𝑋𝑋𝑖𝑖. Note that Equation (5) shows the possible discrepancy between the change in the 

quantity variable Δ𝑋𝑋𝑖𝑖 and the change in the weight Δ𝑆𝑆𝑖𝑖 . In particular, and as we will return to 

below, the sign of Δ𝑋𝑋𝑖𝑖  may be the opposite to that of Δ𝑆𝑆𝑖𝑖 , depending on how much the aggregate 

quantity (𝑄𝑄) changes. Further, it follows from Equation (5) that the change in the share 𝑆𝑆𝑖𝑖 can be 

exactly decomposed as: 

 Δ𝑆𝑆𝑖𝑖 = �
1
𝑄𝑄�
� Δ𝑋𝑋𝑖𝑖 − �

𝑆𝑆𝚤𝚤�

𝑄𝑄�
� Δ𝑄𝑄. (6) 

The first term after the equality sign, �1
𝑄𝑄�
� Δ𝑋𝑋𝑖𝑖, captures how much of the change in 𝑆𝑆𝑖𝑖 can be 

attributed to the change in 𝑋𝑋𝑖𝑖, while the last term, −�𝑆𝑆𝚤𝚤
�

𝑄𝑄�
� Δ𝑄𝑄, captures how much can be attributed 

to the change in 𝑄𝑄. Since Δ𝑄𝑄 = ∑ Δ𝑋𝑋𝑖𝑖𝑁𝑁
𝑖𝑖=1 , we have: 

 
Δ𝑆𝑆𝑖𝑖 = �

1 − 𝑆𝑆𝚤𝚤�

𝑄𝑄�
� Δ𝑋𝑋𝑖𝑖 − �

𝑆𝑆𝚤𝚤�

𝑄𝑄�
��Δ𝑋𝑋𝑗𝑗 .

𝑁𝑁

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

 (7) 

Equation (7) represents the first part of the “chain reaction”. It shows that the share 𝑆𝑆𝑖𝑖 changes 

both because the quantity of product 𝑖𝑖 changes (the first term after the equality sign) and 

because the quantity of the other products (𝑗𝑗 ≠ 𝑖𝑖) changes (the second term after the equality 

sign). The second part of the “chain reaction” is given by Equation (2), which shows how the 

weighted mean 𝑃𝑃𝑖𝑖 reacts to the change in weights as a result of applying the QAL to Equation (1). 

Inserting Equation (7) into Equation (2) and collecting terms yields the following exact 

decomposition of the weighted mean: 
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Proposition 1 (Exact additive decomposition of the weighted mean)  

Consider the weighted mean across units 𝑖𝑖 at time 𝑡𝑡 of the form: 𝑃𝑃𝑖𝑖 = ∑ 𝑆𝑆𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖=1 , with weights 𝑆𝑆𝑖𝑖𝑖𝑖 =

𝑋𝑋𝑖𝑖𝑖𝑖
∑𝑗𝑗=1
𝑁𝑁 𝑋𝑋𝑗𝑗𝑖𝑖

, where 𝑋𝑋𝑖𝑖𝑖𝑖 ≥ 0 and  𝑄𝑄𝑖𝑖 = ∑𝑗𝑗=1
𝑁𝑁 𝑋𝑋𝑗𝑗𝑖𝑖 > 0. The change in the weighted mean between time 𝑡𝑡 and 

𝑣𝑣 can be exactly decomposed as 

 
Δ𝑃𝑃 = �𝑆𝑆�̅�𝑖Δ𝑃𝑃𝑖𝑖

𝑁𝑁

𝑖𝑖=1

+ ��
1
𝑄𝑄�
� �𝑃𝑃�𝑖𝑖 − 𝑃𝑃��

𝑁𝑁

𝑖𝑖=1

Δ𝑋𝑋𝑖𝑖  (8) 

where 𝑃𝑃� = ∑ 𝑆𝑆𝚤𝚤�𝑃𝑃�𝑖𝑖𝑁𝑁
𝑖𝑖=1 , Δ is the difference operator and a bar over a variable represents the moving 

average operator between time 𝑡𝑡 and 𝑣𝑣, i.e. Δ𝑥𝑥 = 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑣𝑣 and �̅�𝑥 = 1/2(𝑥𝑥𝑖𝑖 + 𝑥𝑥𝑣𝑣). 

PROOF. See the Appendix.  

 

Several features of the decomposition in Proposition 1 merit attention. First, the term that shows 

the contribution to the change in the weighted mean of the change in the price of product 𝑖𝑖, 

𝑆𝑆�̅�𝑖𝑖𝑖Δ𝑃𝑃𝑖𝑖 , is identical to the term in the Bennet decomposition shown in Equation (2). Second, the 

aggregate term ∑ �1
𝑄𝑄�
� �𝑃𝑃�𝑖𝑖 − 𝑃𝑃��𝑁𝑁

𝑖𝑖=1 Δ𝑋𝑋𝑖𝑖 that shows the total compositional effect, or the contribution 

to the change in the weighted mean of the sum of all quantity changes, is identical to the term for 

the compositional effect in the Bennet decomposition. Third, the term that shows the 

contribution to the change in the weighted mean of the change in the quantity of product 𝑖𝑖, is 

given by  

 �
1
𝑄𝑄�
� �𝑃𝑃�𝑖𝑖 − 𝑃𝑃��Δ𝑋𝑋𝑖𝑖 .  

This term differs from that in the Bennet decomposition. It has a natural interpretation and 

captures the intuitive property that the weighted mean price level increases if products that are 

growing in quantity have price levels that are higher than the mean price level. 𝑃𝑃�𝑖𝑖 − 𝑃𝑃� compares 

the price level of product 𝑖𝑖 with a measure of the weighted mean price level 𝑃𝑃� = ∑ 𝑆𝑆𝚤𝚤�𝑃𝑃�𝑖𝑖𝑁𝑁
𝑖𝑖=1 . There 

are thus two ways in which the compositional effects of product 𝑖𝑖 can equal zero: the price of 

product 𝑖𝑖 equals the weighted average price level, and/or there is no change in the quantity of 

product 𝑖𝑖.  

 

A fourth distinctive feature of the decomposition in Proposition 1 is that it does not hold a time 

subscript. In other words, the framework is invariant with respect to treatment of time and it 

therefore satisfies the difference counterpart to the index number time reversal test. The time 

reversal test for indices states that if the data for the two time periods are interchanged, then the 

resulting formula should equal the reciprocal of the original index, see e.g. ILO et al. (2004, p. 

295). This test can be rephrased in the case where the formula is in the form of differences, such 
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as the decomposition in Proposition 1: if the data for the two time periods are interchanged, then 

the resulting formula should equal the negative of the original formula. To illustrate this 

analytically, let the function 𝐻𝐻(𝐏𝐏𝑖𝑖 ,𝐏𝐏𝑣𝑣 ,𝐗𝐗𝑖𝑖 ,𝐗𝐗𝑣𝑣) represent the formula for decomposing the change in 

the weighted mean. The function 𝐻𝐻 passes the time reversal test if and only if 𝐻𝐻(𝐏𝐏𝑖𝑖 ,𝐏𝐏𝑣𝑣 ,𝐗𝐗𝑖𝑖 ,𝐗𝐗𝑣𝑣) =

 −𝐻𝐻(𝐏𝐏𝑣𝑣 ,𝐏𝐏𝑖𝑖 ,𝐗𝐗𝑣𝑣 ,𝐗𝐗𝑖𝑖). The proposed decomposition in Proposition 1 satisfies this counterpart to the 

time reversal test.  

 

We commented above on the practice in the literature of choosing a scalar 𝐴𝐴 when decomposing 

the weighted mean, see Equation (3). Although the choice of 𝐴𝐴 is arbitrary, it is nevertheless 

interesting to see whether it is possible to derive a value for 𝐴𝐴 that is consistent with the 

decomposition in Proposition 1. From Equation (3), the contribution to the change in the 

weighted mean from a change in the quantity share of product 𝑖𝑖 is given by the term (𝑃𝑃�𝑖𝑖𝑖𝑖 − 𝐴𝐴)Δ𝑆𝑆𝑖𝑖𝑖𝑖. 

In Proposition 1, the contribution to the change in the weighted mean of a change in the quantity 

of product 𝑖𝑖 is given by the term �1
𝑄𝑄�
� �𝑃𝑃�𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑖𝑖� � Δ𝑋𝑋𝑖𝑖. For these terms to be equal, the scalar 𝐴𝐴 must 

be given by (see the Appendix): 

 𝐴𝐴𝑖𝑖 = 𝑃𝑃� − �
Δ𝑄𝑄/𝑄𝑄�

Δ𝑆𝑆𝑖𝑖/𝑆𝑆𝚤𝚤�
� �𝑃𝑃�𝑖𝑖𝑖𝑖 − 𝑃𝑃��  (9) 

The derived value of 𝐴𝐴𝑖𝑖 depends on 𝑖𝑖. This feature stands in contrast to Equation (3), where the 

property that 𝐴𝐴 is a scalar and independent of 𝑖𝑖 is central to deriving Equation (3) from Equation 

(2). In the case where the aggregate quantity is unchanged, i.e. Δ𝑄𝑄 = 0, Equation (9) reduces to 

𝐴𝐴 = 𝑃𝑃�, which is independent of 𝑖𝑖. Moreover, in this case the value of 𝐴𝐴 is close to the choices 

commonly used in the literature. Several values for the scalar 𝐴𝐴 have been applied, most 

frequently 𝑃𝑃𝑖𝑖, 𝑃𝑃𝑣𝑣 and the average of the two, which are all close to the average measure 𝑃𝑃𝑖𝑖� . 

However, when the aggregate quantity changes, Δ𝑄𝑄 ≠ 0, the factor �Δ𝑄𝑄/𝑄𝑄�

Δ𝑆𝑆𝑖𝑖/𝑆𝑆𝚤𝚤�
� may differ from zero, 

possibly leaving a sizable discrepancy between the decomposition in Proposition 1 and the most 

common decompositions applied in the literature. In particular, and as can be seen from 

Equation (5), the sign of Δ𝑋𝑋𝑖𝑖 may be the opposite of the sign of Δ𝑆𝑆𝑖𝑖, depending on how much 

aggregate quantity (𝑄𝑄) changes. As a result, the measured contributions from compositional 

effects in Equation (3) and Proposition 1 may have opposite signs. In the empirical section, we 

examine in depth how large the discrepancy between the two decompositions may be in practice 

when aggregate earnings growth in Norway is decomposed. 
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3. Empirical application 
The data used in the empirical application are obtained through the “a-ordning”, which is a collab-

orative digital system shared by Statistics Norway, the Norwegian Tax Administration and the 

Norwegian Labour and Welfare Administration (NAV). It provides information about employment, 

remuneration in cash and in kind and taxes. Data for all industries and individuals are collected 

and compiled monthly, and this is the main source Statistics Norway utilizes for producing statis-

tics on earnings and the labor market. 

We focus on the change in monthly basic earnings per full-time equivalent as the price variable 

from 2020Q1 to 2021Q1 and allow for compositional effects across industries using the number 

of jobs in each industry as the volume variable. Table 1 shows the mean monthly basic earnings 

and the number of jobs in each industry and in the aggregate for 2020Q1 and 2021Q1.  

Table 1 Monthly basic earnings per full-time equivalent and number of jobs, 2020Q1 and 
2021Q1 

 2020Q1 2021Q1 

 Monthly basic 

earnings (NOK) 

Number of 

jobs 

Monthly basic 

earnings (NOK) 

Number of 

jobs 

All industries 44,982 2,892,481 46,258 2,808,076 

Agriculture, forestry and fishing 39,630 31,375 41,720 31,730 

Mining and quarrying 64,060 62,326 65,080 61,218 

Manufacturing 45,930 220,366 47,140 213,042 

Electricity, water supply, sewerage, waste 

management 

51,950 33,669 53,380 34,129 

Construction 43,440 239,733 44,790 237,298 

Wholesale and retail trade; repair of motor 

vehicles and motorcycles 

40,980 367,772 42,390 364,197 

Transportation and storage 44,040 142,947 45,270 128,863 

Accommodation and food service activities 32,010 114,097 33,450 73,881 

Information and communication 58,540 100,137 60,390 102,262 

Financial and insurance activities 62,410 47,532 64,100 48,408 

Real estate, professional, scientific and 

technical activities 

56,470 174,818 58,090 171,674 

Administrative and support service activities 39,270 159,059 40,220 144,862 

Public administration and defence; 

compulsory social security 

49,690 184,955 50,210 187,848 

Education 46,410 254,153 46,820 252,616 

Human health and social work activities 41,580 641,702 42,110 647,022 

Other service activities 42,060 117,840 43,750 109,026 

Source: Statbank Table 11654, Statistics Norway. 

https://www.ssb.no/en/statbank/table/11654
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Table 2 shows the results from using the Bennet decomposition in Equation (2), the Marshall-

Edgeworth type decomposition with extended weight effect in Equation (3), and our proposed 

decomposition in Proposition 1.3 As expected, the contribution to the change in the weighted 

mean from the change in earnings of each industry (and the aggregate) is identical across the 

three decompositions, as is the total compositional effect. We find that the wedge between the 

identified compositional effects from (i) our decomposition and (ii) the Bennet decomposition 

and the Marshall-Edgeworth decomposition is considerable, and for some industries such as 

mining and quarrying, construction and wholesale and retail trade, the compositional effects are 

of opposite signs. The compositional effects from each industry from the three different 

decompositions are illustrated in Figure 1. 

 

Figure 2 illustrates that the discrepancies between the measured contributions from 

compositional effects are due to the changes in both the share and the volume variable that are, 

for some industries, of opposite signs, see e.g. mining and quarrying, construction and wholesale 

and retail trade. As discussed earlier and shown in Equation (9), this leads to a discrepancy 

between the decompositions. 

                                                      
3 An add-in to undertake this decomposition in EViews, and a Stata replication code to generate the results 
in Table 2 and Figure 1, are available from the authors upon request.  
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Table 2 Decomposition of change in monthly basic earnings, from 2020Q1 to 2021Q1 
 Bennet decomposition Marshall-Edgeworth decomposition Decomposition in Proposition 1 

 Earnings 

contribution 

Compositional 

effect 

Total Earnings 

contribution 

Compositional 

effect 

Total Earnings 

contribution 

Compositional 

effect 

Total 

All industries 1,055 221 1,276 1,055 221 1,276 1,055 221 1,276 

Agriculture, forestry and fishing 23 18 42 23 -2 21 23 -1 23 

Mining and quarrying 22 16 38 22 5 27 22 -7 15 

Manufacturing 92 -15 77 92 0 92 92 -2 90 

Electricity, water supply, sewerage, waste 

management 

17 27 44 17 4 21 17 1 18 

Construction 113 72 185 113 -2 111 113 1 114 

Wholesale and retail trade; repair of motor 

vehicles and motorcycles 

181 106 287 181 -10 171 181 5 186 

Transportation and storage 59 -158 -99 59 3 62 59 5 63 

Accommodation and food service activities 47 -430 -383 47 169 217 47 182 229 

Information and communication 66 107 173 66 25 91 66 10 76 

Financial and insurance activities 28 51 79 28 14 43 28 5 34 

Real estate, professional, scientific and 

technical activities 

98 40 138 98 8 107 98 -13 86 

Administrative and support service activities 51 -135 -85 51 20 71 51 29 80 

Public administration and defence; 

compulsory social security 

34 147 181 34 13 47 34 4 38 

Education 36 98 134 36 2 39 36 -1 36 

Human health and social work activities 120 358 478 120 -32 88 120 -7 113 

Other service activities 67 -82 -15 67 5 72 67 8 76 

Source: Authors’ own calculations using data from Statistics Norway. 
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Figure 1 Compositional effects across decompositions1 

 
1See Table 2 for precise magnitudes of compositional effects for each industry and decomposition method. 
Source: Authors’ own calculations using data from Statistics Norway. 

Figure 2 Change in share and volume variable, from 2020Q1 to 2021Q11 

 
1Change in share and volume variable for each industry from 2020Q1 to 2021Q1, measured in percent. 
Source: Authors’ own calculations using data from Statistics Norway. 
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4. Conclusion 
In this paper, we have derived an exact additive decomposition of the weighted mean that is 

rooted in functional analysis. Our proposed decomposition is easy to employ and interpret. We 

also show that it satisfies the difference counterpart to the index number time reversal test. The 

fundamental difference between our proposed decomposition and many of the applied 

decompositions used in the literature is that our measure of the contribution to compositional 

changes of a given product is based on the change in the quantity of that product: If there is no 

change in the quantity of a product, then that product does not contribute to a compositional 

change in the weighted mean. In contrast, in the decompositions employed in the literature, the 

measure of the contribution to compositional changes of a given product is based on the change 

in the quantity share of that product. Since the quantity share of a product may change because 

the quantities of other products change, this may lead to compositional changes stemming from 

a product whose quantity level is unchanged. When comparing our proposed decomposition to 

the standard decomposition applied in the literature in the case of aggregate earnings growth in 

Norway from 2020Q1 to 2021Q1, we find that the wedge between the identified compositional 

effects is substantial, and for some industries the compositional effects are of opposite signs.  
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6. Appendix 

Proof of Proposition 1 

Inserting Δ𝑄𝑄 = ∑ Δ𝑋𝑋𝑖𝑖𝑁𝑁
𝑖𝑖=1  into Equation (6) yields: 

 
Δ𝑆𝑆𝑖𝑖 = 𝑎𝑎𝑖𝑖Δ𝑋𝑋𝑖𝑖 − 𝑏𝑏𝑖𝑖�Δ𝑋𝑋𝑗𝑗 ,

𝑁𝑁

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

  

where 𝑎𝑎𝑖𝑖 = 1−𝑆𝑆𝚤𝚤�

𝑄𝑄�
 and 𝑏𝑏𝑖𝑖 = 𝑆𝑆𝚤𝚤�

𝑄𝑄�
. We thus have: 

 

�𝑃𝑃�𝑖𝑖Δ𝑆𝑆𝑖𝑖

𝑁𝑁

𝑖𝑖=1

= �𝑃𝑃�𝑖𝑖

⎝

⎜
⎛
𝑎𝑎𝑖𝑖Δ𝑋𝑋𝑖𝑖 − 𝑏𝑏𝑖𝑖�Δ𝑋𝑋𝑗𝑗

𝑁𝑁

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖 ⎠

⎟
⎞

.
𝑁𝑁

𝑖𝑖=1

  

This can be written as: 

 𝑃𝑃�1𝑎𝑎1Δ𝑋𝑋1 − 𝑃𝑃�1𝑏𝑏1Δ𝑋𝑋2 − 𝑃𝑃�1𝑏𝑏1Δ𝑋𝑋3 − ⋯− 𝑃𝑃�1𝑏𝑏1Δ𝑋𝑋𝑁𝑁 

+𝑃𝑃�2𝑎𝑎2Δ𝑋𝑋2 − 𝑃𝑃�2𝑏𝑏2Δ𝑋𝑋1 − 𝑃𝑃�2𝑏𝑏2Δ𝑋𝑋3 − ⋯− 𝑃𝑃�2𝑏𝑏2Δ𝑋𝑋𝑁𝑁 + ⋯ 

+𝑃𝑃�𝑁𝑁𝑎𝑎𝑁𝑁Δ𝑋𝑋𝑁𝑁 − 𝑃𝑃�𝑁𝑁𝑏𝑏𝑁𝑁Δ𝑋𝑋1 − 𝑃𝑃�𝑁𝑁𝑏𝑏𝑁𝑁Δ𝑋𝑋2 − ⋯− 𝑃𝑃�𝑁𝑁−1𝑏𝑏𝑁𝑁−1Δ𝑋𝑋𝑁𝑁−1 
 

When collecting terms, this can be written as: 

 𝑃𝑃�1𝑎𝑎1Δ𝑋𝑋1 − 𝑃𝑃�2𝑏𝑏2Δ𝑋𝑋1 − 𝑃𝑃�3𝑏𝑏3Δ𝑋𝑋1 −⋯− 𝑃𝑃�𝑁𝑁𝑖𝑖𝑏𝑏𝑁𝑁Δ𝑋𝑋1 

+𝑃𝑃�2𝑎𝑎2Δ𝑋𝑋2 − 𝑃𝑃�1𝑏𝑏1Δ𝑋𝑋2 − 𝑃𝑃�3𝑏𝑏3Δ𝑋𝑋2  −⋯− 𝑃𝑃�𝑁𝑁𝑏𝑏𝑁𝑁Δ𝑋𝑋2 

+𝑃𝑃�3𝑎𝑎3Δ𝑋𝑋3 − 𝑃𝑃�1𝑏𝑏1Δ𝑋𝑋3 − 𝑃𝑃�2𝑏𝑏3Δ𝑋𝑋3  −⋯− 𝑃𝑃�𝑁𝑁𝑏𝑏𝑁𝑁Δ𝑋𝑋3 

+⋯ 

 

This in turn can be written more compactly as: 

 

�

⎝

⎜
⎛
𝑃𝑃�𝑖𝑖𝑎𝑎𝑖𝑖 −�𝑏𝑏𝑗𝑗𝑃𝑃�𝑗𝑗

𝑁𝑁

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖 ⎠

⎟
⎞

𝑁𝑁

𝑖𝑖=1

Δ𝑋𝑋𝑖𝑖 .  

By inserting 𝑎𝑎𝑖𝑖 = 1−𝑆𝑆𝚤𝚤�

𝑄𝑄�
 and 𝑏𝑏𝑖𝑖 = 𝑆𝑆𝚤𝚤�

𝑄𝑄�
, we get: 

 
��

1
𝑄𝑄�
��𝑃𝑃�𝑖𝑖 −�𝑆𝑆𝚥𝚥�𝑃𝑃�𝑗𝑗

𝑁𝑁

𝑗𝑗=1

�
𝑁𝑁

𝑖𝑖=1

Δ𝑋𝑋𝑖𝑖 ,  

which equals the second term after the equals sign in Proposition 1:  

 
��

1
𝑄𝑄�
� �𝑃𝑃�𝑖𝑖 − 𝑃𝑃��

𝑁𝑁

𝑖𝑖=1

Δ𝑋𝑋𝑖𝑖 ,  

where 𝑃𝑃� = ∑ 𝑆𝑆𝚤𝚤�𝑃𝑃�𝑖𝑖𝑁𝑁
𝑖𝑖=1 . 
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Derivation of the scalar 𝑨𝑨 

From Equation (3), the contribution to the change in the weighted mean from a change in the 

quantity of product 𝑖𝑖 is given by the term (𝑃𝑃�𝑖𝑖 − 𝐴𝐴𝑖𝑖)Δ𝑆𝑆𝑖𝑖 . Setting this term equal to the term 

�1
𝑄𝑄�
� �𝑃𝑃�𝑖𝑖 − 𝑃𝑃�� Δ𝑋𝑋𝑖𝑖 yields: 

 (𝑃𝑃�𝑖𝑖 − 𝐴𝐴𝑖𝑖)Δ𝑆𝑆𝑖𝑖 = �
1
𝑄𝑄�
� �𝑃𝑃�𝑖𝑖 − 𝑃𝑃�� Δ𝑋𝑋𝑖𝑖 .  

Solving for 𝐴𝐴 yields:  

 𝐴𝐴𝑖𝑖 = 𝑃𝑃� − �
Δ𝑋𝑋𝑖𝑖
𝑄𝑄�Δ𝑆𝑆𝑖𝑖

� �𝑃𝑃�𝑖𝑖 − 𝑃𝑃��.   
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